
Submission to the CAESAR competition

AES-COBRA v1

Designers/Submitters:
Elena Andreeva1,2, Andrey Bogdanov3, Martin M. Lauridsen3,
Atul Luykx1,2, Bart Mennink1,2, Elmar Tischhauser3, and Kan Yasuda1,4

Affiliation:
1 Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium.
2 iMinds, Belgium.
3 DTU Compute, Technical University of Denmark, Denmark.
4 NTT Secure Platform Laboratories, Japan.

cobra@esat.kuleuven.be

March 16, 2014

AES-COBRA v1: Submission to CAESAR

1 Specification

1.1 Parameters

AES-COBRA has three parameters: the key length κ, the nonce length ν, and the tag
length τ . The key length can be either 16 bytes (128 bits), 24 bytes (192 bits), or 32
bytes (256 bits). The tag length is between 8 bytes (64 bits) and 16 bytes (128 bits). The
nonce, also called the public message number, is an optional input of length between 0 and
16 bytes (128 bits). AES-COBRA does not support a secret message number. Each key
size of AES-COBRA corresponds to a key size of AES. AES-COBRA supports variable
length associated data and plaintexts. To comply with our security claims from Sect. 2,
the length of the associated data together with the plaintext data is at most ≈ 264 · 16
bytes.

Recommended parameter set: 16 byte (128 bits) key length, 16 byte (128 bits) tag
length, 16 byte (128 bits) nonce length.

1.2 Notation

A block cipher E : K×{0, 1}n → {0, 1}n is a function that takes as input a key k ∈ K and
a plaintext M ∈ {0, 1}n, and produces a ciphertext C = E(k,M). We sometimes write
Ek(·) = E(k, ·). For a fixed key k, a block cipher is a permutation on n bits. Throughout
the document E denotes the block cipher AES-128 and n denotes its block size (128 bits).
Strings of length n are called blocks and strings of length 2n are called fragments.

By {0, 1}∗ we denote the set of all strings, and by {0, 1}+ the set of all non-empty
strings. Given two strings A and B, we use A ‖ B and AB interchangeably to denote
the concatenation of A and B. For A ∈ {0, 1}∗, by A10∗ we denote the string with a 1
appended, and then padded with zeros until its length is a multiple of n. If X is a string
with length a multiple of n, by X[i] we denote the ith n-bit block of X. The length of a
string X is denoted by |X|. By bXcj we denote the j most significant bits of X.

We can view the set {0, 1}n of bit strings as the finite field GF(2n) consisting of 2n

elements. To this end, we represent an element of GF(2n) as a polynomial over the field
GF(2) of degree less than n, and a string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the
polynomial an−1x

n−1+an−2x
n−2+· · ·+a1x+a0 ∈ GF(2n). Addition in the field is addition

of polynomials over GF(2) (i.e. bitwise XOR, denoted by ⊕). To define multiplication in
the field, we fix an irreducible polynomial f(x) := x128+x7+x2+x+1 over the field GF(2).
For a(x), b(x) ∈ GF(2n), their product is defined as a(x)b(x) mod f(x) — polynomial
multiplication over the field GF(2) reduced modulo f(x). We simply write a(x)b(x) and
a(x) · b(x) to mean the product in the field GF(2n), and denote the multiplication by ⊗.

The set {0, 1}n can alternatively be regarded as a set of integers ranging from 0
through 2n − 1, where a string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the integer
an−12

n−1 + an−22
n−2 + · · · + a12 + a0 ∈ [0, 2n − 1]. Based on these conversions, we often

simply write elements of GF(2n) as integers. For example, “2” means x and “3” means
x + 1. When we write multiplications such as 2 · 3, we mean those in the field GF(2n).

1

AES-COBRA v1: Submission to CAESAR

1.3 Authenticated Encryption

The encryption E and decryption D functions of AES-COBRA have the following inter-
faces:

E : {0, 1}κ × {0, 1}ν × {0, 1}∗ × {0, 1}+ → {0, 1}+ × {0, 1}τ ,
D : {0, 1}κ × {0, 1}ν × {0, 1}∗ × {0, 1}+ × {0, 1}τ → {0, 1}+ ∪ {⊥}.

The function E takes as input a public message number N ∈ {0, 1}ν , associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}+. It returns a ciphertext C ∈ {0, 1}+, where
|C| = |M |, and tag T ∈ {0, 1}τ : (C, T)← E(N,A,M). The decryption function D takes
as input a public message number N ∈ {0, 1}ν , associated data A ∈ {0, 1}∗, ciphertext
C ∈ {0, 1}+, and tag T ∈ {0, 1}τ . The algorithm D outputs M ∈ {0, 1}+ if the tag is
correct and ⊥ otherwise, which we denote as M/⊥ ← D(N,A,C, T). The encryption
and decryption functions are described in Fig. 1 for messages whose length is a positive
multiple of 2n. For the case the associated data A is of length at most 4n and the
message is of length 6n, the function E is depicted in Figs. 2-3. How AES-COBRA deals
with fractional messages is described in Sect. 1.4.

1.4 Fractional Data

We use ciphertext stealing [8] in order to deal with messages of arbitrary length. Let M
be a message where M [1]M [2] · · ·M [2`− 1]M [2`] = M and |M [i]| = n for 1 ≤ i < 2`− 1.

1.4.1 Case 1: ` > 1, |M [2`− 1]| = n, and 0 < |M [2`]| < n

We start by computing the ciphertext of M [1] · · ·M [2`−2] as is usually done in COBRA,
resulting in C[1] · · ·C[2`− 2]. Let M∗ denote the rightmost n− |M [2`]| bits of C[2`− 2],
and we write C[2`− 2] = C ′[2`− 2]M∗. Then we compute the final ciphertext fragment
C[2`− 1]C[2`] using M [2`− 1]M [2`]M∗ as our “new” final message fragment (see Fig. 4)
Note that the final block cipher calls use different tweaks as well: 7 ·2`L′ and 7 · (2`L′⊕L)
instead of 2`L′ and 2`L′ ⊕ L. The resulting ciphertext is

C[1] · · ·C[2`− 3]C ′[2`− 2]C[2`− 1]C[2`]. (1)

Fig. 5 shows a diagram of the process. The tag is computed as usual.
We can recover M∗ with just knowledge of C[2`− 1] and C[2`]:

M [2`]M∗ =
[
C[2`]⊕ Ek,η2(C[2`− 1])

]
⊕([

Ek,η1
(
C[2`]⊕ Ek,η2(C[2`− 1])

)
⊕ C[2`− 1]

]
⊗ L

)
,

where Ek,η1(x) := Ek(x⊕ 7 · 2`L′) and Ek,η2(x) := Ek(x⊕ 7 · 2`(L′ ⊕ L)).

2

AES-COBRA v1: Submission to CAESAR

COBRA-Encrypt E (N,A,M):

L← Ek(1),Σ← 0
N ← N10∗

η ← 4L, V ← L2 ⊕ (N ⊗ L)
for i = 1, . . . , d do
V ← V ⊕M [2i− 1]
C[2i− 1]← V
V ← (V ⊗ L)⊕M [2i]
C[2i]← V
ρ← Ek(η ⊕ C[2i])
Σ← Σ⊕ ρ
C[2i− 1]← ρ⊕ C[2i− 1]
σ ← Ek(η ⊕ L⊕ C[2i− 1])
Σ← Σ⊕ σ
C[2i]← σ ⊕ C[2i]
if i < d then
V ← V ⊗ L
η ← 2η

end if
end for

U ←ProcessAD(A)
T ←ComputeTag(L, η,Σ, N, U)
return (C, bT cτ)

COBRA-Decrypt D(N,A,C, T):

L← Ek(1),Σ← 0
N ← N10∗

η ← 4L, V ← L2 ⊕ (N ⊗ L)
for i = 1, . . . , d do
σ ← Ek(η ⊕ L⊕ C[2i− 1])
Σ← Σ⊕ σ
M [2i]← σ ⊕ C[2i]
ρ← Ek(η ⊕M [2i])
Σ← Σ⊕ ρ
V ′ ← ρ⊕ C[2i− 1]
M [2i− 1]← V ′ ⊕ V
V ′ ← V ′ ⊗ L
V ←M [2i]
M [2i]← V ′ ⊕M [2i]
if i < d then
V ← V ⊗ L
η ← 2η

end if
end for

U ←ProcessAD(A)
T ′ ←ComputeTag(L, η,Σ, N, U)
return T = bT ′cτ ? M : ⊥

ProcessAD(A):

X ← A ‖ 10∗

J ← Ek(0)
U ← J
for i = 1, . . . , |X|/n− 1 do
U ← (U ⊕X[i])⊗ J

end for
U ← Ek(2J ⊕ U ⊕X[c])
return U

ComputeTag(L, η,Σ, N, U):

η ← 3(η ⊕ L)
T ← Ek(η ⊕ Σ)
η ← 3η
T ← Ek(η ⊕ T ⊕N ⊕ U)
return T

Figure 1: COBRA for integral data (message length is a multiple of 2n bits).

3

AES-COBRA v1: Submission to CAESAR

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

+L2

L L L L LN · L

Figure 2: Processing plaintext (for message lengths up to 6n bits). Note that L and L′

are defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 1

J L

×

L′

4

Figure 3: Processing associated data (top, for lengths up to 4n bits), computing the tag
(bottom left), and the secret values (bottom right).

4

AES-COBRA v1: Submission to CAESAR

Fractional(V, L, η,Σ,M [2`− 1],M [2`]‖M∗):

V ← V ⊕M [2`− 1]
C[2`− 1]← V
V ← (V ⊗ L)⊕ (M [2`]‖M∗)
C[2`]← V
ρ← Ek(7η ⊕ C[2`])
Σ← Σ⊕ ρ
C[2`− 1]← ρ⊕ C[2`− 1]
σ ← Ek(7(η ⊕ L)⊕ C[2`− 1])
Σ← Σ⊕ σ
C[2`]← σ ⊕ C[2`]
return (C[2`− 1], C[2`], η,Σ, V)

Figure 4: Case 1: ` > 1, |M [2`− 1]| = n, and 0 < |M [2`]| < n

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+ + + +

2`−1L′

2`−1L′

L

7 · 2`L′

7 · 2`L′

7L

M [2`− 3] M [2`− 2] M [2`− 1] M [2`] M∗

C[2`− 3] C ′[2`− 2]M∗ C[2`− 1] C[2`]

× × ×

σ1 σ2

ρ1 ρ2

L L L

Figure 5: Messages where the last block is not of full length, i.e. 0 < |M [2`]| < n. Here
M∗ is “stolen” from ciphertext block C[2`−2] and used in the input to the final fragment.

5

AES-COBRA v1: Submission to CAESAR

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

2`−2L′

2`−2L′

L

2`−1L′

2`−1L′

L

7 · 2`L′

7 · 2`L′

7L

M [2`− 5] M [2`− 4] M [2`− 3] M [2`− 2] M [2`− 1]M∗ C[2`− 2]

C[2`− 5] C ′[2`− 4]M∗ C[2`− 3] C[2`− 2] C[2`− 1] C[2`]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

L L L L L

Figure 6: Messages where the last fragment is of length less than or equal to n, i.e.
0 < |M [2` − 1]| ≤ n. Here M∗ is stolen from ciphertext block C[2` − 4] and used in the
input to the final fragment together with ciphertext fragment C[2`− 2].

1.4.2 Case 2: ` > 2 and 0 < |M [2`− 1]| ≤ n

When there is no last block M [2`], we replace it with the preceding ciphertext block,
C[2` − 2]. Then we steal ciphertext M∗ of length n − |M [2` − 1]| from the ciphertext
block C[2`−4] such that C[2`−4] = C ′[2`−4]M∗. The rest of the computation is similar
to the previous case (Sect. 1.4.1) and is depicted in Fig. 6.

1.4.3 Case 3: |M | ≤ 3n

Messages of length 0 ≤ |M | < 2n are padded using 10∗ and then encrypted as usual, but
using different tweaks: 7 · L′ and 7 · (L′ ⊕ L) instead of L′ and L′ ⊕ L.

Messages of length 2n are encrypted as usual. Messages of length 2n < |M | ≤ 3n
are encrypted as in Sect. 1.4.2, except M∗ is replaced with 10∗ padding, and the tweaks
for the last two block cipher calls are 72 · 2L′ and 72 · (2L′ ⊕ L) instead of 7 · 2L′ and
7 · (2L′ ⊕ L).

2 Security Claims

In this section we specify the security levels with respect to the recommended tag size of 16
bytes, nonce size of 16 bytes, and key size of 16 bytes. For these parameters AES-COBRA
achieves the following security levels (in log2 of number of AES-128 calls):

6

AES-COBRA v1: Submission to CAESAR

AES-COBRA

confidentiality of M 64
integrity of M 64
integrity of A 64
integrity of N 64

security against key recovery 128
security against tag guessing 128

The security levels of AES-COBRA correspond to the birthday bound security on the
block size of AES1 (see also Sect. 3). The security levels apply both in the cases when
nonces are unique values (full security) and also when nonces are reused (full security
up to common prefix, the maximum attainable for single pass schemes). We refer to [3]
for the technicalities. Security against key recovery is 128 bits and security against tag
guessing is 128 bits.

3 Security Analysis

AES is believed not to be distinguishable from a permutation drawn uniformly at ran-
dom. AES-COBRA requires only the forward AES operation and no AES block cipher
inverse and hence enjoys provable security under the pseudo-random permutation PRP
assumption about the underlying block cipher. In [3] we show that under this assumption
AES-COBRA cannot be distinguished from an ideal authenticated encryption scheme in
up to about 264 AES calls. That is, AES-COBRA is confidentiality secure (in the sense of
indistinguishability from an online permutation) against chosen-plaintext (CPA) attacks
and integrity secure against forgery up to approximately 264 AES calls. Most impor-
tantly, and in contrast with the majority of existing authenticated encryption schemes,
AES-COBRA security proofs hold for stronger nonce-repeating attackers and is hence
secure against nonce misuse both with respect to confidentiality and integrity.

More precisely, in [3] we prove the nonce misuse security of AES-COBRA in the
standard model under the PRP assumption on AES against an AE distinguisher up to

the bound 22(`+1)2q2

2n
+

(3q+1)qf
2n

, where q are the AES-COBRA queries each of at most 2`
blocks and qf are the forgery attempts. These results mean that under the same key the
amount of ciphertext should not exceed 264 blocks. We note, that many existing AES-128
based authenticated encryption schemes with the same security levels conservatively limit
the total amount of plaintext and associated data blocks under a fixed key to at most 248

blocks (252 bytes).
When a ciphertext decrypts to ⊥ the implementor needs to ensure that no informa-

tion beyond this fact is leaked to the adversary. An adversary can always produce a

1We clarify that our security results are of the same order as AES based authenticated encryption
schemes, such as AES-GCM and AES-OCB

7

AES-COBRA v1: Submission to CAESAR

valid tag T with probability 2−|T |. It is recommended that applications take care of pro-
ducing ciphertexts with a single tag size under the same key to avoid potential security
degradation.

We clarify that our security model does not encompass timing and power consumption
attacks.

4 Features of AES-COBRA

Online. AES-COBRA is designed to allow for online processing for both encryption
and decryption, processing data on-the-fly as it arrives.

Nonce misuse resistance. AES-COBRA is designed to maintain security when the
nonce is reused. More specifically, it achieves the maximally possible security against
nonce reuse for a single-pass authenticated encryption scheme [5], meaning that when two
plaintexts are encrypted using nonce N , the adversary can only determine the length of the
common plaintext prefix of the two messages, since these will have the same corresponding
ciphertext blocks.

Efficiency. AES-COBRA is designed to allow high-performance implementations in
both software and hardware.

• Parallelizability: In AES-COBRA, the execution of the AES calls inside the two
Feistel functions can be fully parallelized. Furthermore, AES calls of subsequent
Feistel blocks can be executed in parallel once the corresponding multiplication chain
has been computed. Since the multiplications can be computed independently from
the AES calls, they can be executed in parallel to them as well. This results in
significant increases in performance for messages longer than two blocks. Likewise,
for shorter messages, the available parallelism in AES-COBRA can be exploited by
processing multiple of them simultaneously. Both approaches naturally extend to
the case where multiple cores are available.

• AES-COBRA is designed for efficiency for both short and long messages. Besides
the AES key schedule, the overhead for short messages basically amounts to two
AES calls for the tag generation and one AES call for computing the secret value L.
On Intel’s recent Haswell microarchitecture, AES-COBRA achieves a performance
of up to 1.55 cycles/byte (cpb) for longer messages (2048 bytes) and 1.81 cpb for
shorter messages (128 bytes).

• Key agility (computational cost under distinct keys): AES-COBRA requires two
extra AES call every time a new key is used.

• Nonce agility (computational cost under distinct nonces): Changing the nonce while
keeping the key constant requires no additional operations.

8

AES-COBRA v1: Submission to CAESAR

• Ability to efficiently preprocess A: Associated data can be preprocessed indepen-
dently of the message or the value of the nonce.

• Ability to efficiently preprocess plaintext: Similarly, the message (or parts thereof)
can be processed in full without seeing A. This requires seeing the nonce, but
already produces the full ciphertexts. Only the final tag generation requires A to
be processed.

Inverse-free decryption and tag verification. AES-COBRA encryption and de-
cryption/verification require only forward AES calls. This means there is no need to
implement the inverse of the AES to implement the full AES-COBRA.

Security proof based on weaker assumptions. The inverse-free property of AES-
COBRA also means that it enjoys provable security under the pseudo-random permuta-
tion (PRP) assumption about the underlying block cipher, the AES. Modes of operation
requiring the computation of its inverse have to rely on a stronger assumption about the
block cipher.

Combination of well-known techniques. AES-COBRA relies on design principles of
well-known Feistel ciphers in combination with polynomial hashing to achieve integrity of
both the associated data and the plaintext. For the confidentiality we use masking tech-
niques which instantiate an XE [7] tweakable block cipher on top of the basic underlying
and well-understood AES block cipher. For the integrity AES-COBRA further applies a
checksum of intermediate state values of the Feistel structure, similar to ManTiCore [1].
The parallelizability feature is inspired by the OTR [6] design and our main nonce misuse
resistance feature by the [2] authenticated encryption design.

4.1 Comparison to AES-GCM

Security against stronger adversaries. Compared to AES-GCM, AES-COBRA guar-
antees security against a stronger adversary in the nonce misuse setting. In the nonce
misuse setting the security of AES-GCM fails completely. Furthermore, AES-COBRA’s
stronger security guarantee does not require a stronger assumption on the AES than the
security proof of AES-GCM (which is in the nonce-respecting setting).

Performance. According to the performance study of [4] on Intel’s Haswell platform,
AES-COBRA provides a performance which is roughly equal to AES-GCM on shorter
messages. For longer messages, AES-GCM is about 33% faster, however providing no
guarantees when nonces are being repeated.

9

AES-COBRA v1: Submission to CAESAR

5 Design Rationale

AES-COBRA has been designed to allow for high performance in parallel environments
and to maintain security even if nonce is reused. Among other platforms, AES-COBRA
is well-suited for both parallel software and high-performance hardware, being based on
AES and multiplications in the finite field. In software, AES-COBRA is efficient on recent
Intel microarchitectures featuring hardware support for AES and finite field multiplica-
tions, especially on the latest Intel microarchitecture Haswell with improved finite field
multiplication capabilities. AES is well-studied and wide-spread (including implementa-
tions and countermeasures against side-channel analysis), being, thus, the natural choice
for the underlying block cipher.

The employment of the Feistel network seems necessary for efficiently authenticating
and encrypting at the same time using polynomial hashing. It additionally allows for a
scheme that does not need the inverse of the block cipher upon decryption. To achieve
confidentiality we use masking techniques which instantiate an XE [7] tweakable block ci-
pher on top of the AES block cipher. In order to achieve integrity, AES-COBRA utilizes
the checksum of intermediate state values of the Feistel structure, similarly to ManTi-
Core [1]. The parallelizability in AES-COBRA takes ideas from the OTR [6] design and
the nonce misuse resistance security by the [2] authenticated encryption design.

The designers have not hidden any weaknesses in AES-COBRA.

6 Intellectual Property

The submitters are not aware of any patent involved in AES-COBRA. Furthermore,
AES-COBRA will not be patented. If any of this information changes, the submit-
ters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the committee. The submitters understand that the committee will
not comment on the algorithms, except that for each selected algorithm the committee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submitters understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the committee
decision. The submitters acknowledge that the committee decisions reflect the collective
expert judgments of the committee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to

10

AES-COBRA v1: Submission to CAESAR

promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection committee.

References

[1] Anderson, E., Beaver, C.L., Draelos, T., Schroeppel, R., Torgerson, M.: ManTi-
Core: Encryption with Joint Cipher-State Authentication. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP. Lecture Notes in Computer Science, vol. 3108, pp.
440–453. Springer (2004)

[2] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT (1). Lecture Notes in Computer Science, vol. 8269, pp. 424–443. Springer
(2013)

[3] Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: COBRA: A Parallelizable Au-
thenticated Online Cipher Without Block Cipher Inverse. In: FSE 2014. Lecture Notes
in Computer Science, Springer (2014), to appear

[4] Bogdanov, A., Lauridsen, M.M., Tischhauser, E.: AES-Based Authenticated Encryp-
tion Modes in Parallel High-Performance Software. Cryptology ePrint Archive, Report
2014/186 (2014), http://eprint.iacr.org/

[5] Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE. Lecture Notes in
Computer Science, vol. 7549, pp. 196–215. Springer (2012)

[6] Minematsu, K.: Parallelizable Authenticated Encryption from Function. Cryptology
ePrint Archive, Report 2013/628 (2013)

[7] Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT. Lecture Notes in Computer
Science, vol. 3329, pp. 16–31. Springer (2004)

[8] Rogaway, P., Wooding, M., Zhang, H.: The Security of Ciphertext Stealing. In: Can-
teaut, A. (ed.) FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp. 180–195.
Springer (2012)

11

