
JAMBU Lightweight Authenticated

Encryption Mode and AES-JAMBU

(v1)

15 March, 2014

Designers: Hongjun Wu, Tao Huang

Submitters: Hongjun Wu, Tao Huang

Contact: wuhongjun@gmail.com

Division of Mathematical Sciences
Nanyang Technological University, Singapore

Table of Contents

1 Introduction . 3
2 The JAMBU Mode of Operation . 3

2.1 Preliminary . 3
2.1.1 Operations . 3
2.1.2 Notations and Constants . 3

2.2 Padding . 4
2.3 Initialization . 4
2.4 Processing the associated data . 5
2.5 Encryption of JAMBU . 5
2.6 Finalization and tag generation . 6
2.7 The decryption and verification . 7

3 The AES-JAMBU authenticated cipher . 7
4 Security Goals . 7
5 The Security Analysis of AES-JAMBU . 8

5.1 The security of encryption . 8
5.2 The security of message authentication . 9

5.2.1 Key/state recovery . 9
5.2.2 Internal collisions . 9

6 Features . 10
7 Performance . 11

7.1 Hardware performance . 11
7.2 Software performance . 11

8 Design rationale . 12
9 Intellectual property . 12
10 Consent . 13

3

1 Introduction

Authenticated encryption mode is one of the commonly used method in the de-
sign of authenticated ciphers. The ISO/IEC 19772:2009 [7] standardized several
modes for authenticated encryption, including EAX [1], CCM [19], GCM [15]
and OCB 2.0 [18]. And a number of other authenticated encryption modes have
been proposed, e.g., IAPM [10], CWC [12], HBS [9], BTM [8] and McOE [6].

An important trend in the current development of cryptography is to design
lightweight cryptographic primitives since the increasing needs for low-cost em-
bedded systems such as RFID tags, sensor networks and smart cards. Recently,
several authenticated encryption schemes have been proposed for the lightweight
usage, such as Hummingbird-2 [5], ALE [3], and FIDES [2].

However, all the above mentioned lightweight authenticated encryption schemes
are dedicated design and can not be used as a mode of operation to convert an
encryption scheme into an authenticated cipher. Moreover, it turns out that
it is quite difficult to construct a secure lightweight authenticated cipher. Se-
curity flaws were discovered for ALE and FIDES shortly after their publica-
tions [4, 11, 20]. Hence, it is meaningful to develop a secure lightweight authenti-
cated encryption mode so that the previous designs of lightweight block ciphers
can be converted to lightweight authenticated ciphers.

In this document, we propose a lightweight authenticated encryption mode
JAMBU and use AES-128 as the underlying block cipher to construct an au-
thenticated cipher – AES-JAMBU.

2 The JAMBU Mode of Operation

2.1 Preliminary

2.1.1 Operations

The following operations are used in JAMBU:

⊕ : bit-wise exclusive OR.
‖ : concatenation.

2.1.2 Notations and Constants

The following notations are used in JAMBU specifications.

4

0a : a bit of ‘0’s.
AD : associated data (this data will not be encrypted or decrypted).
adlen : bit length of the associated data with 0 ≤ adlen < 264.
C : ciphertext.
Ci : a ciphertext block (the last block may be a partial block).
EK : encryption of one block using the secret key K.
IV : initialization vector used in JAMBU.
K : secret key used in JAMBU.
msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264.
mi : a data block.
n : half of the block size used in JAMBU.
N : number of the associated data blocks and plaintext blocks after

padding. N = NA + NP

NA : number of the associated data blocks after padding.
NP : number of the plaintext blocks after padding.
P : plaintext.
Pi : a plaintext block (the last block may be a partial block).
R : an additional state used for encryption. The size is half of the

block size.
S : an internal state which will be used for encryption.
T : authentication tag.
t : bit length of the authentication tag

2.2 Padding

The following padding scheme is used in JAMBU . For associated data, a ’1’ bit
is padded followed by the least number of ‘0’ bits to make the length of padded
associated data a multiple of n-bit. Then the same padding method is applied
to the plaintext.

2.3 Initialization

JAMBU uses an n-bit initialization vector(IV). The initialization vector (public
message number) is public. And each key/IV pair should be used only once to
achieve the maximum security of the scheme.

Let (X,Y) represent the composition of n-bit states X and Y which results
in a state of 2n-bit. The initial state is set as S−1 = (0n, IV). The following
operations are used for initialization.

1. (X−1, Y−1) = EK(S−1);
2. R0 = X−1;
3. S0 = (X−1, Y−1 ⊕ 5).

The initialization of JAMBU is shown in Fig. 1.

5

Fig. 1: Initialization of JAMBU .

2.4 Processing the associated data

The associated data is divided into n-bit blocks and processed sequentially. For
the last block, the padding scheme is applied to make it a full block. Note that
at least one block is processed in the processing of AD. Namely, if the length
of AD, adlen, is 0, a padded block 1 ‖ 0n−1 will be processed. Let NA be the
number of AD blocks after padding, the AD is processed as follows.

- For i = 0 to NA − 1, we update the states:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕Ai;
Vi+1 = Yi ⊕Ri ⊕ 1;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.

Fig. 2 shows the processing of two blocks of associated data.

Fig. 2: Processing associated data.

2.5 Encryption of JAMBU

In the encryption of JAMBU, the plaintext is divided into blocks of n-bit. And
the last block is padded using the padding scheme specified previously. In each

6

step of the encryption, a plaintext block Pi is encrypted to a ciphertext block
Ci.

If the last plaintext block is a full block, a block of “1||0n−1” is processed
without any output. Fig. 3 shows the encryption of two plaintext blocks.

Let NP be the number of plaint blocks after padding, the encryption is de-
scribed as follows:

- For i = NA to NA + NP − 1, we perform encryption and update the state:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕ Pi−NA

;
Vi+1 = Yi ⊕Ri;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.
Ci−NA

= Pi−NA
⊕ Vi+1 if i < NA + NP − 1 or the last plaintext block is a

partial block; otherwise, CNP−1 will not be computed.

- The final ciphertext block is truncated to the actual length of last plaintext
block from the most significant bit side.

Fig. 3: Processing the plaintext.

2.6 Finalization and tag generation

After all the padded plaintext blocks are processed, suppose the state is SN+1

and RN+1 (N = NA + NP − 1), we use following steps to generate the authen-
tication tag, see Fig. 4.

1. (XN+1, YN+1) = EK(SN+1);
2. UN+2 = XN+1;
3. VN+2 = YN+1 ⊕RN+1 ⊕ 3;
4. RN+2 = RN+1 ⊕XN+1;
5. SN+2 = (XN+2, YN+2);
6. Authentication tag is generated as T = RN+2 ⊕XN+2 ⊕ YN+2.

7

Fig. 4: Finalization and tag generation.

2.7 The decryption and verification

The decryption and verification are similar to the encryption and authentication,
except that the ciphertext block is XORed with the sub-state V to compute the
plaintext block. For the final block, the ciphertext is padded using the same
scheme as the plaintext before the XOR operation. If the length of ciphertext
block is a multiple of n, another block of “1||0n−1” is processed similar as in the
encryption.

A tag T ′ is generated after the decryption and is compared to the tag T . If
the two tags match, the plaintext is outputted.

3 The AES-JAMBU authenticated cipher

In this section, we will apply the JAMBU mode to the most widely used block
cipher AES-128 and construct an authenticated cipher AES-JAMBU.

Recommended parameter set In AES-JAMBU, we recommend specific val-
ues for the parameters used in JAMBU. The block size is 128-bit and the size
of n is 64-bit. The tag length t is 64-bit and the maximum number of message
bits protected by one key is 264 bits.

The parameters of AES-JAMBU are summarized in Table 1.

4 Security Goals

The security goals of ASE-JAMBU are given in Table 2. There is no secret mes-
sage number. The public message number is a nonce. To achieve the maximum
security, each key and IV pair should be used to protect only one message. If
verification fails, the new tag and the decrypted ciphertext should not be given
as output.

8

Table 1: Parameter set of AES-JAMBU.

Parameters Length in bits

Plaintext (P)+Associated data (AD) < 264

Key (K) 128

Tag (T) 64

Initialization vector (IV) 64

State (S) 320a

a 128-bit block and 128-bit key are used
in AES-128. An additional 64-bit state
is used in AES-JAMBU.

However, in case that the IV is reused under the same key, the confidentiality
of AES-JAMBU is only partially compromised as it only leaks the information
of the first block or the common prefix of the message. And the integrity of
AES-JAMBU will be less secure but not completely compromised.

Notice that the integrity security in Table 2 includes the integrity security of
plaintext, associated data and nonce and under the assumption that the secret
key is unknown to the attacker, and 64-bit tag is used. The table assumes that
the total length of message (plaintext and associated data) protected by a single
key is limited to 264 bits.

Table 2: Security Goals of AES-JAMBU.

Confidentiality (bits) Integrity (bits)

AES-JAMBU 128 64

5 The Security Analysis of AES-JAMBU

In this section, we analyze the security of AES-JAMBU which includes the se-
curity of encryption and the security of authentication.

5.1 The security of encryption

The encryption of JAMBU can bee seen as a variant of the Output Feedback
(OFB) mode from the NIST recommendation [16]. The only difference is that
in JAMBU the message block and an additional state block R are XORed with
the internal state while in OFB the message is not involved in the state update.
As AES is used as its underlying block cipher, the encryption of AES-JAMBU
is expected to be as strong as the AES encryption as long as each key/IV is used

9

to protect only one message. Thus, the plaint text block and the additional state
will not affect the randomness of the output of AES-OFB, and the confidentiality
of AES-JABMU can be implied from AES-OFB.

Note that the security of OFB encryption will be compromised if IV is reused.
But in JAMBU, the case is a bit similar to that in CBC/CFB: partial information
will be leaked for the first block and the common prefix of two messages.

5.2 The security of message authentication

In this section, we will give our initial analysis on message authentication of
AES-JAMBU for the case that the nonce is used only once under a single key
and the decrypted plaintext will not be given when the verification fails. The
case that the nonce is reused will be discussed in later versions of this document.

To analyze the security the message authentication of JAMBU, we consider
two attacks on MAC: the key/state recovery attack and the internal collision
attack.

5.2.1 Key/state recovery

Since the secret key of is protected by full AES, AES-JAMBU is not vul-
nerable to the key recovery attack. And for state recovery attack, AES-JAMBU
also has a strong resistance as there are 128-bit unknown state at each step and
the secret key is used in the encryption of each step.

5.2.2 Internal collisions

Constructing an internal collision is a commonly used method in the attacks
against MACs. A general approach to construct an internal collision is from the
birthday attack. This was discussed by Preneel and van Oorschot [17] which
showed that all iterated MACs with n-bit internal state can be attacked with
O(2n/2) queries. For AES-JAMBU, the internal state size is 192 bits. Thus,
around 296 messages are needed for an internal collision using birthday attack.
When the number of blocks encrypted is 258 (the maximum value defined in
the specification), there are around 2115 pairs of internal states. So the collision
probability is around 2−192+115 = 2−77 which is less than 2−64.

Now we analyze conditions for an internal collision. Suppose we have the
first internal collision such that (Ri+1, Ui+1, Vi+1) = (Rj+1, Uj+1, Vj+1). We have
Ri+1 = Ri⊕Ui+1, Ui+1 = Xi⊕Pi, and Vi+1 = Yi⊕Ri, and the similar expressions
holds for the states at step j + 1. Hence, we can derive the following necessary
conditions for the internal collision:

Yi = Yj (1)

Ri = Rj (2)

Xi ⊕Xj = Pi ⊕ Pj (3)

10

Note that only the condition (1) and (2) implies Vi+1 = Vj+1 which can be ob-
served from the keystream block. By generating around 232 blocks of keystream,
we are expected to observe one collision on the keystream block. But this collision
is only a necessary condition, and we still need either (1) or (2) holds.

For condition (1), Yi and Yj are the output of AES encryption. Without the
collision on the input (Ui, Vi) and (Uj , Vj), Yi = Yj has probability 2−64. On the
other hand, if there is collision on (Ui, Vi) and (Uj , Vj), we get an internal collision
on previous state (Ri, Ui, Vi) and (Rj , Uj , Vj) which violates our assumption.

For condition (2), both Ri and Rj are unknown and during the encryption.
So the condition (2) can only be satisfied probabilistically, which is 2−64.

For condition (3), when there is no difference on Xi and Xj , it will lead to a
collision in previous internal state, which is assumed impossible. And if there is
difference, the difference is uncontrollable by an attacker. Hence, the probability
for condition (3) is 2−64.

Given the above analysis, the probability for internal collision given the col-
lision on keystream is 2−128. Therefore, even if we can detect 251 collisions on
keystream blocks, the probability that an internal collision occurs is less than
2−64.

Another approach is to construct an internal collision by injecting and can-
celing difference in the state in the decryption and verification process. This
technique is particularly useful in attack the authenticated encryption schemes.
In AES-JAMBU, if we inject a difference at ciphertext Ci, it will be passed to
Ri+1 and Ui+1. After encryption, the difference will propagate to Xi+1 and
Yi+1. Since the difference on Ri+1, it is impossible to cancel the difference
at the state (Ri+2, Ui+2, Vi+2). On the other hand, the difference on Ri+2 =
Ri+1⊕Xi+1⊕Pi+1 becomes unknown since the difference on Xi+1 is unknown.
Then, at each step, the probability that there is no difference on R and Y is
probabilistic, which is 2−128. Hence, even if the difference on X is canceled by
modify ciphertext, the probability for a successful forgery is less than 2−64.

Therefore, the AES-JAMBU is strong against the attacks on message au-
thentication.

6 Features

- Lightweight. In addition to the registers used in the underlying block cipher,
the JAMBU authenticated encryption mode only requires one additional
register with half of the block size. For AES-GCM, two additional registers1

are needed and each has equal length as the block size. And for fast im-
plementation of GCM operations, a look up table is very helpful. However,
when the table is used, a much larger amount of memory will be needed. It
makes AES-GCM not suitable for lightweight implementations.

- Partial resistance against IV reuse. When the IV is accidentally reused under
the same key, the security of encryption and authentication is not completely

1 The two registers are used to: store the length of P and AD; store the chaining value
for authentication.

11

compromised. Notice that in AES-GCM, the nonce reuse will lead to the lost
of all confidentially and integrity.

7 Performance

7.1 Hardware performance

The core feature of JAMBU is hardware-oriented. In the hardware implemen-
tation of authenticated ciphers, the state size is an important factor, especially
for low-cost embedded systems. To compare the hardware efficiency of the au-
thenticated encryption modes on the area, We look at the state size when an
authenticated encryption mode is applied to a 2n-bit block cipher. We compare
the state size in JAMBU with the existing authentication modes, and the results
are given in Table 4. As a lightweight authenticated encryption mode, JAMBU
provides the minimum state size for the hardware implementation.

Table 3: The comparison (in state size) for authenticated encryption modes, assuming
the underlying block cipher has block size 2n bits

Modes State size Increments

CCM 4n 2n
GCM 6n 4n
OCB3 6n 4n
EAX 8n 6n

JAMBU 3n n

7.2 Software performance

We implemented AES-JAMBU in C code using the AES instruction. We tested
the speed on the Intel Core i5-2540M 2.6GHz processor (Sandy Bridge) running
64-bit Linux 12.01. The turbo boost is turned off, so the CPU runs at 2.6GHz
in the experiment. The compiler being used is gcc 4.5.2, and the options “-O3
-msse2 -maes -mavx” are used. The test is performed by encrypting/decrypting
a message repeatedly, and printing out the final message. To ensure that the tag
generation is not removed during the compiler optimization process, we use the
tag as the IV for processing the next message. To ensure that the tag verification
is not removed during the compiler optimization process, we sum up the number
of failed verifications and print out the final result.

We tested the speed of CTR, OCB3, GCM and CCM (AES-128 is used in
these modes) on the same machine for comparison. The testing programs of CTR,
OCB3, GCM and CCM are downloaded following the description given Krovetz
and Rogaway in the OCB3 paper [14] and their website [13]. The performance

12

comparison is given in Table 3. For 4096-byte messages, the speed of AES-
JAMBU is about 11.6 cpb. Since in AES-JAMBU, each AES encryption is used
to process only 8 byte of message, we expect that the speed of AES-JAMBU will
be about two times slower than AES-GCM. The speed turns out to be about
four times slower in our experiment. The reason may be largely due to some
operations in AES-JAMBU are not optimized in our current implementation.

Table 4: The software speed comparison (in cycles per byte) for different message
length on Intel Sandy Bridge. A plus sign (+) indicates that the data are from the
ALE designers and the performance is measured on Intel i5-2400 microprocessor.

64B 128B 256B 512B 1024B 4096B

AES-128-CTR+ – 1.61 1.22 0.99 0.87 0.77
AES-128-CCM 7.26 6.31 5.65 5.19 5.17 5.05
AES-128-GCM+ – 4.95 3.88 3.33 3.05 2.90
AES-128-OCB3+ – 2.69 1.79 1.34 1.12 0.88

AES-JAMBU 17.7 14.54 13.05 12.27 11.86 11.60

8 Design rationale

JAMBU is designed to be a lightweight authenticated encryption mode which
can offer partial resistance against IV reuse.

To make this mode lightweight, we introduces only an n-bit extra register for
a 2n-bit block size. And we only use the bit-wise XOR operations in the JAMBU
mode.

The padding scheme used in JAMBU does not require the length information
to be stored in a register. This reduces the memory requirements.

To offer a certain level of security against IV reuse, we use a block cipher
encryption in the state update and only half of the state is leaked after encryp-
tion. The plaintext is injected into the other half of the state which is unknown
for the attacker.

Several constants are XORed with the state in JAMBU. They are used to
separate the initialization, associate data processing, plaintext processing, and
finalization.

AES-JAMBU uses AES as the underlying block cipher. It can take advan-
tages from the security analysis AES as well as the fast implementation of AES
using AES-NI.

The designers have not hidden any weaknesses in this cipher.

9 Intellectual property

JAMBU is not patented and it is free of intellectual property restrictions. If any
of this information changes, the submitter/submitters will promptly (and within

13

at most one month) announce these changes on the crypto-competitions mailing
list.

10 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission as
a second-round candidate, a third-round candidate, a finalist, a member of the
final portfolio, or any other designation provided by the committee. The sub-
mitter/submitters understand that the committee will not comment on the al-
gorithms, except that for each selected algorithm the committee will simply cite
the previously published analyses that led to the selection of the algorithm. The
submitter/submitters understand that the selection of some algorithms is not a
negative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision. The submitter/submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee
members and are not subject to appeal. The submitter/submitters understand
that if they disagree with published analyses then they are expected to promptly
and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter/submitters understand that this statement is required
as a condition of consideration of this submission by the CAESAR selection
committee.

References

1. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In Fast
Software Encryption, pages 389–407. Springer, 2004.

2. B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang. Fides: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware.
In Cryptographic Hardware and Embedded Systems-CHES 2013, pages 142–158.
Springer, 2013.

3. A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. ALE:
AES-Based Lightweight Authenticated Encryption. In Fast Software Encryption,
2013.

4. I. Dinur and J. Jean. Cryptanalysis of FIDES. In Fast Software Encryption–FSE
2014. Springer, 2014.

5. D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In RFID. Security and Privacy,
pages 19–31. Springer, 2012.

6. E. Fleischmann, C. Forler, and S. Lucks. McOE: A Family of Almost Foolproof
On-Line Authenticated Encryption Schemes. In Fast Software Encryption–FSE
2012, pages 196–215. Springer, 2012.

7. ISO/IEC 19772:2009. Information technology – Security techniques – Authenticated
encryption. ISO, Geneva, Switzerland, 2009.

14

8. T. Iwata and K. Yasuda. BTM: A Single-Key, Inverse-Cipher-Free Mode for De-
terministic Authenticated Encryption. In Selected Areas in Cryptography – SAC
2009, pages 313–330. Springer, 2009.

9. T. Iwata and K. Yasuda. HBS: A Single-Key Mode of Operation for Deterministic
Authenticated Encryption. In Fast Software Encryption–FSE 2009, pages 394–415.
Springer, 2009.

10. C. S. Jutla. Encryption Modes with Almost Free Message Integrity. In Advances
in Cryptology – EUROCRYPT 2001, pages 529–544. Springer, 2001.

11. D. Khovratovich and C. Rechberger. The LOCAL attack: Cryptanalysis of the
authenticated encryption scheme ALE. In Selected Areas in Cryptography – SAC
2013. Springer Berlin Heidelberg, 2013.

12. T. Kohno, J. Viega, and D. Whiting. CWC: A High-Performance Conventional
Authenticated Encrption Mode. In Fast Software Encryption – FSE 2004, pages
408–426. Springer, 2004.

13. T. Krovetz and P. Rogaway. Authenticated-encryption software performance:
Comparison of ccm, gcm, and ocb. Available at http://www.cs.ucdavis.edu/

~rogaway/ocb/performance/.
14. T. Krovetz and P. Rogaway. The Software Performance of Authenticated-

Encryption Modes. In Fast Software Encryption – FSE 2011, pages 306–327.
Springer, 2011.

15. D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM). http:
//csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf.

16. NIST. Recommendation for Block Cipher Modes of Operation-Methods and Tech-
niques. NIST special publication 800–38A, 2001 Edition.

17. B. Preneel and P. van Oorschot. MDx-MAC and building fast MACs from hash
functions. In Advances in Cryptology – CRYPTO’ 95, volume 963 of LNCS, pages
1–14. Springer, 1995.

18. P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In Advances in Cryptology–ASIACRYPT 2004, pages
16–31. Springer, 2004.

19. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC
(CCM). Available from http://csrc.nist.gov/groups/ST/toolkit/BCM/

documents/proposedmo-des/ccm/ccm.pdf, 2003.
20. S. Wu, H. Wu, T. Huang, M. Wang, and W. Wu. Leaked-State-Forgery Attack

against the Authenticated Encryption Algorithm ALE. In K. Sako and P. Sarkar,
editors, Advances in Cryptology - ASIACRYPT 2013, volume 8269 of Lecture Notes
in Computer Science, pages 377–404. Springer Berlin Heidelberg, 2013.

