
++AE v1.0++AE v1.0++AE v1.0++AE v1.0
Author: Francisco Recacha Email contact at: frecacha@gmail.com

March, 15th 2014

AbstractAbstractAbstractAbstract:::: ++AE (read “plusplusae”) is an original proposal of an authenticated encryption
mode designed for submission to CAESAR competition. ++AE is a lightweight AE mode

with an almost negligible overhead when compared with only-encryption EBC mode since,
basically, only four sums are added per each plaintext block plus one additional block

cipher call is needed per each message. Moreover, ++AE supports authentication of
optional plain associated data, parallelized computation, allows to avoid padding

overheads by means of a bit stealing method and can be used with any block cipher
algorithm with arbitrary block and key sizes and with more than generous limits either on

both message size and session length.

1.1.1.1. IntroductionIntroductionIntroductionIntroduction

++AE is a new authenticated encryption mode design partially based on a couple of previous

modes designed by the same author, namely IOBC and IOC. The core principles inherited from its
parent modes are the “encrypt with chained redundancy” paradigm and, just from IOC, the

combined use of x-or and modular sums in the redundancy chaining path.

The main contributions achieved by ++AE mode, in comparison with IOBC and IOC, are that (a)
the cipher computations can be now parallelized, the design includes also (b) optional

authentication of plain associated data, (c) optional method for avoiding data padding
transmission, (d) optional scalable method for reducing the number of authentication bits

accompanying the cryptogram and (e) a deeper and stronger security analysis substantiating
the quality of the proposed mode.

Moreover, ++AE computational and operational overhead is kept minimal, being possibly the

best one in its class. Firstly, the added computational overhead in comparison with the only-
encrypt ECB mode are just four block sums per message block (just two for associated data
blocks) and an additional call to the block cipher algorithm to generate a last cryptogram block

used as authentication tag (or Modification Detection Code, MDC). Secondly, the keying material
required by ++AE is reduced just to the encryption key, the one already required by the

underlying cipher algorithm, and a nonce public sequence number associated to each message.

To conclude with this introduction just to mention that, as Conway’s Game of Life shows,
complex universes emerge even (if not always) from minimal sets of very simple rules. In ++AE

case, is basically a combination the xor binary sums with the modular additions what raises,
supported by a good block cipher, the required complexity to obtain a very sound AE mode.

2.2.2.2. ++AE Specificati++AE Specificati++AE Specificati++AE Specificationononon

2.1 Native ++AE operation

Figure 1 illustrates the encryption and decryption native/ baseline procedures for ++AE mode.
This native specification can be upgraded by a number of optional features for authentication of

plain associated data, padding elimination and partial reduction of authentication bits.
Implementations for these optional features are specified later in this same document.

Figure Figure Figure Figure 1111: ++AE : ++AE : ++AE : ++AE nativenativenativenative encryption and decryption proceduresencryption and decryption proceduresencryption and decryption proceduresencryption and decryption procedures

A formal specification for the baseline encryption procedure:

Ii = Pi ⊕ Oi-1;

Oi = Ii + Ii-1 + Oi-1; (1)
Xi = Oi ⊕ Ii-1;

Ci = Ek(Xi);

for i = 1, …, (N+1) and where
a) Pi is a block of b bits of the plain message and Ci its corresponding cipher-text block;
b) b is the operating block size in bits of the used block cipher algorithm, Ek();

c) N≤2b/2 is the length, in b-bit blocks, of the plain message (see below for padding issue);
d) aIVO =0 is a secret and random b-bit value changed for each message;

e) bIVI =0 is a secret and random b-bit value changed for each message and different from IVa ;

f) PN+1=ICV (Integrity Check Vector) is a secret random b-bit value changed for each message;
g) CN+1=MDC (Modification Detection Code) is the cryptogram authentication b-bit tag;

h) Ek(X) is the result of the block encryption of a n bit vector X, using the session key k;
i) ⊕ is the x-or binary sum operator applied bit by bit to the two input b-bit vectors;

j) + is the regular arithmetic addition modulo 2b;

On its turn, the formal specification for the baseline decryption procedure:

Ti = Dk(Zi);

Qi = Ti ⊕ Yi-1; (2)

Yi = Qj – (Yi-1+Qi-1);
Ri = Yi ⊕ Qi-1;

for i = 1, …, (N’+1) and where
a) - is the regular arithmetic subtraction modulo 2b.

b) N’ ≤2b/2 is the number of received cryptogram blocks (i.e. Z1, Z2, …, ZN’ and ZN’+1 = MDC’);
c) R1, R2, …, RN’ and RN’+1 are the N’ decoded plaintext blocks and the associated ICV’ value;

d) Q0 = IVa and Y0 = IVb as per the encryption procedure;
e) Dk(), the inverse operator of Ek() (i.e. Dk(Ek(X)) = X);

f) the decoded plain message is accepted as authentic only if ICV’ = RN’+1= ICV;

It is immediate that the decoding operation for any authentic cryptogram is just the inverse of
the encoding one (i.e. Ri = Pi for i=1 … N and ICV’ = ICV, with N’=N).

Ek Ek Ek

P1 P2 PN

C1 C2 CN

O1

I1

O2

I2

ON

IN

+ + +

PN+1 =ICV

+

CN+1=MDC

Ek

ON+1

IN+1

X1 X2 XN XN+1

IV ‘
a

IVb

Dk Dk Dk

R1 R2 RN’

Z1 Z2 ZN

Y1

Q1

Y2

Q2

YN

QN

- - -

ICV’=ICV?

-

MDC’

Dk

YN+1

QN+1

T1 T2 TN TN+1
IVb

IV ‘
a

(a) Encryption (b) Decryption and Verification

…

…

…

…

+ + + +

+ + + +

+

Further to the notation already introduced, the following complementary notation is used in this
document:

• X|Y is the concatenation of the bit strings X and Y;
• |X| is the length, in bits, of the bit string X;

• X*n is the bit string composed concatenating n instances of the bit string X;
• X»n is the right-hand shift of n positions in the bit string X (filling it with ‘0’s on the left);

• X«n is the left-hand shift of n positions in the bit string X (filling it with ‘0’s on the right);
• [X]n is the right-most n bit sub-string (i.e. lest-significant-bits, or simply “lsb”) in X;

• n[X] is the left-most n bit sub-string (i.e. Most-Significant-Bits, or simply “MSB”) in X;

To conclude ++AE native specification, the mode assumes that the plaintext string has a length

multiple of the working block size and no adding is required. Nevertheless, in case the user
application delivers a plaintext string that requires its bit tail to be padded, then an optional

padding mechanism is available for ++AE according to the specification given in section 2.3.

2.2 Optional authentication of plain associated data

In case that associated data is to be authenticated, then the procedure illustrated in figure 2 is

used both by the sender and the receiver to process them.

Figure Figure Figure Figure 2222: : : : optional optional optional optional authentication of plain associated dataauthentication of plain associated dataauthentication of plain associated dataauthentication of plain associated data

The authentication of the optional associated data consists of computing the following iterative
authentication tag over the AD blocks and before the rest of the message is processed:

Gi = Ek(ADi) ⊕ (Ek(ADi) + Gi-1); (4)

for i = 1, …, M, and where
• M, such that (M+N)≤2b/2, is the block length of the associated data AD;
• AD1, AD2, …, ADM are the b bit blocks in which AD is break down;
• The last block ADM is filled, if required, with 0s on its lsb positions till completing the block

size; i.e. ADM = [AD]q | 0*(b-q) being q the number of residual bits from AD for the last block;

• G0 = IVa (one of the initializing vectors “stolen” from the encryption procedure);
• GM constitutes an authentication tag that replaces the stolen initializing vector: IV’a = GM;

IVa

Ek Ek

AD1 ADM|{0}
b-q…

+ +

G1
IV’a=GM

2.3 Optional padding with bits stealing from ICV

To maintain the cryptogram bit size as in the original message, the next method is proposed as

optional padding mechanism alternative to the native configuration specified above (i.e.
alternative to have the plaintext formatted by the user application in block-size multiple length).

The idea consists of filling the last plaintext block, PN, with (b-w) MSB bits taken from the ICV
and discarding w bits in the authentication tag MDC, where w<b is the number of bits in the

plaintext tail to be completed till the block size:

PN = [P]w | (b-w)[ICV];
PN+1 = ICV (as per the native configuration); (5)

CN+1 = [MDC](b-w); (i.e. C = C1 | C2 | … | CN | (MDC = [MDC](b-w))).

Observe that the last step in the native decryption and verification procedure shall be

substituted now with the following two-step one (see Figure 3):
• the blocks R1, …, RN’ are decoded normally as per the native decryption procedure;

• w’ = |MDC’| is the number of the tail received bits in the last cryptogram block;
• if [RN’](b-w’) ≠ (b-w’)[ICV] then the cryptogram is not accepted as authentic, else

• now the encryption procedure is applied to the ICV value using the inner vectors obtained
at the last decryption step to compute an authentication tag MDC”

• finally the decoded message is accepted as authentic only if [MDC”] (b-w’) = MDC’.

Figure Figure Figure Figure 3333: : : : DDDDecryption and ecryption and ecryption and ecryption and verificationverificationverificationverification procedure with padding based on procedure with padding based on procedure with padding based on procedure with padding based on ICVICVICVICV bit stealingbit stealingbit stealingbit stealing

2.4 Optional reduction of authentication tag bits

The particular decryption and verification procedure specified above for padding with ICV bits
stealing can also be directly extended for reducing authentication tags for which only the h≤b

lsb bits are transmitted. Since the authentication strength will be roughly reduced by a 2 factor
per each saved bit, this specification recommends not reducing tag size below 64 bits.

Moreover, if this optional authentication tag reduction is used in combination with ICV bit

stealing padding then, for those messages that (b-w) ≥ h (with w the number of “tail” plaintext
bits in the last block PN), no tag bits will have to be appended since the b bits of the CN block will
contain more authentication bits than required (i.e. b-w). If combination with ICV bits stealing is

used, h can be viewed as an “equivalent” tag size since the bits of MDC actually accompanying
the cryptogram will get further reduced.

The equivalent tag size can be selected either by the implementer (e.g. hard-wired within the

implementation) or parameterized by the user indicating to the encryption and decryption
procedures the specific size to be used. For the latter case, the handshake protocol between the

sender and receiver applications to set this parameter is kept outside this specification scope.

Dk

RN’

ZN

YN

QN

-

ICV

+
[MDC’]w= [MDC”]w

?

Ek

YN+1

QN+1

TN TN+1

…

…

[RN’]b-w= b-w[ICV]

?

MDC”

…

…

[MDC’]w

R2

Z2

R1

Z1AD’2AD’1
… AD’M’

AD’2AD’1
… AD’M’

T

T

OK KO

+ +

2.5 Operational requirements for session management

A “security session” is defined as the chain of plain messages that are encoded using a same

ciphering session key k and numbered each one of them with a different public message number
S, where 0 ≤ S ≤ 2b/2-1. This message number S is used for each message as an input nonce to

generate its integrity check vector and, in some cases, its initializing vectors. S counter can be
coded by the user with any bit word size from b/2 to b, although ++AE shall handle it internally

as a b bit integer (appending 0s at the leftmost positions if necessary). ++AE specification
considers S as a public counter shared by both communication ends. It can be managed as a

sequential counter, as a random value, … the only important requirement is that it does not
repeat a same value during a given session lifespan.

Although ++AE can be used in a stateless configuration where no internal status information is
kept to be reused between calls, the best efficiency and resilience against accidental S repetitions

is achieved in its stateful configuration where the last inner vectors ON+1 and IN+1 are saved to be
reused as initializing vectors IVa and IVb for the following message (furthermore, in this stateful

implementation the implementer has the possibility to save the internal status related to the
session key in order to save block cipher rekeying overhead for the subsequent call). Although

not required, it is optional to the user to use random and secret S values as a complementary
protection in front of accidental repetitions of S.

Note that a signaling protocol will be required between the sender and receiver applications to

set the key k as well as to manage the session along its lifecycle, including S counter
synchronization when required. This signaling protocol is kept outside the scope of this

specification. In any case, if ++AE is used in its stateful configuration the encryption and
decryption procedures shall be notified when a new security session is initiated and every time

the internal status shall be restarted (see below for fresh generation of the initializing vectors).

A session can encompass up to 2b/2 messages in order: (a) a same value of the message counter,

S, is never repeated during that session and (b) as complementary measure to avoid certain
theoretic situations where the inner vectors Ii and Oi could become periodic in the absence of

any plaintext input different to ‘0’ (see annexed security analysis for further details). Moreover,
the length of each message, N, shall not be greater than 2b/2 blocks to avoid the mentioned

periodicity in the inner vectors. To sum up, one could say that in practical scenarios the message
/ session limits are more than generous.

In any case, it will be up to the session management protocol to use more restrictive criteria for

session limits bellow the 2b/2 messages threshold. In most practical scenarios this will be the
case since a security session will be usually linked to a parallel concept at application or key

management level (e.g. file size, duration of a connection-oriented communication protocol, key
life timing-out, etc). This means that a session will be terminated usually far more earlier than

the 2b/2 threshold is reached. In any case, it is paramount the session counter is not repeated for
two messages in a given session since it could enable an attacker exchanges them (that’s not
actually true if the stateful configuration is used since it would be required also that “fresh” IVs

are generated for both cryptograms).

2.6 Initializing Vectors Management

2.6.1 Stateless IVs Management

In the ++AE stateless operation, for every message to be processed couple of “fresh” initializing

vectors shall be computed as follows (see Figure 4.a):

IVa = Ek(S); IVb = Ek(IVa); (6)

2.6.2 Stateful IVs Management

The following optional procedure for stateful management of the initializing vectors allows
saving for each message the couple of cipher algorithm calls required for fresh IVs generation.
After generating a couple of fresh IVs for the first session message as per procedure (6) above,

for subsequent messages the last inner vectors ON+1 and IN+1 will be reused (see Figure 4.b):

IVa = ON+1; IVb = IN+1 (and saved to be used for the next session message1); (7)

Alternatively to method (7), IVa and IVb can be reset with “fresh” values for any particular
message using the method specified in (6). This reset shall be done at the beginning of each

security session but it can be also forced at any point by the session management protocol. In
this latter case, this IVs reset may help for instance for resynchronization in case of message

losses during a data-loss tolerant communication.

Observe that although stateful operation introduces some burden in the implementation to save
the status information between procedure calls for a particular session, there are significant

advantages that are worth of this burden:
• In comparison with stateless operation, it saves 2 calls of the cipher algorithm per message;
• In some implementations, it can enable also to save the key preset to process each message;

• It is inherently (partially) resilient to accidental repetitions of the session counter S by poor
session management implementations. In the case of stateless operation such repetition, if

known by an attacker, would allow to exchange the cryptograms without being detected.

2.7 Integrity Check Vector Management

For each message, the random and secret ICV vector, appended of the plaintext bit string as an
additional block, is computed as (see Figure 4.c):

ICV = (IVa ⊕ S) + (IVb ⊕ (N + M)); (8)

Where N and M are the block lengths of the plaintext and the associated data, respectively.

Figure Figure Figure Figure 4444: : : : Generation of IOC Generation of IOC Generation of IOC Generation of IOC InitializingInitializingInitializingInitializing VVVVectorsectorsectorsectors and Integrity Check Vectorand Integrity Check Vectorand Integrity Check Vectorand Integrity Check Vector

1 Note that depending on particular implementations, the session key configured for the block cipher algorithm may

be kept also for the next message to avoid key preset procedure and the associated computing overhead.

IV’a

Ek

Ek

(a) (b)

IV’b

IVa

IVb

ON+1

IN+1

(c)

IVa IVb

S N+M

+

ICV

S

Ek

+

PN+1 =ICV

CN+1=MDC

XN+1

+

2.8 Note on the underlying block cipher algorithm

++AE can be used with any block cipher algorithm and it can operate with any block sizes and

key sizes. Moreover, although potential applications and associated requirements have not been
assessed, ++AE could be also applicable for some uses with public key algorithms.

3.3.3.3. Security goals and security strength assessmentSecurity goals and security strength assessmentSecurity goals and security strength assessmentSecurity goals and security strength assessment

++AE design pursues, and achieves, the following security goals:
• Confidentiality strength offered to any block of the plaintext data, Pi, is equivalent, or better,

to the one offered by the underlying cipher algorithm, Ek() when applied in ECB mode just
once to Pi and all the other plaintext blocks processed with the same key being secret and

random disregarding the actual values they may have. More precisely:
o Any plaintext block value being ciphered twice will produce random cryptogram

blocks which values would collide just with a (uniform) random probability of 2-b;
o The previous property is achieved even when chosen plaintext is forced by an

attacker for the rest of plaintext blocks;
o ++AE scheme does not leak any information about the value of any of the Pi blocks;

o ++AE scheme does not leak any information to collect a (X, Ek(X)) dictionary.
• Integrity strength both for associated data and plaintext such that whatever resources could

be spent to forge ++AE integrity, and assuming an ideal block cipher, the success probability
of such attack will not be higher than 2-(b-1.25), or 2-(h-1.25) if only h bits (with 64≤h≤b) of the
authentication tag are appended to the cryptogram.

The above characterization applies to implementations in ++AE native form or with any of its

optional features provided, as usual, that the cipher algorithm performs as a perfect
pseudorandom permutation. It also includes chosen plaintext attacks. See annexed document for

detailed ++AE security analysis as required per CAESAR call.

++AE only uses a public message number S, as a nonce to generate the initializing vectors, IVa
and IVb, and the integrity check vector, ICV. Two forms of implementation are supported:

stateless and stateful. In the stateless one, ‘fresh’ vectors IVa, IVb and ICV are computed for each
message while in the stateful one the initializing vectors IVa and IVb are taken from the final

computation status of the previous message. Note that while for the stateless operation the
repetition of the message counter for two messages in a same session would be fatal if known by

an attacker, in the stateful one the chaining of internal variables from one message as the
initializing vectors of the following one provides some partial mitigation against this type of
accidental nonce repetitions by wrong implementations.

++AE issues regarding possible variations in attack resources, such as software side channels,

hardware side channels, large numbers of active keys, relationships among keys, large numbers
of legitimate messages encrypted, …, if any, should be the same ones than for the used block

cipher. In particular, those issues for ++AE stateful operation are similar to the case of stateful
implementation of the cipher algorithm where the session key preset is kept between calls.

4.4.4.4. ++AE Fea++AE Fea++AE Fea++AE Features Summarytures Summarytures Summarytures Summary

It is worth to point out the following ++AE mode differential features:
1. ++AE is one of the most lightweight AE modes ever proposed, especially in its stateful form:

in comparison with ECB mode it just adds four b-bit sums per message block, one cipher
algorithm call for each message and two more for session start;

2. It allows parallelize all the cipher algorithm calls to achieve high processing speeds.

3. The optional padding mechanism based on ICV bit stealing eludes padding overheads;
4. In comparison with ECB mode, the only additional keying material that is required to be

managed by the user is a public message counter S, that is used as a nonce to generate the
integrity check vector and, in some cases, the initializing vectors;

5. In its stateful form, ++AE shows partial resilience against accidental repetitions of the
message counter S.

6. ++AE allows authentication tags that in native mode have the same size as the working
block but it is also supported an optional mode to reduce the number of tag bits.

7. A session can cover up to 2b/2 messages with a maximum size of 2b/2 blocks per message.
8. ++AE is applicable with any block cipher algorithm disregarding its block and key sizes;
9. Although neither potential applications nor specific requirements have been assessed, ++AE

could be used also with public key cipher algorithms.
10. To the knowledge of the author, the only ++AE performance where it performs below other

well established modes is about preprocessing: ++AE does not support neither encryption
nor decryption preprocessing.

5.5.5.5. Design Design Design Design RRRRationaleationaleationaleationale

This section is included just to formally comply with CAESAR requirements since the author has

tried to justify ++AE design details in those places of this document where they are specified or,
in some cases due to the required extend, in the accompanying security analysis.

The author has not hidden any weaknesses in ++AE design and, to the knowledge of the author,
if implemented following the specifications contained in this document, no ++AE design detail

would allow hiding any weakness.

6.6.6.6. ++AE ++AE ++AE ++AE Intellectual Intellectual Intellectual Intellectual PPPPropertyropertyropertyroperty IssuesIssuesIssuesIssues

Intellectual property rights on AE++ scheme, its sub-schemes and some variations are
protected by patent application ref. ES P201430169. In any case, the author grants free use

rights, at least, for any implementation not being part of (a) a data communications equipment
with a market price over 2.017 USD or (b) a commercial Operating System with more than
15.485.863 instances sold. If any of this information changes, the author will promptly (and

within at most one month) announce these changes on the crypto-competitions mailing list.

7.7.7.7. Consent StatementConsent StatementConsent StatementConsent Statement for CAESAR Selection Committeefor CAESAR Selection Committeefor CAESAR Selection Committeefor CAESAR Selection Committee

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round

candidate, a finalist, a member of the final portfolio, or any other designation provided by the
committee. The submitter understands that the committee will not comment on the algorithms,
except that for each selected algorithm the committee will simply cite the previously published

analyses that led to the selection of the algorithm. The submitter understands that the selection
of some algorithms is not a negative comment regarding other algorithms, and that an excellent

algorithm might fail to be selected simply because not enough analysis was available at the time
of the committee decision. The submitter acknowledges that the committee decisions reflect the

collective expert judgments of the committee members and are not subject to appeal. The
submitter understands that if they disagree with published analyses then they are expected to

promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter understands that this statement is required as a condition of

consideration of this submission by the CAESAR selection committee.

