AEGIS:
A Fast Authenticated Encryption
Algorithm (v1)

Designers and Submitters: Hongjun Wu!, Bart Preneel?

Division of Mathematical Sciences
Nanyang Technological University
wuhongjun@gmail.com
?Dept. Elektrotechniek-ESAT/COSIC
KU Leuven and iMinds, Ghent
bart.preneel@esat.kuleuven.be

2014.03.15

Contents

1 Introduction

2 Specification
2.1 Recommended parameter sets
2.2 Operations, Variables and Functions
2.2.1 Operations
2.2.2 Variables and constants
2.2.3 Functions
2.3 AEGIS-128
2.3.1 The state update function of AEGIS-128
2.3.2 The initialization of AEGIS-128
2.3.3 Processing the authenticated data
2.3.4 The encryption of AEGIS-128
2.3.5 The finalization of AEGIS-128
2.3.6 The decryption and verification of AEGIS-128
24 AEGIS-256
2.4.1 The state update function of AEGIS-256.
2.4.2 The initialization of AEGIS-256.
2.4.3 Processing the authenticated data
2.4.4 The encryption of AEGIS-256
2.4.5 The finalization of AEGIS-256
25 AEGIS-128L o
2.5.1 The state update function of AEGIS-128L
2.5.2 The initialization of AEGIS-128L
2.5.3 Processing the authenticated data
2.54 The encryption of AEGIS-128L
2.5.5 The finalization of AEGIS-128L

3 Security Goals

4 Security Analysis
4.1 The security of the initialization
4.2 The security of the encryption process
4.3 The security of message authentication

4.3.1 Recovering key or state.
4.3.2 Internal collisions.
4.4 Other attacks

5 Features

6 The Performance of AEGIS
7 Design Rationale

8 No Hidden Weakness

9 Intellectual property

10 Consent

11 Acknowledgements

20

21

24

25

26

27

28

Chapter 1

Introduction

The protection of a message typically requires the protection of both confiden-
tiality and authenticity. There are two main approaches to authenticate and
encrypt a message. One approach is to treat the encryption and authentication
separately. The plaintext is encrypted with a block cipher or stream cipher, and
a MAC algorithm is used to authenticate the ciphertext. For example, we may
apply AES [17] in CBC mode [18] to the plaintext, then apply AES-CMAC [22]
(or Pelican MAC [6] or HMAC [19]) to the ciphertext to generate an authen-
tication tag. This approach is relatively easy to analyze since the security of
authentication and encryption can be analyzed almost separately. Bellare and
Namprempre have performed a detailed analysis of this type of authenticated
encryption for randomized encryption [2]. Another approach is to apply an
integrated authenticated encryption algorithm to the message; one can expect
that this is more efficient since authentication and encryption can share part of
the computation.

There are three approaches to design an integrated authenticated encryption
algorithm. The first approach is to use a block cipher in a special mode (the
block cipher is treated as a black box). The research on this approach started
about ten years ago [9, 12, 14]. There are now two NIST recommended modes
of operation for authenticated encryption, namely, CCM [20] and GCM [21].
OCB [24, 25, 15] is a widely known authenticated encryption mode, and OCB2
is an ISO standard. The second approach is to use a stream cipher (the stream
cipher is treated as a black box). The keystream is divided into two parts:
one part for encryption and another part for authentication. A typical example
of this approach is Grain-128a [1]. The third approach is to design dedicated
authenticated encryption algorithms. In this approach, a message is used to
update the state of the cipher, and message authentication can be achieved
almost for free. Two examples of this approach are Helix [8] and Phelix [26]. The
attack against Phelix [27] shows that it is unlikely that this type of authenticated
encryption algorithm can withstand nonce-reuse attacks if it requires much less
computation than a block cipher.

In this report, we propose a dedicated authenticated encryption algorithm

AEGIS following the third approach above. AEGIS is constructed from the
AES encryption round function (not the last round). AEGIS-128L uses eight
AES round functions to process a 32-byte message block (one step). AEGIS-128
processes a 16-byte message block with 5 AES round functions, and AEGIS-256
uses 6 AES round functions. The computational cost of AEGIS is about half
that of AES. AEGIS is very fast. On the Intel Sandy Bridge processor Core-i5,
the encryption speeds of AEGIS-128L, AEGIS-128 and AEGIS-256 are about
0.48 cpb, 0.66 cpb and 0.70 cpb, respectively. On the Intel Haswell processor
Core-i7, the encryption speeds of AEGIS-128L, AEGIS-128 and AEGIS-256 are
about 0.37 cpb, 0.60 cpb and 0.62 cpb, respectively. The speed of AEGIS-128L
is much faster than that of AES in counter (CTR) mode, and are about 8 times
that of AES encryption in CBC mode. AEGIS offers a very high security. As
long as the nonce is not reused, it is impossible to recover the AEGIS state
and key faster than exhaustive key search (under the assumption that a 128-bit
authentication tag is used, and the forgery attack is not successful by repeating
the attack). AEGIS is suitable for network communication since AEGIS can
protects a packet while leaving the packet header (associated data) unencrypted.

The specifications of AEGIS-128 and AEGIS-256 were published at SAC
2013 [28]. AEGIS-128L is introduced into this submission.

Chapter 2

Specification

The specification of AEGIS-128, AEGIS-256 and AEGIS-128L are given in this
chapter.

2.1 Recommended parameter sets

e Primary Recommendation: AEGIS-128L
128-bit key, 128-bit nonce, 1024-bit state, 128-bit tag
AEGIS-128L is the fastest AEGIS algorithm.

e Secondary Recommendation: AEGIS-128
128-bit key, 128-bit nonce, 640-bit state, 128-bit tag
Reason: The state of AEGIS-128 is smaller than that of AEGIS-128L.

e Tertiary Recommendation: AEGIS-256
256-bit key, 256-bit nonce, 768-bit state, 128-bit tag
Reason: AEGIS-256 uses 256-bit secret key.
2.2 Operations, Variables and Functions
The operations, variables and functions used in AEGIS are defined below.

2.2.1 Operations
The following operations are used in AEGIS:

@ : bit-wise exclusive OR

& : bit-wise AND

I : concatenation

[¢] : ceiling operation, [z] is the smallest integer not less than x

2.2.2 Variables and constants

The following variables and constants are used in AEGIS:

AD
AD;

adlen
C
C;
const

constg
consty
IV 198
IV 256
IV 2560
IV 56,1
Kiag
Kosg
Kos6,0
Kos6.1
msglen

associated data (this data will not be encrypted or decrypted).

a 16-byte associated data block (the last block may be a partial
block).

bit length of the associated data with 0 < adlen < 264 .
ciphertext.

a 16-byte ciphertext block (the last block may be a partial block).
a 32-byte constant in the hexadecimal format; const = 00 || 01 ||
0L [|02 [/ 03 | 05 || 08 || O || 15 [} 22 || 37 || 59 || 90 || €9 || 79 |
62 || db || 3d [| 18 || 55 || 6d || c2 || 2f || f1] 20 [11 [| 31 || 42 |
73 || b5 || 28 || dd. This is the Fibonacci sequence modulo 256.
first 16 bytes of const.

last 16 bytes of const.

128-bit initialization vector of AEGIS-128.

256-bit initialization vector of AEGIS-256.

first half of IV 554 .

second half of IV o56 .

128-bit key of AEGIS-128.

256-bit key of AEGIS-256.

first half of Koxg .

second half of Kos5¢ .

bit length of the plaintext/ciphertext with 0 < msglen < 264.

a 16-byte data block.

plaintext.

a 16-byte plaintext block (the last block may be a partial block).
state at the beginning of the ith step.

j-th 16-byte element of the state S;. For AEGIS-128, 0 < j < 4;
for AEGIS-256, 0 < j < 5; for AEGIS-128L, 0 < j < 7.
authentication tag.

bit length of the authentication tag with 64 <t < 128.

u= [ada].
v — "771,;% eTL_}
up = [56" |

v, = ('m;gé@n‘l)

2.2.3 Functions
The AES encryption round function (not the last round) is used in AEGIS:

AESRound(A, B): Aisthe 16-byte state, B is the 16-byte round key. This func-
tion mapping 2 16-byte inputs to a 16-byte output can be implemented efficiently
on recent x86 processors using the AES instruction - m128 aesenc_sil28(A,
B), where A and B are two 128-bit integers __m128i.

2.3 AEGIS-128

We first describe AEGIS-128 since its structure is the simplest among those
three algorithms. With a 128-bit key and a 128-bit initialization vector, AEGIS-
128 encrypts and authenticates a message. The associated data length and the
plaintext length are less than 264 bits. The authentication tag length is less
than or equal to 128 bits. We strongly recommend the use of a 128-bit tag.

2.3.1 The state update function of AEGIS-128

The state update function updates the 80-byte state S; with a 16-byte message
block m;. S;11 = StateUpdate128(S;,m;) is given as follows:

Sit10 = AESRound(S;4,Si0®m;);
S7;+171 = AESRound(SLO, Si,l);
SZ‘+172 = AESRound(Siyl, SLQ);
Si+1,3 = AESRound(Si,g, Si’3);
S¢+1)4 = AESRO’LLnd(Si)g, Si)4);

The state update function is shown in Fig. 2.1 :

'Sr 0 ‘ST 1 ‘Sf,Z 'Sr 3 'SYI 4
|
— v v J
m —® [R R R R R
W@ L Q“f %? e Loy
Sr'+1,0 Sr'+1,1 Si+l,2 Si+l,3 Si+l,4

Figure 2.1: The state update function of AEGIS-128. R indicates the AES encryption
round function without XORing the round key and w is a temporary 16-byte word.

2.3.2 The initialization of AEGIS-128

The initialization of AEGIS-128 consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S_100 = Kiag® IVias;
5710,1 = CO?’LStl;
S_102 = consty;
S_103 = K28 ® consty;
S_104 = K28 ® consty;

2. For i = =5 to —1, mg; = Ki28; maj1 = K128 ® 1V 128;

3. For i = —10 to —1, S;;1 = StateUpdatel128(S;,m;) ;

2.3.3 Processing the authenticated data
After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that
if adlen = 0, the state will not be updated.

2. For i = 0 to [“den] — 1 we update the state:

Sit1 = StateUpdatel28(S;, AD;);

2.3.4 The encryption of AEGIS-128

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block P; is used to update the state, and P; is encrypted to C;.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128
bits, and the padded full block is used to update the state. Note that for
the last block, only the original plaintext bits will be encrypted. Note that
if msglen = 0, the state will not be updated, and there is no encryption.

2. Let u=[2e"] and v = [migl;”] For ¢ = 0 to v — 1, we perform encryp-

tion and update the state:

Ci = Pi®Sutii ®Sutia® (Suti2&Suti3) ;
Sutit1 = StateUpdatel28(Syii, ;) ;

2.3.5 The finalization of AEGIS-128

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Sytv,3 ® (adlen || msglen), where adlen and msglen are rep-
resented as 64-bit integers.

2. For i = u+ v to u+ v + 6, we update the state:

Si+1 = StateUpdatel128(S;, tmp) ;

3. We generate the authentication tag from the state Sy1,47 as follows:
4
T = @i:()su—i-v—i-?,i 5

The authentication tag T consists of the first ¢ bits of T”.

2.3.6 The decryption and verification of AEGIS-128

The exact values of key size, IV size, and tag size should be known to the de-
cryption and verification processes. The decryption starts with the initialization
and the processing of authenticated data. Then the ciphertext is decrypted as
follows:

1. If the last ciphertext block is not a full block, decrypt only the partial
ciphertext block. The partial plaintext block is padded with 0 bits, and
the padded full plaintext block is used to update the state.

2. For i = 0 to v — 1, we perform decryption and update the state.

P, = C;®Suti1 ® Sutia® (Suti2&Sutis) ;
Su+i+1 = StateUpdate128(Su+i, Pl) 3

The finalization in the decryption process is the same as that in the encryp-
tion process. We emphasize that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of AEGIS-128 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV'). This requirement also applies to AEGIS-256.

2.4 AEGIS-256

In this section, we describe AEGIS-256. With a 256-bit key and a 256-bit
initialization vector, AEGIS-256 encrypts and authenticates a message. The
associated data length and the plaintext length are less than 264 bits. The au-
thentication tag length is less than or equal to 128 bits. We strongly recommend
the use of a 128-bit tag.

2.4.1 The state update function of AEGIS-256

The state update function updates the 96-byte state S; with a 16-byte message
block m;. S;11 = StateUpdate256(S;, m;) is illustrated as follows:

Si+170 = AESROund(SLg,, S@o S5 ml-);
Si+1,1 = AESRO’U,TLd(SZ"(), Si,l)?
SiJrl’z = AESRO’LLnd(Si’l, Si’g);
Sit13 = AESRound(S;2,S;3);
Si+174 = AESROU’fld(Sl"g, 51,4);
S7;+175 = AESRound(SM, S¢,5);

2.4.2 The initialization of AEGIS-256

The initialization of AEGIS-256 consists of loading the key and IV into the
state, and running the cipher for 16 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S_160 = Koas6,0® IVas6,0;
S_161 = Kase,1 © IV 56,15
S_162 = consty;

S_163 = consty;

S_164 = Kase,0 @ consto;
S_165 = Kos6,1 @ consty;

2. For i = —4 to —1,

My = Kos6,0;
M1 = Kose1s;
Myiys = Kose,0 @ IVas6,0;
Mmyir3 = Kose1 @ IVas61-

3. For i = —16 to —1, S;;1 = StateUpdate256(S;,m;) ;

2.4.3 Processing the authenticated data
After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that
if adlen = 0, the state will not be updated.

2. For i = 0 to [%4en] — 1 we update the state.

Sit1 = StateUpdate256(S;, AD;);

2.4.4 The encryption of AEGIS-256

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block P; is used to update the state, and P; is encrypted to C;.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128
bits, and the padded full block is used to update the state. Note that for
the last block, only the original plaintext bits will be encrypted. Note that
if msglen = 0, the state will not be updated, and there is no encryption.

2. Let u=[2] and v = f%ﬁf”] For ¢ = 0 to v — 1, we perform encryp-

tion and update the state:

10

Ci = Pi®Sutin ®Sutia® Sutis ® (Sugi2&Suti3) ;
Su+i+1 = StateUpdateQSG(Suﬂ-, Pz) ;

2.4.5 The finalization of AEGIS-256

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Sytv,3 ® (adlen || msglen), where adlen and msglen are rep-

resented as 64-bit integers.

2. For i = u+ v to u + v + 6, we update the state:

Si+1 = StateUpdate256(S;, tmp) ;

3. We generate the authentication tag from the state Sy1,47 as follows:
5
= @i:()su—i-v—i-?,i 5

The authentication tag T consists of the first ¢ bits of T".

2.5 AEGIS-128L

In this section, we describe AEGIS-128L with 128-byte state. Its key, IV and
tag sizes are the same as that of AEGIS-128. AEGIS-128L encrypts and au-
thenticates a message with length less than 26 bits.

2.5.1 The state update function of AEGIS-128L

The state update function AEGIS-128L updates the 128-byte state S; with two
16-byte message blocks m, and my. S;1+1 = StateUpdatel28L(S;, m,,mp) is
illustrated as follows:

Sit10 = AESRound(S;7,S:i0®ma);
SiJr]’l = AESRound(Sz 07)7
Si+1)2 = AESRound(Sl 1, Sz 2)

Si+1,3 = AESRound(S’l 2, Sz 3)

Si+174 = AESRound(Sz 3, S 4 S mb)
Si+175 = AESRound(SZ 4,),
Sit16 = AESRound(S;s,S:i6);

Si+1,7 = AESRO’LLnd(Sl,G, 1,7)

11

2.5.2 The initialization of AEGIS-128L

The initialization of AEGIS-128L consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1.

2.

Load the key and IV into the state as follows:

S_ 100 = Kig®IVigs;
S_101 = consty;

S_102 = constp;

S_103 = consty;

S_104 = Ko ® IVigs;
S_105 = Ki28 @ consty;
S_106 = K28 ® consty;
S_ 10,7 = Ki28 @ consto;

For ¢ = —10 to —1, S; 11 = StateUpdatel128L(S;, [Vias, K12s).

2.5.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1.

If the length of associated data is not a multiple of 256 bits, use 0 bits

to pad it to a‘ziéeﬁ"] x 256 bits, and the padded associated data is used to

update the state. Note that if adlen = 0, the state will not get updated.

For i = 0 to %] — 1, we update the state.

Si—i—l = StateUpdate128L(Si, ADgi, AD2i+1)]

2.5.4 The encryption of AEGIS-128L

After the initialization, in every step of the encryption, two 16-byte plaintext
blocks Ps; and P41 are used to update the state S; to obtain the state S;i1,
and the plaintext blocks get encrypted.

1.

2.

If the size of the message is not a multiple of 256 bits, use 0 bits to pad it

to [T x 256 bits.

Let uy, = [4dlen] o), = f%lﬁen] For i = 0 to vy, — 1, we update the state

and perform encryption.

Coi = Poi®Su;+i1 D Sup+i6 D (Sup+i,2&Su;+i,3) 3
Coit1 = Poit1®B Sup+i2® Sup+i5 D (Sup+i,68&u,+i7) ;
SUL+i+1 = StateUpdatelQSL(SuL_,_i, Py, P2i+1) ;

12

2.5.5 The finalization of AEGIS-128L

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The message being used at this stage is part of the
state at the end of the encryption, together with the length of the associated
data and the length of the message.

1. Let tmp = Sy, 4v,,2 @ (adlen | msglen), where adlen and msglen are

represented as 64-bit integers.

2. For ¢ = ur + v, to ur, + vy + 6, we update the state:

Si+1 = StateUpdate128L(S;, tmp, tmp).
3. We generate the authentication tag from the state Sy, 4., +7 as follows:

/N6
"= Gai:OSuL+’UL+7,7J .

The authentication tag T is the first ¢ bits of T” .

13

Chapter 3
Security Goals

The security goals of AEGIS are given in Table 3.1. In AEGIS, each key, IV
pair is used to protect only one message. If verification fails, the new tag and
the decrypted ciphertext should not be given as output.

Note that the authentication security in Table 3.1 includes the integrity
security of plaintext, associated data and nonce.

Table 3.1: Security Goals of AEGIS

Encryption® Authentication®
AEGIS-128L 128-bit 128-bit
AEGIS-128 128-bit 128-bit
AEGIS-256 256-bit 128-bit

%The encryption security is under the assumption that the attacker could not
forge a message through repeated trials.

®The authentication security is under the assumption that the secret key is
unknown to the attacker, and a 128-bit tag is used.

14

Chapter 4

Security Analysis

The following requirements should be satisfied in order to use AEGIS securely.

1. Each key should be generated uniformly at random.

2. Each key and IV pair should not be used to protect more than one mes-
sage; and each key and IV pair should not be used with two different tag
sizes.

3. If verification fails, the decrypted plaintext and the wrong authentication
tag should not be given as output.

If the above requirements are satisfied, we have the following security claims:

Claim 1. The success rate of a forgery attack is 2%, where ¢ is the tag size. If
the forgery attack is repeated n times, the success rate of a forgery
attack is about n x 27t

Claim 2. The state and key cannot be recovered faster than exhaustive key
search if the forgery attack is not successful. We recommend the use
of a 128-bit tag size for AEGIS in order to resist repeated forgery
attacks. (Note that with 128-bit tag, the state of AEGIS-256 can
be recovered faster than exhaustive key search if a forgery attack is
repeated for about 2128 times for the same key and IV pair.)

4.1 The security of the initialization

A difference in IV is the main threat to the security of the initialization of
AEGIS. A difference in IV would eventually propagate into the ciphertexts,
and thus it is possible to apply a differential attack against AEGIS. In AEGIS-
128, there are 50 AES round functions (10 steps) in the initialization. If there
is a difference in IV, the difference would pass through more than 10 AES
round functions. In AEGIS-256, there are 96 AES round functions (16 steps)

15

in the initialization. If there is a difference in IV, the difference would pass
through more than 16 AES round functions. In AEGIS-128L, there are 80 AES
round functions (10 steps) in the initialization. If there is a difference in IV, the
difference would pass through more than 20 AES round functions. Furthermore,
in order to prevent the difference in the state being eliminated completely in the
middle of the initialization, we inject the I'V difference repeatedly into the state
(5, 8 and 10 times into the state of AEGIS-128, AEGIS-256 and AEGIS-128L,
respectively). We expect that a differential attack against the initialization
would be more expensive than exhaustive key search.

4.2 The security of the encryption process

We emphasize here that AEGIS encryption is a stream cipher with a large state
which is updated continuously. The attacks against a block cipher cannot be
applied directly to AEGIS. The state update function involves five AES round
functions in AEGIS-128, six AES round functions in AEGIS-256, and eight AES
round functions in AEGIS-128L. We should ensure that IV is not reused for
the same key; otherwise, the states of AEGIS can be recovered easily with ei-
ther known-plaintext attacks or chosen plaintext attacks. For example, if we
re-use an IV and inject a difference into P;, the difference would propagate into
Ci12, and part of the state can be attacked by analyzing the difference pair
(AP;, AC;;2). If an authenticated encryption algorithm is secure for re-used
1Vs, we expect that such an algorithm can only be as fast as a block cipher,
as pointed out in [27]. This can be argued as follows: once an IV is re-used,
the attacks that are relevant for a block cipher can be applied to attack the state.

Statistical Attacks. If the I'V is used only once for each key, it is impossible to
apply a differential attack to the encryption process. It is extremely difficult to
apply a linear attack (or correlation attack) to recover the secret state since the
state of AEGIS is updated in a nonlinear way. In general, it would be difficult
to apply any statistical attack to recover the secret state due to the nonlinear
state update function (the statistical correlation between any two states vanishes
quickly as the distance between them increases).

LEX [3, 4] is an AES-based stream cipher that generates keystream from
part of the state. We would like to mention here that AEGIS is not vulnerable
to the attack against LEX [7]. There is a fundamental reason why LEX is
vulnerable to a statistical attack while AEGIS is not: the round keys used in
LEX are fixed, while the whole state of AEGIS is updated continuously in a
nonlinear way.

4.3 The security of message authentication

There are two main approaches to attack a MAC algorithm. One approach is to
recover the secret key or secret state, another approach is to introduce/detect

16

an internal state collision. Besides these two approaches, when we analyze
the security of message authentication, we need to consider that the AEGIS
encryption may affect the security of message authentication.

4.3.1 Recovering key or state.

From Sect. 4.1, we expect that the secret key cannot be recovered faster than
exhaustive search by attacking the initialization. From Sect. 4.2, we expect
that the state cannot be recovered faster than exhaustive search by attacking
the encryption process if the IV is used only once. Similarly, we expect that
the state cannot be recovered faster than exhaustive search by attacking the tag
generation process if I'V is not reused.

An attacker can still inject a difference into the state in the tag verification
process and obtain the decrypted plaintext if the forgery attack is allowed to be
repeated for multiple times for the same key and IV pair. In a forgery attack,
the decrypted plaintext is known to the attacker with probability 27 (if the
verification is successful). It becomes possible to recover the state if the forgery
attack is repeated many times. We recommend the use of 128-bit tag so that
recovering the state requires at least 2128 forgery attempts.

The security level of the AEGIS-256 state is only 128 bits with a 128-bit tag
(if we consider that a forgery attack becomes successful). However, we believe
that repeating the forgery attack for around 2'2® times to recover a state is
impractical.

4.3.2 Internal collisions.

A powerful attack against MAC is to introduce and detect internal collisions.
A general approach based on the birthday attack was given by Preneel and
van Oorschot [23]: an internal collision can be detected after a key is used to
generate the authentication tags of about 2/2 chosen messages, where n is
the state size and tag size in bits. The internal collision can be exploited to
forge the tags of new messages. The birthday attack was later applied to other
MAC algorithms [29]. AEGIS resists this type of attacks due to its large state
size. Another approach to introduce internal collision is through differential
cryptanalysis. Suppose that the difference cancellation in the state occurs with
probability 27¢; then we can detect an internal collision after a secret key is used
to generate the tags of those 2% message pairs. The resulting internal collision
can be used to forge the tags of new messages.

An attacker can inject a difference into the state in the decryption and tag
verification process by modifying the ciphertext. However, AEGIS provides a
large security margin against this type of attack since differences are introduced
into a large state. The security of AEGIS against forgery attack is stronger than
that of Pelican MAC when the message or the tag gets modified. In Pelican
MAC, four AES round functions are used to process each 16-byte message block;
while in AEGIS, at least four AES round functions are used. Furthermore, the
state size of AEGIS-128 is at least 5 times that of Pelican MAC, and it becomes

17

much more difficult to eliminate the difference in the large state. A simple
description of our analysis is given below. We notice that the first difference
being injected into ciphertext would pass through five round functions without
being affected by another ciphertext difference in AEGIS-128, and there are at
least 26 active Sboxes being involved. If we consider only a single differential
path, the probability of the difference cancellation in the state is less than
276x26 — 9-156 " Thus generating a state collision in the verification process
requires at least 216 modifications to the ciphertext. Note that the differential
attack here is slightly different from that against block cipher since the AEGIS
verification process would guarantee that each forgery attack generates only
one useful difference pair (the failed forgery attacks would not give outputs).
It shows that AEGIS-128 is strong against forgery attack when the ciphertext
or tag gets modified. Multiple differential paths would not have a significant
effect on the forgery attack here, since each differential path has to cancel its
own differences being left in the state. Attacking AEGIS-256 is more difficult
since it involves a larger state and more AES round functions. The security of
AEGIS-128L against forgery attack is slightly weaker than AEGIS-128 since a
difference passes through at least four AES rounds. However, a forgery attack
against AEGIS-128L still requires at least 2'°0 modifications to the ciphertext.
Note that our analysis above is very conservative since when a difference passes
through five AES round functions, the difference would be injected into each
16-byte element in the state.

We now analyze whether the noninvertible AEGIS state update function
affects the security of the authentication of AEGIS. In AEGIS, a difference in
the state could be eliminated even if there is no difference being introduced
to cancel it. However, it would only happen if the difference in every 16-byte
element is able to eliminate the difference in the next element after passing
through an AES round function. It means that at least 26 active Sboxes are
involved in this difference elimination process in AEGIS-128, and generating
these particular differences in the state involves more than 26 additional active
Sboxes. We consider that this type of weak state difference has a negligible
effect on the security of the authentication of AEGIS.

The analysis given above shows that the authentication of AEGIS is very
strong.

4.4 Other attacks

There are weak states in AEGIS. In one type of weak states, all the 16-byte
elements in a state are equal: consequently all the 16-byte elements in the
next state would be equal (if the message block is 0). However, there are only
2128 such states, so this type of weak state appears with probabilities 27512,
27640 and 27896 for AEGIS-128, AEGIS-256 and AEGIS-128L, respectively. In
another type of weak states, the four columns in each 16-byte element are equal
and every 16-byte element has such a property: in this case, the same property
would appear in the next state (if the message block also has such a property).

18

However, there are only 232%5 = 2160 gych states in AEGIS-128, 232%6 = 2192
such states in AEGIS-256, 232%8 = 2256 5o we expect that this type of weak
state appears with probabilities 27480, 2608 and 2-768 for AEGIS-128, AEGIS-
256 and AEGIS-128L, respectively.

19

Chapter 5

Features

e Efficient. On the latest Intel Haswell microprocessors the speed of AEGIS-
128L is more than twice that of AES-GCM.

— The computational cost of AEGIS is less than half that of AES-GCM.

Authentication is achieved almost for free.

Encryption/decryption share the same algorithm.

Parallel AES round functions at each step, suitable for fast software
implementation using AES-NI, and suitable for fast hardware imple-
mentation.

e Secure. AEGIS provides 128-bit authentication security, stronger than
AES-GCM.

20

Chapter 6

The Performance of AEGIS

To process a 16-byte message block, AEGIS-128L, AEGIS-128 and AEGIS-
256 use four, five and six AES round functions, respectively. In AEGIS, the
critical path for processing a 16-byte message block is about one AES round.
The computational cost of AEGIS is about half that of AES for each message
block, thus the speed of AEGIS is about twice that of AES when they are
implemented using table lookups. For implementations based on bit-slicing
techniques (e.g. Késper and Schwabe [13]), the difference is smaller as AEGIS-
128 and AEGIS-256 allow for 5 and 6 parallel AES operations rather than §;
but the speed of AEGIS-128L is still about twice that of AES-128. AEGIS is
very efficient when it is implemented using the AES new instructions (AES-NT)
available on some x86 processors since 2010. With parallel AES round functions
at each step, AEGIS can fully utilize the 3-stage pipeline in AES-NI in Intel
Westmere processor, and can utilize most of the 8-stage pipeline in the AES-NI
on the Intel Sandy Bridge processor. When implemented using AES-NI on the
Sandy Bridge processor, the speed of AEGIS is about 8 times that of AES in
CBC mode (encryption), and it is slightly faster than AES-CTR.

We implemented AEGIS in C code using AES-NI. We tested the speed on
Intel Core i5-2540M 2.6GHz processor (Sandy Bridge) running 64-bit Ubuntu
11.04 and turning off the Turbo Boost. The compiler being used is gcc 4.5.2, and
the options “-O3 -msse2 -maes -mavx” are used. In our test, associated data is
not considered, and 128-bit tag is used. The test is performed by processing a
message repeatedly and printing out the final message. To ensure that the tag
generation is not removed in the compiler optimization process, we use the tag
as IV for the next message. To ensure that the tag verification is not removed
in the compiler optimization process, we count the number of failed verifications
and print out the final result.

The performance is given in Table 6.1. For 4096-byte messages, the speed of
AEGIS-128L is 0.48 cpb; the speeds of AEGIS-128 and AEGIS-256 are around
0.7 cpb. According to Table 6.1, the performance of AEGIS is better than that
of CCM, GCM and OCB3, ALE [5] and ASC-1 [11]. ALE and ASC-1 are two
new authenticated encryption algorithms using AES instructions. In Table 6.1,

21

the speed for multiple messages is not included since it is a common practice
to compare the speeds for a single message. (For multiple long messages, the
speeds of ALE and CCM are 1.2 and 3.1 cpb, respectively [5].) Note that
the speeds given in Table 6.1 are for reference only since the ciphers are not
evaluated under the same conditions.

Table 6.1: The speed comparison (in cycles per byte) for different message length
on Intel Sandy Bridge. A plus sign (+) indicates that the data are from the ALE
designers and the performance is measured on the Intel i5-2400 microprocessor.
EA means encryption-authentication; DV means decryption-verification.

64B 128B 256B 512B 1024B 4096B

AES-128-CTR* — 1.61 1.22 0.99 0.87 0.77
AES-128-CCM 7.26 6.31 5.65 5.19 5.17 5.05
AES-128-GCM™ — 4.95 3.88 3.33 3.05 2.90
AES-128-OCB3™* — 2.69 1.79 1.34 1.12 0.88
ALET — 6.63 5.11 4.34 3.96 3.68
ASC-1* — 7.74 4.80 3.69 2.88 2.64

AEGIS-128L(EA) 3.68 2.05 1.23 0.83 0.63 0.48
AEGIS-128L(DV) 3.81 2.12 1.27 0.85 0.63 0.48
AEGIS-128(EA 3.37 1.99 1.30 0.96 0.80 0.66
AEGIS-128(DV 3.78 2.17 1.36 1.02 0.84 0.67
AEGIS-256(EA 3.51 2.10 1.34 1.03 0.86 0.70
AEGIS-256(DV 4.00 2.35 1.51 1.09 0.90 0.74

We tested the same code on the latest Intel Core i7-4770 processor (Haswell)
running 64-bit Ubuntu 13.10 and turn off turbo boost. The compiler being used
is gce 4.8.1, and the options “-O3 -maes -mavx2” are used. The performance is
given in Table 6.2. For 4096-byte messages, the speed of AEGIS-128L is 0.37
cpb; the speeds of AEGIS-128 and AEGIS-256 are around 0.6 cpb.

Table 6.2: The speed comparison (in cycles per byte) for different message length
on Intel Haswell. EA means encryption-authentication; DV means decryption-
verification.

64B 128B 256B 512B 1024B 4096B
AEGIS-128L(EA) 344 1.88 1.11 0.71 0.51 0.37
AEGIS-128L(DV) 345 1.88 1.09 0.70 0.50 0.35
AEGIS-128(EA 3.29 1.92 1.24 0.91 0.73 0.61

)
AEGIS-128(DV) 2.98 1.77 1.16 0.86 0.81 0.60
AEGIS-256(EA) 3.98 2.28 1.42 0.99 0.78 0.62
AEGIS-256(DV) 3.88 2.22 1.39 0.98 0.77 0.62

AEGIS-128 is only slightly slower than AEGIS-256 for long messages, al-
though the computational cost of AEGIS-256 is about 20% more than that of
AEGIS-128. The reason is that on the Sandy Bridge microprocessor, AES-NI

22

is implemented with an eight-stage pipeline, and both AEGIS-128 and AEGIS-
256 do not fully utilize the pipeline, so the performance of AEGIS-128 is close
to that of AEGIS-256. On the Intel Westmere microprocessors with a 3-stage
AES-NI, AEGIS-256 is about 20% slower than AEGIS-128.

23

Chapter 7

Design Rationale

The goal of AEGIS is to achieve high performance and strong security. To
achieve high performance, we use the AES round function which is now imple-
mented on the latest Intel and AMD microprocessors as Intel AES New Instruc-
tions (AES-NI). AES-NT is very efficient for achieving diffusion and confusion
on a modern microprocessor. In the design of AEGIS, we use several parallel
AES round functions in each step so as to use most of the pipeline stages in
AES instruction. AES instructions are implemented on Intel Westmere (06_25H,
06_2CH, 06_2FH) microprocessors with a three-stage pipeline (6 clock cycles),
and are implemented on Intel Sandy Bridge (06.2AH) microprocessors with an
eight-stage pipeline (8 clock cycles) [10]. Using several parallel AES round func-
tions in AEGIS significantly improves its performance by utilizing the pipeline
of AES-NI.

To achieve strong encryption security, we ensure that the I'V difference is
randomized at the initialization stage, and the state cannot be recovered from
the ciphertext. There are at least 10 steps in the initialization of AEGIS, so we
expect that the initialization of AEGIS is strong. To ensure that the state cannot
be recovered from the ciphertext faster than brute force attack, we ensure that
at least 20, 30 and 24 AES round functions are involved in the state recovery
attack against AEGIS-128, AEGIS-256 and AEGIS-128L, respectively.

To achieve strong authentication security, we ensure that any difference being
injected results in a particular difference with sufficiently small probability so
that it is difficult to launch a forgery attack. Our design is partly motivated by
the design of Pelican MAC [6]. In Pelican MAC, a difference would pass through
4 AES round functions before meeting with another difference, so at least 25
active Sboxes are involved. The security proof against differential forgery attack
is very simple for Pelican MAC (however, there is a birthday type attack against
Pelican MAC due to its 128-bit size [29]). In AEGIS, the first difference in the
state would pass through at least 4 AES round functions before being affected
by another difference. In addition, when a difference passes through AES round
functions, the differences are injected into at least four elements in the state, so
it becomes more difficult to eliminate the state difference.

24

Chapter 8

No Hidden Weakness

We state here that the designer/designers have not hidden any weaknesses in
this cipher.

25

Chapter 9

Intellectual property

We state that AEGIS is not patented and it is freely available for all applications.

If any of this information changes, the submitter will promptly (and within at
most one month) announce these changes on the crypto-competitions mailing
list.

26

Chapter 10

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.

27

Chapter 11

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments,
especially the idea of fully utilizing the 8-stage pipeline of AES-NT on the Sandy
Bridge processor to achieve higher performance by increasing the state size. And
we would like to thank Ivica Nikolic for analyzing the security of the finalization
part of AEGIS-128L. The first author has been funded by the NAP grant of the
Nanyang Technological University. The second author has been funded in part
by the Research Council KU Leuven (GOA TENSE) and the FWO Flanders.

28

Bibliography

1]

[9]

[10]

M. Agren, M. Hell, T. Johansson, W. Meier. Grain-128a: A New Version of
Grain-128 with Optional Authentication. International Journal of Wireless
and Mobile Computing 2011, Vol. 5, No. 1 pp. 48-59.

M. Bellare and C. Namprempre. Authenticated Encryption: Relations
among notions and analysis of the generic composition paradigm. Advances
in Cryptology — Asiacrypt 2000, LNCS 1976, pp. 531-545.

A. Biryukov, The Design of a Stream Cipher LEX, Selected Areas in Cryp-
tography — SAC 2006, LNCS 4356, pp. 67-75.

A. Biryukov. The Tweak for LEX-128, LEX-192, LEX-256.
ECRYPT stream cipher project report 2006/037. Available at
http://www.ecrypt.eu.org/stream.

A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser.
ALE: AES-Based Lightweight Authenticated Encryption. Fast Software
Encryption — FSE 20138.

J. Daemen, V. Rijmen. The Pelican MAC Function. TACR Cryptology
ePrint Archive 2005: 88 (2005).

O. Dunkelman, N. Keller. A New Attack on the LEX Stream Cipher. Ad-
vances in Cryptology — Asiacrypt 2008, LNCS 5350, pp. 539-556.

N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks and T. Kohno.
Helix, Fast Encryption and Authentication in a Single Cryptographic Prim-
itive. Fast Software Encryption — FSE 2003, LNCS 2887, pp. 330-346.

V. Gligor and P. Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. Fast Software Encryption —
FSE 2001, LNCS 2355, pp. 92-108.

Intel. Intel 64 and TA-32 Architectures Optimization Reference Man-
ual. Available at http://www.intel.com/content/dam/doc/manual/64-ia-
32-architectures-optimization-manual.pdf

29

[11]

[12]

[13]

[21]

[22]

23]

G. Jakimoski and S. Khajuria. ASC-1: An Authenticated Encryption
Stream Cipher. Selected Area in Cryptography — SAC 2011, LNCS 7118,
pp. 356-372.

C. Jutla, Encryption modes with almost free message integrity. Advances
in Cryptology — EUROCRYPT 2001, LNCS 2045, pp. 529-544.

E. Késper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM.
Cryptographic Hardware and Embedded Systems — CHES 2009, LNCS 5747,
pp. 1-17.

J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes
of operation. Fast Software Encryption—-FSE 2000, LNCS 1978, pp. 284—
299.

T. Krovetz, P. Rogaway. The Software Performance of Authenticated-
Encryption Modes. Fast Software Encryption — FSE 2011, LNCS 6733,
pp. 306-327.

D. McGrew and J. Viega. The security and performance of the Ga-
lois/Counter Mode (GCM) of operation. Progress in Cryptology — IN-
DOCRYPT 2004, LNCS 3348, pp. 343-355.

National Institute of Standards and Technology. Advanced Encryption
Standard. FIPS 197.

National Institute of Standards and Technology. Recommendation for Block
Cipher Modes of Operation. NIST special publication 800-38A, 2001 Edi-
tion.

National Institute of Standards and Technology. The Keyed-Hash Message
Authentication Code (HMAC). FIPS PUB 198.

National Institute of Standards and Technology. Recommendations for
Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality. NIST special publication 800-38C, May 2004.

National Institute of Standards and Technology. Recommendations for
Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. NIST special publication 800-38D, November 2007.

National Institute of Standards and Technology. Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication. NIST
special publication 800-38B.

B. Preneel, P. C. van Oorschot. On the Security of Iterated Message Au-
thentication Codes. IEEFE Transactions on Information Theory 45(1), 188—
199 (1999).

30

[24]

[25]

[26]

[27]

[28]

P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of opera-
tion for efficient authenticated encryption. ACM Trans. on Information and
System Security, 6(3), pp. 365403, 2003. Earlier version, with T. Krovetz,
in CCS 2001.

P. Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. Advances in Cryptology — ASIACRYPT
2004, LNCS 3329, pp. 16-31.

D. Whiting, B. Schneier, S. Lucks and F. Muller. Phelix: Fast Encryp-
tion and Authentication in a Single Cryptographic Primitive. eSTREAM,
ECRYPT Stream Cipher Project Report 2005/027.

H. Wu, B. Preneel. Differential-Linear Attacks Against the Stream Cipher
Phelix. Fast Software Encryption — FSE 2007, LNCS 4593, pp. 87-100.

H. Wu, B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm.
Selected Area in Cryptography — SAC 2013.

Z. Yuan, W. Wang, K. Jia, G. Xu, X. Wang. New Birthday Attacks on
Some MACs Based on Block Ciphers. Advances in Cryptology — CRYPTO
2009, LNCS 5677, pp. 209-230.

31

