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A.1A.1A.1A.1 IntroductionIntroductionIntroductionIntroduction    
 
One of the main security cornerstones of ++AE mode is the behavior exhibited by the 
combination of binary xor sums with regular modular additions, or equivalently, by the 
arithmetic operator ‘Δ‘, formerly introduced by the author for IOC mode, and defined as: 
 
x Δ y = (x + y) ⨁ (x ⨁ y); (A1) 
 
where ⨁ is the regular exclusive-or binary sum, + is the regular modulo 2b addition, and ‘–‘ the 
regular modulo 2b subtraction. As it can be easily derived from equation (A1), xΔy is just the 
vector composed by the carries that appear during the modulo 2b addition of x and y (hence, we 
will call it as the ‘carry-delta’ vector).  
 
Sections A.2 and 0 characterize the security of ++AE data confidentiality and integrity based in 
some cases on the properties of the delta-carry vector that are analyzed in section A.4, where 
this operator is duly studied.  
 
As general approach, the overall analysis is performed in principle just for native ++AE 
operation but it is complemented in some cases where the extension of the native case with 
some optional mechanism is not evident.  The general assumptions taken are: 
• The cipher algorithm behaves as a pseudorandom permutation randomly selected by the key 

k from a family of them; 
• The session k is a random and secret value and the public message counter S is a nonce;  
• IVa, IVb and ICV are secret and random values managed according ++AE specifications; 
• The maximum length including plaintext and associated data is 2b/2 blocks. 
• No assumptions on plaintext: where it is not a goal per-se, it can be known, or even chosen, 

by the attacker. 
 
It shall be remarked that the analysis here presented does not follow any of the usual schemes 
from what is understood as “provable security” by the specialized community. Basic notions and 
known results on arithmetic and probability that can be followed by almost anyone (with a bit of 
patience) are used instead. The reason behind is quite simple: ++AE author is professionally 
making a living in activities quite far from cryptography and he is completely outdated with the 
academic constructs that have consolidated in the field during the last some decade. To override 
this limitation, and taking profit from the very simple structure and components of ++AE, it has 
been tried to follow a well structured treatment based on extremely simple steps.  
 
The followed approach probably misses a part of the conceptual accuracy the current provable 
security toolbox would have provided but, being pragmatic, this could be considered also an 
advantage indeed since, if it has been rightly done, it could open a critical review from a broader 
community than if just based on a highly specialized bunch of sophisticated notations and 
concepts. In any case, the purpose of this document is neither to introduce any new 
methodology to build security proofs nor to open any discussion on appropriate methodologies. 
It is just to build a sound security demonstration specific for ++AE mode and it shouldn’t be a 
showstopper if the job has been rightly done. In any case, the author admits that a 
complementary security proof using the tools consolidated by the provable security tradition 
could lead to a richer insight of ++AE security. Thus, any demonstration in that line would be 
absolutely welcome, as well as any independent demonstration or critical review.  



A.2A.2A.2A.2 Plaintext ConfidentialityPlaintext ConfidentialityPlaintext ConfidentialityPlaintext Confidentiality    
 
Confidentiality strength offered to any block of the plaintext data, Pi, is equivalent, or better, to 
the one offered by the underlying cipher algorithm, Ek() when applied in ECB mode just once to 
Pi and all the other plaintext blocks processed with the same key being secret and random 
disregarding the actual values they may have. More precisely: 
• Any given plaintext block value being ciphered twice will produce random cryptogram 

blocks which values would collide just with a (uniform) random probability of 2-b; 
• The previous property is achieved even when chosen plaintext is forced by an attacker for 

the rest of plaintext blocks; 
• ++AE scheme does not leak any information about the value of any of the Pi blocks; 
• ++AE scheme does not leak any information to collect a ( X, Ek(X) ) dictionary. 
 
 
A.2.1A.2.1A.2.1A.2.1 DemonstrationDemonstrationDemonstrationDemonstration        
 
The encryption procedure used by ++AE is a composition of the ECB mode (i.e. Ci = Ek(Xi) ) 
with a previous chained transformation of the plaintext given by  
 
Ii = Pi ⊕  Oi-1; 
Oi = Ii + Ii-1 + Oi-1;        with O0 = IVa and I0 = IVb (A2) 
Xi = Oi ⊕ Ii-1; 
 
In the worst case, this transformation would not introduce any additional entropy in the X 
blocks with respect P ones and, from where it is obvious that ++AE confidentiality strength will 
be at least the one offered by ECB mode. Nonetheless, since the initializing vectors, IVa = O0 and 
IVb = I0, are random and secret it is possible, at least in principle, that some of their entropy is 
incorporated in the Xs output vectors and, hence, the “base” ECB confidentiality strength would 
get improved. Let’s see that this is the case. 
 
If we look at (A2) as a recursive process, we can view it as separated into three subprocesses: 
• An iterative internal background flow composed by the sequencing of the internal vectors, Is 

and Os. This sequence evolves at each step, by means of the + operator (actually, this 
evolution is also impaired by the plaintext blocks as shown below); 

• An input subprocess that injects at each step the corresponding Pi value to the internal 
“flow” by means of a ⨁ operator that “disturbs” somehow the internal flow;  

• Finally, a third subprocess ‘extracts’ the Xs vectors also as a ⨁ sum of the internal vectors. 
Observe that this last extraction process does not ‘disturb’ at all such internal process2. 

 
Observe that to transform a Pi block to the corresponding Xi, it has to “cross the river” through 
the pseudorandom flow composed by the Ii and Oi sequences and the data gets altered in the 
process with the status of the random flow and this status by the data crossing: while the 
background flow is “animated” by the + operator, the plaintext blocks cross it by the xor 
operator and that will make that mutual alterations are not linear and very dependent on the 
specific position they take place. 
 
In order to gain further comprehension of this process, let’s focus for a moment on the internal 
vectors flow when they are not disturbed from outside (i.e. with injected plaintext). In such case 
assuming that all the plaintext blocks are just 0s we have Oi = Ii + Ii-1 + Oi-1 and Ii = Oi-1 or, just to 
simplify things: 
 

                                                             
2 Note that the injection / extraction subprocesses invert their roles in the decryption process. 



Ii = 2·Ii-1 + Ii-2;       with I1 = IVa  and I0 = IVb 
          for i=2, …, N  (A3) 
Oi = 2·Oi-1 + Oi-2;  with O1 = IVa + IVb  and O0 = IVa  
 
Equation A3 points out the interesting and paramount fact that the “background” evolution of 
the inner vectors follows a 2nd order recursive linear evolution defined as a particular form of a 
generalized Fibonacci / Lucas series but using as initial terms the initializing vectors. In fact, 
given that  Ii = Oi-1 they are the same sequence shifted 1 step and we will focus just on Ii. 
 
That is, when all the plaintext blocks are just 0s, Ii takes the values: 
 
Ii = Ai ·IVa + Bi·IVb;        (A4) 
 
where  

• Ai = 2·Ai-1 + Ai-2  and A1 = 1, A0 = 0; 
• Bi = Ai-1; 

 
To sum up, the sequence of the inner vectors Ii is a linear combination of both initializing 
vectors. Moreover, each one of the coefficients multiplying the initializing vectors IVa and IVb 
follow the same 2nd order linear recurrence but now with the initial values 1 and 0 (Bi is just a 
one-step delayed copy of Ai). That type on recurrence sequence adjusts to Binet forms where: 
 
Ui = m·Ui-1 + Ui-2  with U1 = 1, U0 = 0;     
 
Those sequences can be expressed with their non recursive Binet form: 
 

HI =  
JKLMK

N
; 

 
with  

• ∝=  
PQN

R
; 

• S =  
PLN

R
; 

• T = √VR + 4; 
 
And, therefore, the coefficients Ai sequence with m=2 can be written: 
 

WI =  
(XQ√R)KL(XL√R)K

R√R
; ;        (A5) 

 
with  

• ∝=  1 + √2; 
• S = 1 − √2; 
• T = 2√2; 

 
If these linear recurrent sequences operate in some modulo r then they become periodic: once a 
consecutive couple of values is repeated (there are only r2 possible couples) the sequence 
becomes periodic (let call (m,r) to this period length). Moreover, since the recurrence is 
reversible the periodicity starts as soon as the values 0 and 1 appear again in our coefficients 
sequence making, on its turn that the Ii / Oi sequences repeat periodically with that period (but 
due to that their initial values are not 0 and 1 but IVa and IVb, their period could be even 
smaller). 
 



Fortunately, our coefficient sequence Ai (and, consequently, Bi), whit m=1 and r =2b, has a 
period [=r=2b according partial empirical verification done and with theoretical basis from: 
• L.A.G Dresel. On pseudoprimes related to generalized Lucas sequences. The Fibonacci 

Quarterly 35, 1; 35-42.1995 
 
Nevertheless, although the coefficients period is significantly large ([=2b), it shall be taken into 
account that depending on actual values of the initializing vectors, the Ii / Oi sequences exhibit 
smaller periods of value [s=2b-s (let’s call them “subperiods” of the inner vectors).  
 
This strong dependence with the actual values of the initializing vectors introduces some burden 
in order to analyze the behavior of such subperiods. Fortunately, since IVa and IVb are random by 
definition, this allows at least an empirical characterization of the subperiods. Preliminary 
empirical evaluation performed indicates that the probability of having some subperiod of 
length [s=2b-s is ^(2-s). 
 

Conjecture: P([s=2b-s) = ^(2-s) if IVa and IVb are random. 
Note on Annex Version Draft 0.9: only a preliminary empirical evaluation for values 
of b from 3 up to 19 performed with random values of IVa and IVb is available at the 
moment of releasing this draft version. This preliminary evaluation indicates that 
for T random combinations of the initial vectors, the T of them exhibit period 2b, T/2 
2b-1, T/4 2b-2, and so on. A more complete evaluation covering all cases of interest is 
ongoing and will be completed for a final version 1.0. 

 
That means that if the message length is limited to 2b/2 and assuming that all the plaintext blocks 
contain 0s then the probability of having a repetition of the inner vectors during the process of 
that message would be 2-b/2, that is, negligible. Moreover, if as a complementary restriction, we 
reduce the number of possible initializing vectors by means of establishing a limit in the 
maximum session duration of 2b/2, the probability of having this theoretic issue to become a 
practical issue in real operation would be roughly ^(2-b). 
 
The overall result is a background flow of random and non-repeating inner vectors that the 
message plain data shall traverse over xor operators before being ciphered.  
 
This random flow guarantees that even without the presence of any entropy at all in the 
plaintext, the cryptogram will be full of it, since no cryptogram block will repeat (apart of those 
spurious and innocuous cases that the birthday paradox makes that a same value for Xi is 
repeated because of some “lucky” combination of Oi and Ii-1 values). 
 
At this point, ++AE confidentiality goals stated in section A.2 become evident thanks to the 
previous transformation of, even null-entropy, Pi blocks in pseudorandom, non repeating and 
unpredictable Xi ones that are then ciphered by the block cipher Ek()in ECB mode to produce the 
final cryptogram blocks. 
 
To finalize with ++AE confidentiality analysis, observe that if access to the Xi vectors was 
possible, then some adaptive chosen text attack could try to combine arithmetically these Xs 
values in order to reset the internal flow to some weak state to leak information about the Pi. In 
such case, ++AE confidentially level would be reduced down to ECB mode. But, the fact in ++AE 
is that the Xs vectors are secret and unpredictable if the underlying block cipher is a “good” one. 
Hence, chosen plaintext attacks, or even adaptative chosen plaintext attacks, do not provide any 
advantage compared with guessing at random.  
 
 
        



A.2.2A.2.2A.2.2A.2.2 Alteration caused by the plaintext in the inner vectors sequence Alteration caused by the plaintext in the inner vectors sequence Alteration caused by the plaintext in the inner vectors sequence Alteration caused by the plaintext in the inner vectors sequence     
 
Although not strictly required to substantiate ++AE plaintext confidentiality strength, it is 
interesting at this point to have a look on how the background random flow, that is, the 
sequences of the inner vectors, gets modified by the injection of non null plaintext blocks.  
 
The following paragraphs analyze both the impairment on the background flow and how that 
background flow transforms Pi blocks into Xi ones. To simplify things, let’ suppose that all the 
plaintext blocks are 0 but Pi ` 0, then we have: 

 

Ii = Pi ⊕  Oi-1 = Pi ⊕ I’i  = I’i  + TI
a; 

Oi = I i  + Ii-1 + Oi-1 = (I i + I’i) + I’i-1 = (TI
a +2·I’i  + I’i-1 = O’i  + TI

b;        (A6) 

Xi = Oi ⊕  Ii-1 = (((Pi ⊕ I’i)i + I’i) + I’i-1) ⊕  I’i-1 = X’i  ⊕  TI
d; 

 

Where 

• I’i, O’i and X’i are the corresponding “background” i-th vectors that would be obtained if Pi=0; 

• TI
a , (TI

b =  TI
a) and  TI

d  are the “alteration” vectors produced by the transformation of Pi into 

Xi. 

 

That is, when Pi traverses the random sequencing chaining of Is and Os vectors, the following 

chain of events happens: 

• The vector Ii is altered by the xor sum with Pi. That means, in arithmetic terms, that if the j-th 

from Pi is 1, then depending whether the same bit in Oi-1 is also set, or not, Ii will be 

decremented or incremented, respectively, with the value 2j. Since Oi is random and 

unpredictable, the alteration introduced in I’i vector will be a vector TI
b =  TI

a with as many 

random bits as the entropy contained in Pi, and what is more important, that alteration will 

not be “linear”  neither in terms of xor sums nor in terms of arithmetic ones. 

• Oi is altered (linearly) with same entropy variation than Ii, since in fact (TI
b =  TI

a); 

• Finally, the Xi vector suffers also a non-linear alteration with the same amount of entropy 

that will be transformed in a maximum entropy difference even in the case that Pi contains 

just a few ‘1’ bits.  Observe that although the entropy alteration of Xi vector is just the same 

that the entropy contained in Pi, the “background” Xi value (i..e the one with all Pi=0) has 

already high entropy due to the random and secret nature of the initializing vectors and the 

behavior of the inner vectors recurrence sequence.  

 

Although the “alterations” in the Ii and Oi vectors can be small, it will cause a chaotic avalanche in 

subsequent steps caused by three main factors: 

• TI
a / TI

b alteration does not depend linearly on Pi value; 

• the produced modification in the inner vectors is equivalent in some way to substitute the 

initial values of the linear recurrent sequences that the inner vectors are, and therefore their 

behavior will change in an unpredictable way for the next steps / blocks; 

• when the new background flow finds a new non-null Pt block, the alteration TI
a / TI

b 

introduced by Pt  will be unpredictable and non-linearly dependant depending on the values 

of previous plaintext blocks; 

 

In any case, if the entropy contained in Pi is small, the chaotic “avalanche” it causes in the inner 

sequences will require several steps to acquire a major magnitude and the actual behavior will 

depend on the sequence of the plaintext blocks and the unpredictable behavior of the inner 

sequences. Nonetheless, this behavior that is not critical for the confidentiality service will 

become paramount for integrity one. For that case we will see that during the decryption of a 

cryptogram we face an equivalent scenario but with the low-entropy plaintext blocks 

substituted by a high entropy blocks produced by the deciphering boxes Dk(). Then, any change 

in the injected sequence will not cause an “avalanche” but an “earthquake”. 



A.3A.3A.3A.3 Data Integrity AnalysisData Integrity AnalysisData Integrity AnalysisData Integrity Analysis    
 

A.3.1A.3.1A.3.1A.3.1 IIIIntegrity ntegrity ntegrity ntegrity Strength for theStrength for theStrength for theStrength for the    AAAAssociated ssociated ssociated ssociated DDDData ata ata ata     
 

Disregarding the computational resources a potential attacker could spend to build fake 

associated data AD’, the best chance to achieve such purpose would not be better than 2-(h-1.25), 

where h is the number of authentication bits appended to the message (b bits if the native 

mechanism if a block-wide authentication tag is used with, or without, ICV bits stealing 

padding). 

 

 

A.3.1.1A.3.1.1A.3.1.1A.3.1.1 DemonstrationDemonstrationDemonstrationDemonstration        
 

Figure 2 shows how the associated data blocks AD1, …, ADM are processed in order to protect 

their integrity.  For each block ADi an accumulated authentication tag, Gi, is calculated as a 

combination of the tag of the previous block, Gi-1, and the result of ciphering that block, Ek(ADi). 

Taking and transforming equation (4) to express it in terms of the delta operator: 
 
Gi = Gi-1 ⊕ ( Gi-1 ⊕ Ek(ADi)) ⊕ (Ek(ADi)+Gi-1) = Gi-1 ⊕ ( Gi-1 Δ Ek(ADi) ) = Gi-1 ⊕ Δi; (A7)  
 
That is, the combination above introduced takes the form of the xor sum of the tag up to the 
previous block with the delta vector applied to it and to the ciphered version of ADi.  
 
Finally, the initial G0 takes the value from one of the ++AE initializing vectors, IVa and the last 
AD tag block, GM, takes the role of the corresponding initializing vector for the encryption 
process of the plaintext P, IV’a = GM.  
 
A useful expression that puts some light on the AD authentication mechanism tag: 
 
GM = GM-1 ⊕ ΔM = Gi-2 ⊕ Δi-1 ⊕ Δi= IVa ⊕ Δ1 ⊕ Δ2 ⊕ ... ⊕ ΔM; (A8)  
 
NOTE: This demonstration is based on the (temporal) assumption that if a fake associated data, 
AD’, generates a G’M ` GM. This fake AD will be later detected in the end of the overall decryption 
and verification process. In section A.3.2.1 is further analyzed that process.  
 
Since the initial G0 and the outputs of the block cipher are random and secret, it is obvious at this 
point that so are the subsequent Gi blocks. And given the entropy properties of the delta vector 
presented in section A.4, at the i-th step b random bits from the previous step are xor-summed 
with (b-1.25) random bits from the delta operator that, as it will be shown later, strongly 
depend both on the ciphered version of ADi and on the actual position they are injected in the 
chain. At the end of the AD process, the last tag, GM, will contain (b-1.25) random bits strongly 
depending both on each one of the associated data blocks and their position within AD string. 
The remaining 1.25 bits up to completing the block size will be also random and secret but will 
be determined mainly by the rightmost bit of IVa (in fact, [GM]1 = [IVa]1 since the rightmost bit of 
any delta vector is always 0). 
 
It is also obvious that a forgery attack cannot be based in any manner on synthesizing fake 
values for any associated data block (as combination of AD contents, neither authentic nor 
false). The reason is just as simple as the block cipher algorithm, Ek(), would introduce (b-1.25) 
random bits totally unpredictable in the tags chaining. Once we have discarded fake AD block 
synthesis by means of combination of several other blocks, there remain just three types of 
integrity attacks to be analyzed: 
 



• Removal of associated data (either a block or the complete AD string); 

• Insertion of a spurious block. 

• Insertion of some authentic block (either from the same string or a different taken from the 

same session) in a fake position; 

 

In the case of complete removal of the associated data, it is obvious that an uncontrollable error 

of (b-1.25) bits will be introduced in the initializing vector, since IV’a = IVa will be used instead 

of the right value IV’a = GM. So no more attention will be paid to this simple case apart than as an 

integral part of the analysis of the strength of AE++ plaintext integrity.  

 

For the remaining cases it is also obvious that either the removal or insertion of an AD block, will 

also introduce (b-1.25) erroneous bits in the tag chaining. In order to cancel that error, if such 

thing is possible, it will have to be cancelled introducing, at least, a second modification in the 

associated data. Fortunately, since the error is unknown and the cipher block is unpredictable, 

the attacker will not capable to synthesize a value for a different block as function of AD and the 

only chance the attack progress is requires that the error is compensated by: 
a) inserting the removed block in a different position. That event would happened if, and only 

if, GM depends only on ADi values but not on their specific order; 
b) repeating the inserted block in a different position. It is immediate from (A8) that the error 

compensation would happen if, and only if, Gi = Gi-1 ⨁ f(ADi) to have a self-correcting error 
duplication3; 

c) In the case of insertion of an authentic ADi block in a non authentic position, either repeating 
it at a different position (equivalent to case (b)) or removing it from its original position 
(equivalent to case (a)). 

 
With regard to the repetition strategy, since if y is a random value then xΔy = f(x) only with a 
probability of 2-(b-1.25), the attack will have that success probability. So, repeating a given block 
twice does not improve the attack chances. 
 
On the other hand, the reordering approach requires on its turn that GM does not depend on the 
specific ordering of the AD blocks. Let’s see under which circumstances this can happen and that 
the probability associated to that event is also negligible.  
 
Let’s suppose that GM does not depend on the particular ordering of ADi blocks. To reflect that 
fact, we can write: 
 
GM = IVa ⨁ Δ1 ⨁ Δ2 ⨁ ... ⨁ ΔM = fM(IVa, AD1, AD2, …, ADM) (A9)  
 
where fM() is some particular application over M+1 b-bit binary variables. 
 
On the other hand, since independently of the actual position of ADM the correct final tag is given 
by GM = (IVa⨁Δ1⨁Δ2⨁...) ⨁ ΔM  where the first term between brackets does not depend on ADM, 
we can derive that if the application fM() in (A9) exists then there exists also a fM-1() application 
such that: 
 
GM-1 = IVa ⨁ Δ1 ⨁ Δ2 ⨁ ... ⨁ ΔM-1 = fM-1(IVa, AD1, AD2, …, ADM-1)  
 
An the process can be iterated down to G2, concluding that if such application fM() exists, then 
there exists also a f2() application such that: 
 
G2 = IVa ⨁ Δ1 ⨁ Δ2 = f2(IVa, AD1, AD2); 

                                                             
3 Observe this is a particular version of the more general condition stated for case (a), that is, that GM depends 
only on ADi values but not on their specific order. 



Let’s see that such f2() application does not exists and, therefore and by reductio ad absurdum, 
no fM() application exists and, thus, GM does depend on specific AD blocks ordering. If AD1 and 

AD2 are interchanged, then the tag G’2 obtained at the second step would be: 
 
G’2 = G’1 ⨁ (G’1 Δ Ek(AD1)) = (-G0 ⨁ (G0 Δ Ek(AD2))) ⨁ ((G0 ⨁ (G0 Δ Ek(AD2))) Δ Ek(AD1)) = ❶ 
 
If we assume linearity in the delta-carry vector, i.e. that (x⨁y)Δz =  (xΔz)⨁(yΔz), then: 
 
❶ = G0 ⨁ (G0 ⊕ Ek(AD2)) ⨁ (G0 Δ Ek(AD1)) ⨁ ((G0 Δ Ek(AD2)) Δ Ek(AD1)) = ❷ 
and, since the combination of the first and third terms is just the tag G1: 
 
❷ = G1 ⨁ (G0 ⊕ Ek(AD2))) ⨁ ((G0 Δ Ek(AD2)) Δ Ek(AD1)) = ❸ 
 
If we assume now in the delta-carry vector is transitive, i.e. that (xΔy)Δz = (xΔz)Δy , then: 
 
❸ = G1 ⨁ (G0 ⊕ Ek(AD2))) ⨁ ((G0 Δ Ek(AD1)) Δ Ek(AD2)) =  
      = G1 ⨁ (G0 ⊕ Ek(AD2))) ⨁ (      G1 ⨁ G0     ) Δ Ek(AD2)) = ❹ 
 
And assuming also linearity in the delta-carry vector for the third term above, then: 
 
❹ = G1 ⨁ (G0 ⊕ Ek(AD2))) ⨁ (G1 Δ Ek(AD2)) ⨁ (G0 Δ Ek(AD2)) = ❺ 
 
finally, since the 2nd term equals the 4th one, we have: 
 
❺ = G1 ⨁ (G1 Δ Ek(AD2)) = G2 
 
That is, in order G2 is an application only depends on AD1 and AD2 values but not on their actual 
location in the chain, the carry-delta operator shall exhibit the transitive property at least 1 time 
and the linearity property 2 times. 
 
As explained in section A.4 on Δ operator properties, although this operator is neither transitive 
nor linear in a regular sense, if we define these properties in a “probabilistic” sense, if the 
operands are random variables then the result can exhibit those properties in a fraction of the 
cases, or equivalently, with a given probability. Alternatively we can indicate how an specific 
property is satisfied indicating the information entropy difference between the actual result of 
the operator and the hypothetic result that would be obtained if the property was satisfied in the 
100% of the cases. Table A1 below tabulates some values of the probability a property is 
satisfied, its log2 value and the associated entropy difference for several values of block size. For 
a more general study, please, refer to section A.4. 
 

 Linearity 

(x⨁y)Δz =  (xΔz)⨁(yΔz) 

Associativity 

(xΔy)Δz = (xΔz)Δy 

 2 Lin. &  

1 Ass 

b P= Log2 P=  H (bits) P= Log2 P=  H (bits) Log2 P 

1 0,000000000000000 0,000 0,000 1,000000000000000 0,000 0,000 0,000 

8 0,496093750000000 -5,203 6,747 0,047771801108618 -4,388 6,535 -14,793 

16 0,499984741210937 -11,839 14,656 0,001258865589324 -9,634 14,111 -33,313 

32 0,499999999767169 -25,121 30,475 0,000000874567541 -20,125 29,262 -70,366 

64 0,500000000000000 -51,683 62,114 0,000000000000422 -41,107 59,564 -144,474 

128 0,500000000000000 -104,808 125,390 0,000000000000000 -83,073 120,168 -292,688 

256 0,500000000000000 -211,057 251,944 0,000000000000000 -167,003 241,377 -589,118 

512 0,500000000000000 -423,557 505,051 0,000000000000000 -334,863 483,794 -1181,976 

1024 0,500000000000000 -848,555 1011,26 0,000000000000000 -670,583 968,629 -2367,693 

Table Table Table Table AAAA1111: : : : Linearity and associativity of Linearity and associativity of Linearity and associativity of Linearity and associativity of ΔΔΔΔ    operatoroperatoroperatoroperator    



In the above table it is appreciated that although the Δ operator is neither transitive nor linear, 

in a “probabilistically” sense it exhibits those properties with relatively significant probability 

(from a cryptographic point of view). For instance, if we checks the Δ associativity with three 64 

bit random operands “only” 241 times, then the result will show transitive behavior 1 time in 

average (equivalently one can say that with respect to the associativity property, the Δ operator, 

applied to 64 bit random vectors, performs as associative plus a random error of 59,56 

equivalent bits. 

 

Nevertheless, in order a position change in some AD blocks is unnoticed it is necessary that, at 

least, 2 equivalent operations with the carry-delta operator behave as transitive and another one 

exhibits linearity. The overall result shown at the right hand column in Table A1: the probability 
a reordering gets undetected because of “probabilistic” associativity and linearity properties of 
the carry delta vector is negligible and smaller in all cases than 2-b.  
 
There will remain, of course, some chance that without exhibiting such probabilistic 
associativity and linearity the impairment introduced by a block reordering gets luckily 
undetected, but in any case such probability will not be greater than 2-(b-1.25), according to the 
entropy injected by each AD block within the tag chaining. 
 
To conclude with this section, it can asserted now that disregarding the computational resources 
an attacker could devote to build a fake associated data string the probability of not being 
detected by some alteration in the GM tag will not be greater than 2-(b-1.25) and, moreover, in 
the remotely case that the GM tag is not altered the attacker cannot be aware of such event.  
 
 
A.3.2A.3.2A.3.2A.3.2 Plaintext IntegrityPlaintext IntegrityPlaintext IntegrityPlaintext Integrity    
 
Disregarding the computational resources a potential attacker could spend to build a fake 
cryptogram C’, the best chance to achieve such purpose would not be better than 2-(h-1.25), where 
h is the number of authentication bits appended to the message (b bits if the native mechanism if 
a block-wide authentication tag is used with, or without, ICV bits stealing padding). 
 
 
A.3.2.1A.3.2.1A.3.2.1A.3.2.1 DemonstrationDemonstrationDemonstrationDemonstration        
 
Draft Version 0.9: To be completed 
 
Since the first subprocess in the decryption procedure is to pass the cryptogram blocks directly 
through a battery of deciphering algorithm boxes, it is obvious that any attack based on 
synthesizing one or several fake blocks from some combination, or alteration, of the authentic 
ones will produce an unpredictable and random deciphered block. As it will be shown 
immediately, this error will propagate over the inner vectors till the verification of the 
authentication tag causing the detection of the attack. Moreover, the impact caused in the last 
ICV block (or MDC one depending on which verification method is used) by that error measured 
in entropy units will be of b bits, that is, no entropy is lost error over the block chaining path of 
the decryption procedure as it can be seen in section A.3.2.1.1. 
 
This case can be shown equivalent to the injection of any fake Ci value selected without any 
particular criteria. 
 
Now, analyse how a block removal, repetition or reordering causes an unrecoverable error (as 
per AD analysis: they should be reduced to a necessary condition on the autocancelling when 
two contiguous blocks are reordered. 



A.3.2.1.1A.3.2.1.1A.3.2.1.1A.3.2.1.1 Error Propagation AnalysisError Propagation AnalysisError Propagation AnalysisError Propagation Analysis    
 

Demo concept script for DraftV0.9: 
- From (A6) Oi = () + Oi-1 ---> once an error enters with its b-bits entropy in the inner 

sequences, that error is maintained by linear and direct chaining through Os vectors.  
- Other paths include couples of xor and + sums that reduce the propagated entropy (to be 

developed) by the tail / lsb of the error. 
- At the end, IN / ON maintain b-bits of entropy caused by any erroneous Ti block injected at 

any location (or by each ionjected Ti value & its specific position in the chain) and  
- Moreover, a modification of the associated data causes an error of (b-1.25) bits in IV’a. That 

error is also propagated over the entropy-conservative chaining path   
- ++ specific analyisis of bit stealing from ICV for padding showing it is the same to verify the 

ICV decrypted in native mode than to check a part in RN and the rest in a MDC” computed by 
the decryption process 

- ++ specific analysis for the optional reduction on authentication bits 
 

A.4A.4A.4A.4 Carry DeltCarry DeltCarry DeltCarry Delta a a a OperatorOperatorOperatorOperator    ((((    xxxxΔΔΔΔyyyy=(=(=(=(xxxx++++yyyy))))⨁⨁⨁⨁((((xxxx⨁⨁⨁⨁yyyy) ) ) ) ) Characterization) Characterization) Characterization) Characterization    
 
Let x and y be two independent and random b-bit binary vectors such as at least one of them is a 
totally random (i.e. each value it takes follows a uniform distribution from the total set of b-bit 
possible values). It is a well known fact that either x⨁y and x+y maintain the entropy / 
randomness of x and y. But which is the differential entropy between x⨁y and x+y ? That is, if 
we define xΔy=(x+y)⨁(x⨁y), then how much entropy does contain the result and which are 
the algebraic properties of this operator? 
 
Moreover, it can be observed that the only difference between the bits in the i-th positions of  
(x ⊕ y) and (x+y) comes from whether a carry from the bit addition in the (i-1)-th position has 
to be applied for the sum of the i-th position. Thus, it is immediate that the i-th bit of Δ will be 1 if 
such carry bit occurred and 0 otherwise. That is, xΔy is just a b-bit vector that contains all the bit 
carries that appear during the computation of (x+y). 
 
In this section the relevant properties of the Δ operator, are studied and characterized: 
• Section A.4.1 - Randomness propagation from the operands. It is shown that  
• Section A.4.2 - Relevant Δ algebraic properties: 

- Section A.4.2.1 – Commutativity xΔy = yΔx. The Δ operator results to be commutative. 
- Section A.4.2.2 – Associativity: xΔ(yΔz)    (xΔy)Δz. It is shown that although not 

associative in a classical sense, the Δ operator exhibits a residual associative behavior 
and that if the operands are random binary vectors, then there’s a (very) small 
probability Δ behaves as associative.  

- Section A.4.2.3 - Linearity: xΔ(y⨁z) ≟  (xΔy)⨁(xΔz): As per the associativity property, it 
is also shown that although not linear the in a classical sense with respect xor addition, 
the Δ operator exhibits a residual linearity behavior and that if the operands are random 
binary vectors, then there is still a (very) small probability Δ behaves as linear. NOTE: 
we could call this property also ‘distributiveness’ of Δ over ⨁ but we prefer ‘linearity’ as 
a more meaningful name for our purposes. 

 
To sum up, the algebraic properties exhibited by the carry delta operator make it worth to be 
defined as a strange but interesting operator for application in data hashing-like processes. Its 
lack of linearity and its acceptable randomness propagation properties make it interesting, for 
instance, to generate hash tags dependent both on the values of the data blocks and their specific 
positions within the sequence. On more generic terms: an adequate combination of xor and 
modular additions can be an interesting building block for those data processing procedures 
where chaotic behavior is pursued and where its input data already exhibits high entropy. 



A.4.1A.4.1A.4.1A.4.1 Information Entropy in the CarryInformation Entropy in the CarryInformation Entropy in the CarryInformation Entropy in the Carry----Delta VDelta VDelta VDelta Vectors ectors ectors ectors ((((or Δor Δor Δor Δiiii    RandomnessRandomnessRandomnessRandomness))))    
 
Let’s see which is the probability for any of the bit positions [ ]i∆  of being 1. That is, which is the 

probability, [ ]{ }1=∆Ρ=Ρ ii , of having a bit carry from previous position at the addition modulo-2n 

of A and B: 
• 01 =Ρ , since being the first bit summed, no bit carry has to be applied from previous one; 

• 4/12 =Ρ , since only if the first two summed bits are simultaneously 1, the bit carry is also 1; 

• 223 4

3
)1(

4

1 Ρ+Ρ−=Ρ , since if no carry was applied in the previous position then there would 

be a probability of ¼ that the bit sum in that position produces a carry and otherwise such 
probability would be ¾. 

• and 
24

1

4

3
)1(

4

1 1
11

−
−−

Ρ
+=Ρ+Ρ−=Ρ i

iii  for the general case. 
 

Since Pi is a monotonously increasing sequence and, as a probability, it is bounded by 1 then it 
will converge for i → ∞ towards a specific P value that will be given by: 

2

1
         

24

1 =Ρ⇒
Ρ+=Ρ . 

 

Figure 1 below illustrates that the convergence of Pi towards the ½ is actually extremely fast. 
For instance, for the 10th bit, P10 approximates ½ just with an error of 10-3. On other words, we 
can conclude that, except for a very few of the less significant bits, the carry-delta vectors exhibit 
very good entropy/randomness as the inner vectors do for all of their bits. Thus, let’s quantify 
the total entropy contained in a Δ vector, or on other terms, the equivalent length of Δ in terms 
of random bits. 

 (a)         (b) 

Figure AFigure AFigure AFigure A1111¡Error! Marcador no definido.: : : : (a) P(a) P(a) P(a) Piiii    vs vs vs vs iiii; (b) log (1/2; (b) log (1/2; (b) log (1/2; (b) log (1/2----    PPPPiiii) vs ) vs ) vs ) vs iiii    

According to Shannon definition of Information Entropy, each bit of Δi exhibits an entropy 
defined by: 

[ ]( ) )1(log)1(log 22 iiiii Ρ−⋅Ρ−−Ρ⋅Ρ−=∆Η . 
 

From where the total entropy for the whole carry-delta vector is: 

( ) [ ]( ) ( )∑∑
==

Ρ−⋅Ρ−−Ρ⋅Ρ−=∆Η=∆Η
n

i
iiii

n

i
i

1
22

1

)1(log)1(log . (A10) 

 
Figure AFigure AFigure AFigure A2222¡Error! Marcador no definido.: : : : log( 1 log( 1 log( 1 log( 1 ----    H([Δ]H([Δ]H([Δ]H([Δ]iiii) ) vs ) ) vs ) ) vs ) ) vs iiii    
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Figure A2 above shows that the entropy per bit is quickly maximized since it converges very 

rapidly towards 1 bit of information entropy per each ‘physical’ bit. For instance, for the 6-th bit 

of Δ its randomness entropy is above 1-10-3. On the other hand, Table A2 below indicates 

according to (A10) the total entropy, H(Δ), for different values of n, that for n≥3 the total 

entropy is above (n-5/4). That is, almost equal to the block size for any practical n size (64, 128, 

256, 512, 1024, 2048 ...) since only 1,25 equivalent bits do not exhibit any entropy.  

 
n  (physical bits) 1 2 3 4 8 16 32 64 128 256 

H( Δ )  (random bits) 0 0,811278 1,765712 2,75441 6,750667 14,75065 30,75065 62,7506 126,7506 254,7506 

Table ATable ATable ATable A2222: : : : Total entropy of the carryTotal entropy of the carryTotal entropy of the carryTotal entropy of the carry----delta vector, Δ, for different block sizesdelta vector, Δ, for different block sizesdelta vector, Δ, for different block sizesdelta vector, Δ, for different block sizes    

 
We can conclude that, as for + and ⨁ operators, the carry-delta Δ operator when applied to two 
random variables also produces a different random vector that almost preserves the entropy of 
the operands. The total entropy loss is equivalent to slightly less than 1.25 bits: one bit is lost in 
the lsb, since it is always 0, and the rest is lost in the subsequent lsb positions while their 
associated ‘1’ probability converges, quickly, to ½. Although in principle any entropy loss is 
undesirable in a cryptographic operator, the other properties of this operator make it worth this 
small cost.  
 
 
A.4.2A.4.2A.4.2A.4.2 AlgebraicAlgebraicAlgebraicAlgebraic    properties of properties of properties of properties of the the the the carrycarrycarrycarry----deltadeltadeltadelta    operatoroperatoroperatoroperator    
 
 
A.4.2.1A.4.2.1A.4.2.1A.4.2.1 CommutativCommutativCommutativCommutativityityityity::::    xxxxΔΔΔΔyyyy    = = = = yyyyΔΔΔΔxxxx    
 
Given the definition of the carry-delta operator as x Δ y = (x + y) ⨁ (x ⨁ y), it is immediate that 
it is a commutative operator. 
 
 
A.4.2.2A.4.2.2A.4.2.2A.4.2.2 AssociativAssociativAssociativAssociativity:ity:ity:ity:    xxxxΔ(Δ(Δ(Δ(yyyyΔΔΔΔzzzz) ) ) ) ≟  (≟  (≟  (≟  (xxxxΔΔΔΔzzzz)Δ)Δ)Δ)Δyyyy    
 
Before starting with this associativity analysis, it shall be remarked that if the carry-delta vector 
was associative (in the regular sense) then, since it is also commutative, we would have: 
 
xΔ(yΔz) = xΔ(zΔy) = (xΔz)Δy = (xΔy)Δz. 
 
But, as we will see, Δ is not transitive in such “regular” sense. Anyway, we are to see that there is 
some residual behavior of this property if we use “associativity” concept just in a “probabilistic” 
sense (i.e. for some values of the operands the property is complied and for others, not). In such 
situation one could define such “probabilistic” transitivity according to one of the following 
conditions: 
a) xΔ(yΔz) = (xΔz)Δy; 
b) xΔ(yΔz) = (xΔy)Δz; 
c) xΔ(yΔz) = (xΔz)Δy = (xΔy)Δz;  
 
We will focus just in the case (a) above. Nonetheless, observe that although ((xΔz)Δy) and 
((xΔy)Δz) will be (not totally) independent random variables their study and behavior are 
totally equivalent. Regarding the third case, it corresponds to a more stringent concept for the 
“probabilistic” associativity definition that is not of interest here. 
 
The table below shows the probabilistic truth tables for the a generic i-th bit position of both 
(xΔ(yΔz)) and ((xΔz)Δy) values. The probabilistic definition comes from the fact that 
complementary to the bit values exhibited in the three leftmost columns of the table, to compute 



the values on the right one has to take into account the probability of having a carry bit 

propagated from the computation of the immediately lower bit position. This probability has 

been already characterized in section A.4.1. Moreover, in order to simplify the calculations it has 

been assumed that the carry probability distribution when one of the operands is another carry-

delta vector instead of a pure random vector like x, y or z. This assumption is taken on the basis 

that the Pi distribution for a carry-delta vector converges quickly towards the ½ value. Finally, 

the rightmost column indicates the probability that both vectors match either on the value 1 or 

the value 0  

 

x y z yΔz xΔz xΔ(yΔz) (xΔz)Δy P( xΔ(yΔz) = (xΔz)Δy )4 

0 0 0 0 0 0 0 1 (=0) 

0 0 1 Pi Pi Pi
2
 Pi

2
 Pi

4
 + (1- Pi

2
)( 1- Pi

2
) 

0 1 0 Pi 0 Pi
2 

Pi Pi
3
 + (1- Pi

2
)( 1- Pi) 

0 1 1 1 Pi Pi
 
 (2-Pi)·Pi (2-Pi)·Pi

2
 + (1-Pi)(1-(2-Pi)·Pi) 

1 0 0 0 Pi Pi Pi
2
 Pi

3
 + (1- Pi)( 1- Pi

2
) 

1 0 1 Pi 1 (2-Pi)· Pi Pi (2-Pi)· Pi
2
 + (1-Pi)(1-(2-Pi)·Pi) 

1 1 0 Pi Pi (2-Pi)· Pi (2-Pi)·Pi (2-Pi)
2
·Pi

2
 + (1-(2-Pi)·Pi)

2
 

1 1 1 1 1 1 1 1 (=1) 

Table ATable ATable ATable A3333: : : : Probabilistic tProbabilistic tProbabilistic tProbabilistic truth table for ruth table for ruth table for ruth table for ΔΔΔΔ    associativityassociativityassociativityassociativity    

 
From the table above it becomes evident that although quite similar, depending the carries 
propagation from the lower bit positions the two vectors will be different. 
 
Now, in order to calculate the match probability for (xΔ(yΔz)) and ((xΔz)Δy) values, we define 
P=i as the aggregated probability of having a match in the the i-th bits for whatever values are 
taken by x, y and z in that position, that from the entries in the rightmost column in the table and 
a little patient lead to: 
 
P=i = ( 8 - 14·Pi +23·Pi2 -20·Pi3 +16· Pi4 -6· Pi5 + Pi6 ) / 8; ;   where i = 1, …, b. 
 
 
As per the carry-delta entropy, the above match probability for bit position starts at value 1 for 
the rightmost bit (the lsb of a Δ is always 0) and quickly converges to the value 0,6347 (or 
towards an equivalent entropy per bit of 0.947 bits). On the other hand, if the working block size 
is b bits, the probability that all of them match can be calculated as the product of the above 
formula for i= 1, …, b: 
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Moreover, we define the differential entropy between (xΔ(yΔz)) and ((xΔz)Δy) values as the 
Shannon entropy applied to the bit match probability accumulated for all the b bits (intuitively, 
it indicates the number of different bits on the two vectors): 
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4 That is, the probability that both of them are 1 plus the probability that both of them are 0. 



The following table illustrates some values of the total match probability (both in lineal an log2 

scales) and differential entropy for different blocksizes. 

 

 Associativity 

(xΔy)Δz ≟ (xΔz)Δy 

b P= Log2 P=  H (bits) 

1 1,000000000000000 0,000 0,000 

8 0,047771801108618 -4,388 6,535 

16 0,001258865589324 -9,634 14,111 

32 0,000000874567541 -20,125 29,262 

64 0,000000000000422 -41,107 59,564 

128 0,000000000000000 -83,073 120,168 

256 0,000000000000000 -167,003 241,377 

512 0,000000000000000 -334,863 483,794 

1024 0,000000000000000 -670,583 968,629 

Table ATable ATable ATable A4444: : : : Some figures Some figures Some figures Some figures forforforfor    the the the the ΔΔΔΔ    probabilistic associativityprobabilistic associativityprobabilistic associativityprobabilistic associativity    

 
 
A.4.2.3A.4.2.3A.4.2.3A.4.2.3 LinearLinearLinearLinearitititityyyy::::    xxxxΔ(Δ(Δ(Δ(yyyy⨁⨁⨁⨁zzzz) ) ) ) ≟  (≟  (≟  (≟  (xxxxΔΔΔΔyyyy))))⨁⨁⨁⨁((((xxxxΔΔΔΔzzzz))))    
 
Analogously to the associativity analysis, we are now to characterize the probabilistic linearity 
exhibited by the carry-delta vector in relation with the xor addition. 
 
The table below shows the probabilistic truth tables for the a generic i-th bit position of both 
(xΔ(y⨁z)) and ((xΔy)⨁(xΔz)) values. The calculation of this new truth table is very similar to 
the one performed for the associativity property. Nonetheless, in this case it shall be remarked 
that, since there is no composition of Δ operators, the calculated probabilities are absolutely 
accurate since no simplification assumption is needed.  Again, the probabilistic concept comes 
from the fact that complementary to the bit values exhibited in the three leftmost columns of the 
table, to compute the values of some Δ on the right, one has to take into account the probability 
of having a carry bit propagated from the immediately lower bit position (see section A.4.1). 
Finally, the rightmost column indicates the probability that both vectors match either on the 
value 1 or the value 0  
 
 
x y z y⨁z xΔy xΔz xΔ(y⨁z) (xΔy)⨁(xΔz) P( xΔ(yΔz) = (xΔz)Δy )5 
0 0 0 0 0 0 0 0 1 

0 0 1 1 0 Pi Pi Pi Pi
2
+(1-Pi)

2
 

0 1 0 1 Pi 0 Pi
 

Pi Pi
2
+(1-Pi)

2
 

0 1 1 0 Pi Pi 0 2·Pi·(1-Pi) 1-2·Pi·(1-Pi) 

1 0 0 0 Pi Pi Pi 2·Pi·(1-Pi) Pi·(2·Pi·(1-Pi))+(1-Pi)·(1-2·Pi·(1-Pi)) 

1 0 1 1 Pi 1 1 1-Pi 1-Pi 

1 1 0 1 1 Pi 1 1-Pi 1-Pi 

1 1 1 0 1 1 Pi 0 1-Pi 

Table ATable ATable ATable A5555: : : : Probabilistic tProbabilistic tProbabilistic tProbabilistic truth table for ruth table for ruth table for ruth table for ΔΔΔΔ    linearitylinearitylinearitylinearity    

 
From the table above it becomes evident that although quite similar, depending the carries 
propagation from the lower bit positions the two vectors will be different. 
                                                             
5 That is, the probability that both of them are 1 plus the probability that both of them are 0. 



 

Now, in order to calculate the match probability for (xΔ(y⨁z)) and (xΔy)⨁(xΔz)) values, we 

define P=
i as the aggregated probability of having a match in the the i-th bits for whatever values 

are taken by x, y and z in that position, that from the entries in the rightmost column in the table 

and a little patient lead to: 
 
P=i = ( 2 - 3·Pi +3·Pi2 - Pi3 ) / 2;   where i = 1, …, b. 
 
On the other hand, if the working block size is b bits, the probability that all of them match can 
be calculated as the product of the above formula for i= 1, …, b. 
 
Observe that P=i = 1, for the rightmost bit (i=0),  and for i⨠1, Pi converges quickly towards 1/2 
and consequently: 
 
P=i → 9/16 = 0,5625.  

 

Analogously to the previous analysis so far done, one can define the differential entropy per bit 

and total entropy for the entire working block size.  In the case of differential entropy per bit, it 

starts at 0 bit for the rightmost position and converges quickly towards 0,989 bits (it establishes 

at that value from the 10th bit on.  

 

The following table illustrates some values of the total match probability (both in lineal an log2 

scales) and differential entropy for different blocksizes. 

 

 Linearity 

xΔ(y⨁z) ≟ (xΔy)⨁(xΔz) 

b P= Log2 P=  H (bits) 

1 1,000000000000000 0,000 0,000 

8 0,027155634503633 -5,203 6,747 

16 0,000272878413245 -11,839 14,656 

32 0,000000027411577 -25,121 30,475 

64 0,000000000000000 -51,683 62,114 

128 0,000000000000000 -104,808 125,390 

256 0,000000000000000 -211,057 251,944 

512 0,000000000000000 -423,557 505,051 

1024 0,000000000000000 -848,555 1011,265 

Table ATable ATable ATable A6666: : : : Some figures for the Some figures for the Some figures for the Some figures for the ΔΔΔΔ    probabilistic probabilistic probabilistic probabilistic LinearityLinearityLinearityLinearity    

 


