
JHAE: An Authenticated Encryption Mode Based on JH

Javad Alizadeh1, Mohammad Reza Aref1, Nasour Bagheri2

1 Information Systems and Security Lab. (ISSL), Electrical Eng. Department, Sharif University of
Technology, Tehran, Iran, Alizadja@gmail, Aref@sharif.edu

2 Electrical Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran,
NBagheri@srttu.edu

Abstract. In this paper we present JHAE, an authenticated encryption (AE) mode based on
the JH hash mode. JHAE is a dedicated AE mode based on permutation. We prove that this
mode, based on ideal permutation, is provably secure.

Keywords: Dedicated Authenticated Encryption, Provable Security, Privacy, Integrity

1 Introduction

Privacy and authentication are two main goals in the information security. In many ap-
plications this security parameters must be established simultaneously. An cryptographic
scheme that provide both privacy and authentication is called authenticated encryption (AE)
scheme. Traditional approach for AE is using of generic compositions. In this approach one
uses two algorithms that one provides confidentiality and the other one provides authen-
ticity. However, this approach is not efficient for many applications because it requires two
different algorithms with two different keys as well as separate passes over the message [2].
Another approach to design an AE is using a block cipher in a special mode that the block
cipher is treated as a black box in the mode [10, 12, 14]. The most problem of these modes
is the necessity for implementation of the whole block cipher to process each message block
which is time/resource consuming.

Dedicated AE schemes resolve the problems of the generic compositions and block cipher
based modes. The designing of a dedicated AE has recently received many attentions in
cryptography, mostly driven by the NIST-funded CAESAR competition for AE [7]. Some
dedicated AE schemes are ASC-1 [8], ALE [6], AEGIS [16], FIDES [5], CBEAM [13] and APE
[1]. A common approach to construct a dedicated AE is to iterate a random permutation
or random function in a special mode of operation. Therefore there are two main stages in
designing a new dedicated AE:

1. Designing a new dedicated mode (based on a random permutation or a random function)

2. Designing a new random permutation or a random function to be used in the mode.

An general approach is to design a dedicated AE mode from a hash function mode. For
example the modes of FIDES, CBEAM and APE are obtained from sponge mode [4]. Another
examples are FWPAE and FPAE modes that are obtained from FWP and FP hash function
modes respectively [9]. An important challenge in developing an AE mode from another

2 J. Alizadeh, M. R. Aref and N. Bagheri

mode is to prove its security to ensure that the transient to another application does not
make any structural flows.

In this paper we propose a new dedicated AE mode, JHAE. JHAE is a permutation-based
AE mode based on JH hash function mode [15]. It is an on-line and single-pass dedicated AE
mode that supports optional associated data (AD). JHAE’s security relies on using nonces.
We prove that the mode achieves privacy (indistinguishability under chosen plaintext attack
or IND-CPA) and integrity (integrity of ciphertext or INT-CTXT) up to O(2n/2) queries,
where the length of the used permutation is 2n. In addition, we show that the integrity bound
of JHAE is reduced to the indifferentiability of JH hash mode which is at least O(2n/2). In
Table 1, a comparison between JHAE and some other known dedicated AE modes is given.

Table 1. Comparison between JHAE and known dedicated AE modes

Dedicated Provable AD On-Line Nonce Misuse Inverse-Freeness Refference
AE Security Resistance of π (or f)

ASC-1 Yes No No No Yes [8]

ALE No Yes Yes No Yes [6]

AEGIS No Yes Yes No Yes [16]

FIDES No Yes Yes No Yes [5]

CBEAM No Yes Yes No Yes [13]

APE Yes Yes Enc only Yes No [1]

JHAE Yes Yes Yes No Yes This paper

The paper is structured as follows: section 2 gives a specification of JHAE encryption-
authentication and decryption-verification. The security of JHAE is analysed in section 3. In
this section we prove privacy of JHAE in the ideal permutation model, using game playing
framework [3] and integrity of it by reducing to the security of JH hash mode. Finally we
conclude in section 4.

2 JHAE Authenticated Encryption Mode

In this section we describe JHAE mode, depicted in Fig 2. JHAE is developed from JH hash
function mode (Fig 1) [15] and iterates a fixed permutation π : {0, 1}2n → {0, 1}2n. It is a
nonce based, single-pass, and an on-line dedicated AE mode that supports AD.

2.1 Encryption and Authentication

JHAE accepts a n-bit key K, a n-bit nonce N , a message M , an optional AD ,A, and
produces ciphertext C and authentication tag T . The pseudo code of JHAE’s encryption-
authentication is depicted in Table 2. We assume that the input message after padding, is
a multiple of the block size (n). The padding approach is very simple, includes appending
a single bit ‘1’ followed by a sequence of ‘0’ such that the padded message is a multiple of
n. If there is AD in the procedure, then it is also padded to be multiple of n and processed
in a way similar to the message block with an exception that ciphertext blocks, ci, are not
produced for AD blocks.

JHAE: An Authenticated Encryption Mode Based on JH 3

IV

IV

1m

2m 3m

k 1m km

hash

Fig. 1. JH hash mode [11]

IV 0

0K x

1x

1x0y

0y

0m N

2x

2x1y

1y

1m

2y

2y

2m

lx

lxl 1y

l 1y

l 1m

ly

lm

l 1x

0x

 l 2c

l 2x

l 2x l 1y

l 1y

l 3c

l 3x

l 3x l 2y

l 2y

l 3y

l 3y

pc

px

pxp 1y

p 1y

py

K

p 1x

T

l 1x

l 1m l 2m l 3m p 1m pm
C
o
n
ti
n
u
e

C
o
n
ti
n
u
e

ly

l 1c

Fig. 2. JHAE mode of operation (encryption and authentication), where pad(A) =
m1‖m2‖ . . . ‖ml and pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp

4 J. Alizadeh, M. R. Aref and N. Bagheri

Table 2. Encryption and authentication pseudo code of JHAE

Algorithm1. JHAE − Eπ(K,N,M,A)

Input: Key K of n bits, Nonce N of n bits, Associated data A where pad(A) = m1‖m2‖ . . . ‖ml

and Message M where pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp

Output: Ciphertext C, Tag T
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = π(x′i ‖ xi);
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = π(x′p ‖ xp);
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)

2.2 Decryption and Verification

JHAE decryption-verification procedure, depicted in Table 3, accepts a n-bit key K, a n-bit
nonce N , a ciphertext C, a tag T , an optional AD, A, and decrypts the ciphertext to get
message M and tag T ′. If T ′ = T then it outputs M else it outputs ⊥.

3 Security Proofs

In this section we prove the security of JHAE. First we use game playing framework proposed
by Bellare and Rogaway [3] and obtain an upper bound for the advantage of an adversary
that can distinguish the JHAE from a random oracle (IND-CPA) in the ideal permutation
model. Then we prove that JHAE provides integrity (INT-CTXT) until JH hash mode is
indifferentiable from a random oracle or tag can not guessed. We follow our proofs in two
subsections: privacy and integrity.

3.1 Privacy

In this section, we provide privacy’s security bound for the JHAE based on ideal permutation
π.

Theorem 1. JHAE based on an ideal permutation π : {0, 1}2n → {0, 1}2n, is (tA, σ, ε)-
indistinguishable from an ideal AE based on a random function RO and ideal permutation

π′ with the same domain and range, for any tA then ε ≤ σ(σ − 1)

22n−1
+

σ2

22n
+
σ2

2n
, where σ is

the total number of blocks in queries to JHAE − E, π, and π−1, by A.

JHAE: An Authenticated Encryption Mode Based on JH 5

Table 3. Decryption and verification pseudo code of JHAE

Algorithm2. JHAE −Dπ(K,N,C, T,A)

Input: Key K of n bits, Nonce N of n bits, Associated Data A where pad(A) = m1‖m2‖ . . . ‖ml

, ciphertext C = c1 ‖ c2 ‖ ... ‖ cp and Tag T
Output: Message M or ⊥
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
x′l+1 ‖ x′l+2 ‖ ... ‖ x′l+p = c1 ‖ c2 ‖ ... ‖ cp
for i = 0 to l − 1 do:

y′i ‖ yi = π(x′i ‖ xi);
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
for i = l to p− 1 do:

y′i ‖ yi = π(x′i ‖ xi);
mi+1 = y′i ⊕ x′i+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = π(x′p ‖ xp);
xp+1 = yp ⊕mp

M = ml+1 ‖ ml+2 ‖ ... ‖ mp

T ′ = xp+1 ⊕K
if T ′ = T

Return M
else

Return ⊥

6 J. Alizadeh, M. R. Aref and N. Bagheri

Proof. To the proof the above theorem we use game playing framework based on ten games
G0 to G9 where G0 represents JHAE based on ideal permutation π , JHAE−π, π−1, and G9

represents a random oracle, RO. To determine the adversary’s advantage on distinguishing
JHAE from an ideal AE scheme, we calculate the adversary’s advantage moving from a game
to the next game.

Game G0. This game shows the communication of A with JHAE − π, π−1 (see Table 4).
In this game the permutations π and π−1 are exactly the permutations that are used in the
real JHAE mode. Hence:

Pr[AG0 = 1] = Pr[AJHAE−E = 1]

Game G1. This game is identical to G0 with an exception that the ideal permutation
(π, π−1) is chosen in a “lazy” manner, oracles O2 and O3 respectively (see Table 5). These
oracles perfectly simulate two ideal permutations and since we assumed that π and π−1 in
G0 are ideal permutations then G0 and G1 are identical. Therefore we have:

Pr[AG1 = 1] = Pr[AG0 = 1].

Game G2. We do a PRP-PRF switch [3] in G1 and generate G2 (see Table 6). This means
that the ideal permutations O2 and O3 in G1 are replaced with two random functions in G2.
Therefore only difference between G2 and G1 is oracles O2 and O3 (that in G1 simulate two
ideal permutations but in G2 simulate two random functions). Unlike the ideal permutation
it is possible to find a collision in a random function. Since in G1 we do not have any collision
but in G2 we may have a collision in O2 or O3 the adversary can differentiate G2 from G1.
Hence, we define a collision in G2 as a bad event and denote it by bad0. G2 and G1 are
identical until bad0 occurs. Suppose that the adversary can do at most σ2 and σ3 query to
O2 and O3 respectively and let σ′ = σ2 + σ3. Then:

Pr[AG2 = 1]− Pr[AG1 = 1] = Pr[bad0 ← true] = Pr[Collision in O2 or O3 in G2]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1
.

Game G3. In G3, oracle O1 does not pass any query to the oracle O2 but it exactly simulates
behavior of oracle O2(see G3 Table 7). Thus G3 and G2 are identical from adversary’s view:

Pr[AG3 = 1] = Pr[AG2 = 1].

Game G4. In G4 (see Table 8) we aim to push the behavior of O1 one step towards random
oracle. Hence, we separate queries that are included to O2 by O1 and those that are directly
query by the adversary to O2 or O3. In this game, if an intermediate query generated by
O1, that is expected to be queried to O2, has a record in the part of O2 not included by O1,

JHAE: An Authenticated Encryption Mode Based on JH 7

it considered as a bad event and denoted by bad1. However, the distribution of responses
of queries to O2 and O3 remains identical as G3. Hence, we can state that G3 and G4 are
identical until bad1 occurs in G4. Assuming that the adversary can do at most σ1 query to
O1 and σ′ query to O2 or O3, the adversary’s advantage from G3 to G4 is bounded as follows:

Pr[AG4 = 1]− Pr[AG3 = 1] = Pr[bad1 ← true] ≤ σ′(σ1)

22n
≤ σ2

22n
.

Game G5. In G4 (see Table 9) the responses of O2 or O3 are compatible with responses of
O1. In G5 we aim to push the behavior of O2 and O3 one step towards ideal permutations that
are independent of RO. For this reason, we generate two auxiliary tables to keep the input
and the output of intermediate tentative queries to O2 generated by O1 that are denoted
by W and Y respectively. Since we aim to do not return any record that has been included
to O2 by O1 when adversary directly queries to O2 or O3 ,in this game, if a query to O2

or O3 has a record in W and Y respectively, we considered as a bad event and denote it
by bad2. More precisely, on query to O1, when it generates local tentative fresh query wi to
O2 and generate yi as response, then wi is stored in W and yi is stored in Y . However, the
distribution of responses to queries to O1 remains identical as G4. Hence, we can state that
G4 and G5 are identical until bad2 occurs in G4. To bound the probability of bad2, suppose
that wj is j-th block that is queried to O1 and yj is the response of O1 to the query where
1 ≤ j ≤ σ1 and suppose that vi is i-th query to O2 where 1 ≤ i ≤ σ2 and zk is k-th query to
O3 where 1 ≤ k ≤ σ3. Then:

Pr[bad2 ← true] =

σ2∑
i=1

σ1∑
j=1

Pr[vi = wj] +

σ3∑
k=1

σ1∑
j=1

Pr[zk = yj] 6
σ2σ1
2n

+
σ3σ1
2n

.

It must be noted that in the above calculations we considered the fact that given the
response of a query to O1, the adversary can determine half of the bits of each wj ∈W and
yi ∈ Y . Hence, the adversary’s advantage from G4 to G5 is bounded as follows:

Pr[AG5 = 1]− Pr[AG4 = 1] ≤ σ1 × (σ2 + σ3)

2n
6
σ2

2n
.

Game G6. G6 (see Table 10) is identical as G5 with an exception that O1 does not keeps
the history of intermediate queries. Hence, in the adversary’s view the distribution of the
returned values in G5 and G6 are identical as far as there is not a intermediate collision in
G5. However, the distribution of responses to queries to O2 and O3 remains identical as G5.
Hence, the adversary’s advantage from G5 to G6 is bounded as follows:

Pr[AG6 = 1]− Pr[AG5 = 1] ≤ σ1 × (σ1 − 1)

22n
≤ σ × (σ − 1)

22n
.

Game G7. In Game G7 (see Table 11), the blocks of ciphertext and tag value are generated
randomly. However, it has now impact of the distribution of the returned values to the
adversary. Hence, the distribution of the returned values in G6 and G7 are identical:

Pr[AG7 = 1] = Pr[AG6 = 1].

8 J. Alizadeh, M. R. Aref and N. Bagheri

Game G8. In Game G8 (see Table 12) we do a PRF-PRP switch [3]. This means that
the ideal random functions O2 and O3 in G7 are replaced with a random permutation and
its inverse in G8. Therefore, the only difference between G7 and G8 is oracles O2 and O3.
Thus G5 and G4 are identical until O2 or O3 has a collision in G7. Hence, the adversary’s
advantage from G7 to G8 is bounded as follows:

Pr[AG8 = 1]− Pr[AG7 = 1] = Pr[Collision in O2 or O3 in G4]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1

.

Game G9. In G8 for each message/AD block a random value is selected and similarly a
random value is selected as the tag value. Next these random values are concatenated and
returned to the adversary. However, in G9 (see Table 13) on query to O1, a random string
of the length the desired cipher and tag is selected and returned to the adversary. However,
this modification from G8 to G9 has no impact on the distribution of the returned values to
the adversary. Hence:

Pr[AG9 = 1] = Pr[AG8 = 1].

On the other hand G8 perfectly simulates RO, π, π−1. Then we have:

Pr[ARO,π,π−1
= 1] = Pr[AG9 = 1].

Finally using of fundamental lemma of game playing [3], we can state:

AdvPrivacyJHAE (A) = Pr[AJHAE−E,π,π−1
= 1]− Pr[ARO,π,π−1

= 1]
= Pr[AG0 = 1]− Pr[AG9 = 1]

= (Pr[AG0 = 1]− Pr[AG1 = 1])
+(Pr[AG1 = 1]− Pr[AG2 = 1])
+(Pr[AG2 = 1]− Pr[AG3 = 1])
+(Pr[AG3 = 1]− Pr[AG4 = 1])
+(Pr[AG4 = 1]− Pr[AG5 = 1])
+(Pr[AG5 = 1]− Pr[AG6 = 1])
+(Pr[AG6 = 1]− Pr[AG7 = 1])
+(Pr[AG7 = 1]− Pr[AG8 = 1])
+(Pr[AG8 = 1]− Pr[AG9 = 1])

≤ 0 +
σ(σ − 1)

22n+1
+ 0 +

σ2

22n
+
σ2

2n
+
σ(σ − 1)

22n
+ 0 +

σ(σ − 1)

22n+1
+ 0

≤ σ(σ − 1)

22n−1
+
σ2

22n
+
σ2

2n
.

JHAE: An Authenticated Encryption Mode Based on JH 9

3.2 Integrity

In this section, we prove the integrity of ciphertext (INT-CTXT) of JHAE. The INT-CTXT
security bound of a permutation based AE scheme is defined as the maximum advantage
of any adversary to produce a valid triple (N,A‖C, T) (e.g. a forgery for the AE scheme)
without direct query it to the scheme. To forge an AE scheme, the adversary can query to
AE − E (the encryption and authentication), AE −D (the decryption and verification), π
or π−1. Thus, we can consider two phases for any forgery attempt as follows:

1. Data gathering: the adversary gathers some valid triples such as S = (Ni, (A‖C)i, Ti); 1 ≤ i ≤ q
by at most q queries to AE − E, π or π−1.

2. Execution: the adversary produces a new triple (N,A‖C, T) such that (N,A‖C, T) /∈ S
is accepted by AE −D as a valid triple.

In this section, we show that the advantage of any adversary that makes a reasonable number
of queries to JHAE − E, π, and π−1 is negligible in forgery attack against JHAE.

Theorem 2. For any adversary A that makes in total σ block queries to JHAE−E, π, or
π−1, JHAE based on an ideal permutation π : {0, 1}2n → {0, 1}2n, is (tA, σ, ε)-unforgeable,

for any tA then ε ≤ 3σ2

2n
+

3q

2n
.

Proof. Suppose that A is an adversary that tries to forge JHAE. A should at the first query
to JHAE, q times, and produce a list S = {(Ni, (A‖C)i, Ti); 1 ≤ i ≤ q}. Next, A produces a
new (N,A‖C, T) /∈ S such that JHAE −D(N,A‖C, T) 6=⊥ as its forged triple. All of the
possible cases for the new valid (N,A‖C, T) are as follows (case 001 to case 111).

1. Case 001. Adversary generates a valid (N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C = (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.

2. Case 010. Adversary generates a valid (N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C 6= (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

3. Case 011. Adversary generates a valid (N,A‖C, T) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : A‖C 6= (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q and ∃(Ni, (A‖C)i, Ti) ∈ S : N = Ni, A‖C 6=
(A‖C)i, T 6= Ti.

4. Case 100. Adversary generates a valid (N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

5. Case 101. Adversary generates a valid (N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.

6. Case 110. Adversary generates a valid (N,A‖C, T) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

7. Case 111. Adversary generates a valid (N,A‖C, T) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.

Hence, we can upper bound the adversary’s advantage to forge JHAE as follows:

Pr[AINTJHAE = 1] = Pr[Case 001] + Pr[Case 010] + Pr[Case 011]
+Pr[Case 100] + Pr[Case 101] + Pr[Case 110] + Pr[Case 111].

(1)

10 J. Alizadeh, M. R. Aref and N. Bagheri

To determine an upper bound for this advantage, we categorize the mentioned cases as
three distinct sets as follows and determine the adversary’s advantage to produce a successful
forgery for each set.

Set 1: Set 1 includes any case that could not be used to forge JHAE successfully. More
precisely, any triple that matches to the case 001 can not be used to forge JHAE. The reason
comes from the fact that for JHAE, for a valid triple, if A‖C = (A‖C)i and N = Ni then
T = Ti. Therefore:

Pr[Case 001] = 0.

Set 2: Set 2 includes any case that can be directly used to differentiate JH hash mode from
a random oracle. To determine these cases, we consider JH hash mode in Fig 1. Since T = Ti
(for 1 ≤ i ≤ q) implies (xp+1)i = (xp+1) and (xp+1)i and (xp+1) are hash outputs in JH hash
mode, then the cases 010, 100, and 110 in the forgery attempt of JHAE lead to collisions in
JH hash mode. In other words if the cases 010, 100, and 110 occur in the forgery attempt of
JHAE, one can find a collision in JH hash mode and therefore differentiate the mode from a

random oracle. Since the bound of the indifferentiability of JH has been proved to be
σ2

2n
[11]

then:

Pr[Case 010] = Pr[Case 100] = Pr[Case 110] ≤ σ2

2n
.

Set 3: This set include cases that forces the adversary to guess the tag. More precisely, in the
cases 011, 101 and 111 the adversary finds a new valid (N,A‖C, T) such that ∀(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni or A‖C 6= (A‖C)i. On the other hand, given such a pair of N and A‖C, the
distribution of the valid tag would be uniformly distributed over {0, 1}n. Hence, on each
attempt, the adversary’s advantage to generate a valid tag would be 2−n. So:

Pr[Case 101] = Pr[Case 011] = Pr[Case 111] ≤ q

2n

Finally using Equation 1 we have:

Pr[AINTJHAE = 1] ≤ 3σ2

2n
+

3q

2n

4 Conclusion

In this paper we introduce JHAE, a new dedicated permutation-based AE mode. In the
ideal permutation model, we proved that JHAE provides IND-CPA and INT-CTXT up to
q = O(2n/2). For a future work one can design a new permutation and implement it by
JHAE mode.

JHAE: An Authenticated Encryption Mode Based on JH 11

References

1. E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. APE: Authen-
ticated Permutation-Based Encryption for Lightweight Cryptography. 2014.

2. M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and Analysis of
the Generic Composition Paradigm. J. Cryptology, 21(4):469–491, 2008.

3. M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework for Code-Based Game-
Playing Proofs. In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426.
Springer, 2006.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge Functions. ECRYPT hash workshop,
2007.

5. B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and Q. Wang. FIDES: Lightweight Authenticated
Cipher with Side-Channel Resistance for Constrained Hardware. In CHES, volume 8086 of Lecture Notes
in Computer Science, pages 142–158. Springer, 2013.

6. A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. ALE: AES-based lightweight
authenticated encryption.

7. CAESAR. CAESAR: Competition for Authenticated Encryption: Security, Applicability,and Robustness.
2013.

8. G. Jakimoski and S. Khajuria. ASC-1: An Authenticated Encryption Stream Cipher. In Selected Areas
in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 356–372. Springer, 2012.

9. R. S. Manjunath. Provably secure authenticated encryption modes. Masters Thesis, Indraprastha Insti-
tute of Information Technology, Delhi, 2013.

10. D. A. McGrew and J. Viega. The Security and Performance of the Galois/Counter Mode (GCM) of
Operation. In INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 343–355. Springer,
2004.

11. D. Moody, S. Paul, and D. Smith-Tone. Improved Indifferentiability Security Bound for the JH Mode.
In 3rd SHA-3 Candidate Conference, 2012.

12. P. Rogaway, M. Bellare, and J. Black. OCB: A Block-Cipher Mode of Operation for Efficient Authenti-
cated Encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

13. M. J. O. Saarinen. CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions. In
CT-RSA, volume 8366 of Lecture Notes in Computer Science, pages 251–269. Springer, 2014.

14. D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM). Request for Comments
(RFC), (3610), 2003.

15. H. Wu. The Hash Function JH. Submission to NIST (round 3), 2011.
16. H. Wu and B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In Selected Areas in

Cryptography, 2013.

12 J. Alizadeh, M. R. Aref and N. Bagheri

Table 4. Game G0 perfectly simulates (JHAE − π, π−1)

Game G0

Initialize:
K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
v = π(m)
return v
— on O3-query v—//Inverse Query
m = π−1(v)
return m

JHAE: An Authenticated Encryption Mode Based on JH 13

Table 5. In game G1 the permutations π and π−1 are simulated .

Game G1

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then
v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then
m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m

14 J. Alizadeh, M. R. Aref and N. Bagheri

Table 6. In game G2 the bad event type-0 may occur.

Game G2

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
X = X ∪ (m, v)
return m

JHAE: An Authenticated Encryption Mode Based on JH 15

Table 7. In game G3 oracle O2 in oracle O1 is simulated.

Game G3

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ X then return y′i ‖ yi
else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
X = X ∪ (x′i ‖ xi, y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ X then return y′p ‖ yp
else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

X = X ∪ (x′p ‖ xp, y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
X = X ∪ (m, v)
return m

16 J. Alizadeh, M. R. Aref and N. Bagheri

Table 8. In game G4 bad event type-1 may occur.

Game G4

Initialize:
XO1 = XO2 = ∅ ; X = XO1 ‖ XO2 ; K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ XO1 then return y′i ‖ yi
else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then bad1 ← true

else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
XO1 = XO1 ∪ (x′i ‖ xi, y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ XO1 then return y′p ‖ yp
else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2 then bad1 ← true

else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

XO1 = XO1 ∪ (x′p ‖ xp, y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
XO2 = XO2 ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
XO2 = XO2 ∪ (m, v)
return m

JHAE: An Authenticated Encryption Mode Based on JH 17

Table 9. In G5 , bad event type-2 may occur.

Game G5

Initialize:
XO1 = XO2 = WO1 = WO2 = YO1 = YO2 = ∅ ; X = XO1 ‖ XO2 ; W = WO1 ‖WO2 ; Y = YO1 ‖ YO2 ;
K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ XO1 then return y′i ‖ yi
else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then bad1 ← true

else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
XO1 = XO1 ∪ (x′i ‖ xi, y′i ‖ yi)
WO1 = WO1 ∪ (x′i ‖ xi), YO1 = YO1 ∪ (y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ XO1 then return y′p ‖ yp
else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2 then bad1 ← true

else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

XO1 = XO1 ∪ (x′p ‖ xp, y′p ‖ yp)
WO1 = WO1 ∪ (x′p ‖ xp), YO1 = YO1 ∪ (y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ XO2 then return v
if m ∈WO1 then bad2 ← true
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad1 ← true
XO2 = XO2 ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ XO2 then return m
if v ∈ YO1 then bad2 ← true
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad1 ← true
XO2 = XO2 ∪ (m, v)
return m

18 J. Alizadeh, M. R. Aref and N. Bagheri

Table 10. In game G6 O1 does not keeps the history of intermediate queries.

Game G6

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi ← {0, 1}2n;
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp ← {0, 1}2n;

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
X = X ∪ (m, v)
return m

JHAE: An Authenticated Encryption Mode Based on JH 19

Table 11. In game G7 , blocks of ciphertext and tag value are generated randomly.

Game G7

Initialize:
X = ∅
— on O1-query (N,A,M)—
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 1 to p do:
x′i ←− {0, 1}n

end for
T ←− {0, 1}n
C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
X = X ∪ (m, v)
return m

20 J. Alizadeh, M. R. Aref and N. Bagheri

Table 12. In G8 there is a switch of random permutation to random function.

Game G8

Initialize:
X = ∅
— on O1-query (N,A,M)—
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 1 to p do:
x′i ←− {0, 1}n

end for
T ←− {0, 1}n
C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then
v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then
m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m

JHAE: An Authenticated Encryption Mode Based on JH 21

Table 13. Game G9 perfectly simulates an ideal system.

Game G9

Initialize:
X = ∅
— on O1-query (N,A,M)—
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

C ←− {0, 1}|Pad(M)|

T ←− {0, 1}n
Return (C, T)
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then
v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then
m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m

	JHAE: An Authenticated Encryption Mode Based on JH

