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1 Introduction

This is the official description of Calico, a first-round submission for the CAESAR 

competition.  This document follows the structure guidelines from the CAESAR call for 

submissions (http://competitions.cr.yp.to/caesar-call.html).

Calico is a family of lightweight AEAD algorithms designed for simple and efficient network 

communications.  It is motivated by realtime mobile and desktop applications (e.g.. online 

games, video/audio streaming, multi-user VR).  Calico’s flexibility, simplicity, and small 

software footprint allow it to be easily incorporated into existing systems.

Calico is based on the ChaCha-14 and ChaCha-20 [1], SipHash-2-4 [5], and BLAKE2 [6] 

algorithms, which were in no part designed or influenced by the submitter.  The Calico 

combined construction was designed to enable features that are desirable for many 

applications, and these features are called out throughout this document to motivate the 

construction.

There are three parameter sets (also referred to as “modes”) specified for Calico.  The 

reference mode is mainly of interest in the CAESAR competition and corresponds to the 

reference code provided.  Two additional practical modes are also fully specified: Stream and 

Datagram modes.  These are individually optimized for common usage and are expected to be 

the main practical implementations of the Calico family.

2 Specification

This section provides a complete specification for Calico and its three parameter sets: 

Stream, Datagram, and Reference.

The Reference parameter set should be considered the primary set.  The Datagram 

parameter set is the secondary set, and the Stream parameter set is tertiary.  This 

ordering is motivated by the applicability of each set from general applications to 

specific ones.  The reference parameters are the most general.  The Datagram parameter 

set was designed with full-duplex communications between two parties in mind and is 

http://competitions.cr.yp.to/caesar-call.html
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applicable to applications using UDP sockets.  And the Stream parameter set is also 

designed for full-duplex communications, but with the assumption that the messages are 

transported over a reliable and in-order channel such as TCP sockets.

This document is entirely self-contained and requires no external references to 

implement the described algorithms.

2.1 ChaCha Stream Cipher

The inputs to the ChaCha cipher function are a 32 byte key, an 8 byte public message 

number, and a number of rounds.  Note that encryption and decryption proceeds identically.

2.1.1 Definitions

Word size := 32 bits for each value

⊕ := Logical exclusive OR

+ := 32-bit integer addition

<<<  := Logical left rotate

QUARTERROUND(a, b, c, d) function:

a = a + b ; d = d⊕ a ; d = d <<<16

c = c + d ; b = b⊕ c ; b = b <<<12

a = a + b ; d = d⊕ a ; d = d <<< 8

c = c + d ; b = b⊕ c ; d = d <<<16

DOUBLEROUND(x0 .. x15) function:

QUARTERROUND(x0, x4, x8, x12)

QUARTERROUND(x1, x5, x9, x13)

QUARTERROUND(x2, x6, x10, x14)

QUARTERROUND(x3, x7, x11, x15)

QUARTERROUND(x0, x5, x10, x15)

QUARTERROUND(x1, x6, x11, x12)



3

QUARTERROUND(x2, x7, x8, x13)

QUARTERROUND(x3, x4, x9, x14)

2.1.2 Specification

During ciphering a state of 12 words is maintained.  The lowest 32 bytes of the state are set in 

little-endian byte order to the 32 bytes of the key.  The next 8 bytes are set to zero.  And the 

remaining high 8 bytes are set to the 8 byte public message number in little-endian byte order.

For each block of 64 bytes of plaintext data, variables x0, x1, x2, x3 are set to the constants 

0x61707865, 0x3320646e, 0x79622d32, 0x6b206574.  And x4 through x15 are set to the 12 

state words in the same order.

The DOUBLEROUND function is run for each set of two rounds to perform.  Calico uses 

either 14 or 20 rounds.  Then the original values of x0 … x15 are added to the final values 

produced by executions of DOUBLEROUND.  The resulting values are considered the 

keystream.

The keystream is XORed into the plaintext to produce the ciphertext in little-endian byte 

order, making this a stream cipher:

Ciphertext = Plaintext⊕ Keystream

After each 64 bytes of plaintext, the value x9:x8 is taken as a 64-bit double-word and 

incremented by one, making the keystream different for each set of 64 bytes.  Note that this 

double-word was initially set to zero and increments by one each time.

For the final block of plaintext, unused input words are zeroed, essentially padding the 

message with zeroes up to a multiple of 64 bytes.

2.2 SipHash-2-4 MAC

Calico specifies a slightly modified version of SipHash to support faster message 

authentication.
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The inputs to Calico’s SipHash-2-4 algorithm are a 16 byte Key, a message of variable length, 

and an 8 byte public message number.

2.2.1 Definitions

Word size := 64 bits for each value

⊕ := Logical exclusive OR

+ := 64-bit integer addition

<<<  := Logical left rotate

SIP_HALF_ROUND(a, b, c, d, s, t) function:

a = a + b ; c = c + d

b = (b <<< s)⊕ a

d = (d <<< t)⊕ c

a = a <<< 32

SIP_ROUND(v0, v1, v2, v3) function:

SIP _HALF _ROUND(v0,v1,v2,v3,13,16)

SIP _HALF _ROUND(v2,v1,v0,v3,17,21)

2.2.2 Specification

Two key 64-bit key words, K0 and K1, are constructed from the Key.  K0 is set to the low 8 

bytes in little-endian byte order.  K1 is set to the high 8 bytes in little-endian byte order.

K0 is then XORed with the public message number in little-endian byte order, which is the 

only difference from normal SipHash-2-4.

Four values v0 .. v3 are constructed from K0, K1:

v0 =K0⊕ 0x736f6d6570736575

v1 =K1⊕  0x646f72616e646f6d
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v2 =K0⊕  0x6c7967656e657261

v3 =K1⊕  0x7465646279746573

For each set of 8 bytes of input data, denoted MW, treated as a 64-bit word in little-endian 

byte order the following algorithm executes.

v3 = v3⊕MW

SIP_ROUND(v0, v1, v2, v3)

SIP_ROUND(v0, v1, v2, v3)

v0 = v0⊕MW

For the final partial block, the high 8 bits are set to the low 8 bits of the length, denoted 

LAST, and the rest of the unused bytes are set to zero.  The final rounds are performed on the 

padded buffer.

To produce the tag from the values v0 .. V3 a final mix is performed:

v2 = v2⊕ 0xFF

SIP_ROUND(v0, v1, v2, v3)

SIP_ROUND(v0, v1, v2, v3)

SIP_ROUND(v0, v1, v2, v3)

SIP_ROUND(v0, v1, v2, v3)

Tag = v0⊕ v1⊕ v2⊕ v3

Note that authentication of the MAC tag and generation of the MAC tag are the same 

operation.

2.3 BLAKE2b Hash Function

The BLAKE2b hash function has a lot of features that are mostly unused by Calico.  

BLAKE2b is only used for the Stream/Datagram modes for ratcheting the key.  In this mode 

of operation, the input is a 128 byte block with all but the low 48 bytes set to zero and the 

output is a 64 byte hash of the input.
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2.3.1 Definitions

Word size := 64 bits for each value

⊕ := Logical exclusive OR

+ := 64-bit integer addition

>>>  := Logical right rotate

BLAKE2b CONSTANTS array:

0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,

0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,

0x1f83d9abfb41bd6b, 0x5be0cd19137e2179.

BLAKE2b uses round constants described by the following table:

SIGMA[12][16] = {

{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,

{ 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 } ,

{ 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 } ,

{  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 } ,

{  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 } ,

{  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 } ,

{ 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 } ,

{ 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 } ,

{  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 } ,

{ 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13 , 0 } ,

{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 } ,

{ 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 }

};

G(r, i, a, b, c, d) function:

a = a + b + m[ SIGMA[r][2*i] ]
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d = (d⊕ a)>>>32

c = c + d

b = (b⊕ c)>>>24

a = a + b + m[ SIGMA[r][2*i + 1] ]

d = (d⊕ a)>>>16

c = c + d

b = (b⊕ c)>>>63

ROUND(r) function:

G(r, 0, v[0], v[4], v[8], v[12])

G(r, 1, v[1], v[5], v[9], v[13])

G(r, 2, v[2], v[6], v[10], v[14])

G(r, 3, v[3], v[7], v[11], v[15])

G(r, 4, v[0], v[5], v[10], v[15])

G(r, 5, v[1], v[6], v[11], v[12])

G(r, 6, v[2], v[7], v[8], v[13])

G(r, 7, v[3], v[4], v[9], v[14])

2.3.2 Specification

In this simplified mode of operation, the 48-byte message is padded up to the 128 byte block 

size with zeroes and loaded into 16 words m[0..15] used by the ROUND function.  The 

mixing state v[0..15] is constructed by setting the low 8 words and the high 8 words to the 

CONSTANTS.

v[12] is effectively XORed by 128 (the counter increment).  And v[14] is inverted, as this is 

the last (and only) block.

The BLAKE2b ROUND(r) function is then executed 12 times.  The parameter r is initially 0 

and increments by one each time.
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The output hash is produced by XORing together the CONSTANTS with v[0..7] and v[8..15] 

such that the first hash word is v[0]⊕ v[8]⊕  0x6a09e667f3bcc908.  Each word is stored in 

little-endian byte order to yield a 64 byte hash.

Calico only uses the low 48 bytes of the hash for key ratcheting.

2.4 Reference Mode

This section describes the Reference Mode Calico algorithm, which is intended to be 

submitted as reference code for the CAESAR competition.

2.4.1 Reference Definitions

“Reference Mode” : Refers to the parameter set of Calico used for the CAESAR reference 

implementation.

“MAC Tag” : The authentication tag attached to each message, produced by SipHash-2-4.

“Cipher Key” : Keys the ChaCha-14 algorithm.

“MAC Key” : Keys the SipHash-2-4 algorithm.

2.4.2 Reference Parameters

In Reference mode:

Size Notes

Plaintext 0 .. 263 −1  bytes Authenticated, encrypted

Associated Data 0 .. 263 −1  bytes
Does not include the 

Public Message Number

Secret Message Number 0 bytes Unused

Public Message Number 8 bytes Ideally implicit

MAC tag 8 bytes SipHash-2-4 tag

MAC key 16 bytes SipHash-2-4 key
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Cipher key 32 bytes
ChaCha14 key

2.4.3 Reference Encryption

The reference encryption mode first executes the ChaCha-14 algorithm to produce the 

ciphertext from the 8 byte public message number and plaintext.

It will then XOR the 8 byte public message number into the low 8 little-endian bytes of the 16 

byte MAC key, producing a unique 16 byte MAC key for this message.

The SipHash-2-4 algorithm is used to generate a tag for the ciphertext and associated data.  

The associated data is appended to the ciphertext for this algorithm.  The result is an 8 byte 

MAC tag and the ciphertext.

2.4.4 Reference Decryption

If the public message number attached to the message has already been used or this cannot be 

determined, then the message will be rejected immediately.  Typically a (roughly) 1024-bit 

sliding window is used to check for this with incrementing public message numbers.

It will then XOR the 8 byte public message number into the low 8 little-endian bytes of the 16 

byte MAC key, producing a unique 16 byte MAC key for this message.  The SipHash-2-4 

algorithm is used to generate a tag for the ciphertext and associated data.  The associated data 

is appended to the ciphertext for this algorithm.  The result is an 8 byte MAC tag that is 

verified against the provided MAC tag.  If this check fails, then the message is rejected.

Finally the ChaCha-14 algorithm is used to decrypt the ciphertext and reveal the original 

message plaintext.

2.5 Datagram Mode

This section describes the Datagram Mode Calico algorithm.  This is not implemented in the 

reference version because it requires a different API.  Instead, this mode serves as a practical 
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example of how the Calico construction results in a highly efficient AEAD algorithm.

2.5.1 Datagram Definitions

To ratchet keys, the BLAKE2b[6] hash algorithm is used.  The input to the hash algorithm is 

the previous Cipher and MAC keys, concatenated explicitly so that the low 32 bytes 

correspond to the Cipher key and the high 16 bytes correspond to the MAC key.  The output 

is truncated to 48 bytes, and the low 32 bytes are used as the new Cipher key, and the high 16 

bytes are used as the new MAC key.  This can be done in-place to erase the old Cipher and 

MAC keys, providing forward secrecy.

“Datagram Mode” : Refers to the parameter set of Calico designed for UDP-like data 

transport for full-duplex communication between two parties.

“Master Key” : The pre-shared secret key between all parties in the communication, either 

through online or offline agreement.  It is used during initialization as input to the ChaCha-20 

algorithm to expand into other keys.

“Ratchet bit” : A bit present in the overhead of each encrypted message indicating which key 

was used to encrypt the message.

“MAC Tag” : The authentication tag attached to each message, produced by SipHash-2-4.

“Cipher Key” : A key derived from the Master Key on initialization, used to key the 

ChaCha-14 algorithm.

“MAC Key” : A key derived from the Master Key on initialization, used to key the 

SipHash-2-4 algorithm.

“Role”: A parameter that describes the common role of a participant in the encrypted 

communications.  As Calico supports either full-duplex or multicast communications, there 

are only two roles: Initiator or Responder.  In multicast mode, the Responder is the data 

source and the Initiator is the data sink.
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2.5.2 Datagram Parameters

The parameters listed here include, in addition to traditional variables such as allowed 

plaintext lengths, Calico-specific parameters that are used as inputs for the initialization, 

encryption, and decryption procedures.

In Datagram mode:

Size Notes

Plaintext 0 .. 263 −1  bytes Authenticated, encrypted

Associated Data 0 .. 263 −1  bytes
Does not include the 

Public Message Number

Secret Message Number 0 bytes Unused

Public Message Number 8 bytes Ideally implicit

MAC tag 64 bits SipHash output

Encryption Ratchet bit 1 bit Tracks rekeying

Encryption MAC key 16 bytes Current key

Encryption Cipher key 32 bytes Current key

Decryption Ratchet bit 1 bit Tracks rekeying

Decryption MAC key 0 16 bytes Current/next key

Decryption MAC key 1 16 bytes Current/next key

Decryption Cipher key 0 32 bytes Current/next key

Decryption Cipher key 1 32 bytes Current/next key

Master key 32 bytes ChaCha20 key

Role 1 bit Initiator or responder role

Last Ratchet Time 32 bits

Timestamp in milliseconds 

since the last key ratchet
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2.5.3 Datagram Initialization

The input to initialization for each instance of Calico is explicitly the Role and Master 

Key.  The Role (1 bit) in the communication is either Initiator (0) or Responder (1) and 

will be used to select keys appropriately.  For multicast communication, the data source 

selects the Responder role, and the data sink selects the Initiator role.

The Master Key is used to key a ChaCha-20 instance, which produces 96 bytes of 

keystream.  The Initiator uses the low 32 bytes as the Encryption Cipher key, and it uses 

the next 16 bytes as the Encryption MAC key, and it uses the next 32 bytes as the 

Decryption Cipher key 0, and it uses the high 16 bytes as the Decryption MAC key 0.  

The Responder uses the low 32 bytes as the Decryption Cipher key 0, and it uses the 

next 16 bytes as the Decryption MAC key 0, and it uses the next 32 bytes as the 

Encryption Cipher key, and it uses the high 16 bytes as the Encryption MAC key.

The key ratcheting algorithm, described below, is then run to ratchet the Decryption 

MAC/Cipher keys 0 and store the result in Decryption MAC/Cipher keys 1.  The 

Decryption Ratchet bit is initialized to 0 to indicate that key 0 is active and key 1 is the 

next key.  The Decryption Ratchet bit refers directly to one of these two keys, and after 

ratcheting occurs it will be updated to point to the new current key.

At this point it is recommended to set the outgoing and incoming public message 

number to zero, with the intent of incrementing it by one for each message.

2.5.4 Datagram Encryption

In a multicast setting only the Responder (the data source) is permitted to encrypt data, which 

can simplify implementation.

During encryption, a public message number is selected uniquely for the message.

It is recommended to increment the public message number by one each time, since this 

meets the goal with minimal complexity to guarantee that public message numbers are not 

reused.  In this case, simply checking if the high bit of the next 64-bit public message number 
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is set is enough to determine if encryption can proceed or not.  If the high bit is set than there 

are no unique numbers left to use.  An additional benefit of this incrementing approach is that 

the Public Message Number does not ever need to be explicitly transmitted.  It can be 

implicitly understood from the order in which messages are received in Stream mode.

At this point if the Role is Initiator, the current time and the Last Ratchet Time are compared, 

minding register overflows.  If more than 2 minutes has gone by and the Encryption Ratchet 

Bit matches the Decryption Ratchet Bit, indicating that the Responder is synchronized with 

the current key, then the Encryption Cipher key is ratcheted.  After ratcheting the key as 

described in the definitions section, the Encryption Ratchet bit is flipped to indicate that the 

ratchet occurred.

The 32 byte Encryption Cipher key is used as input to the ChaCha-14 algorithm along with 

the Plaintext data and the 8 byte Public Message Number.  The result is Ciphertext of the 

same length as the Plaintext data.

The SipHash-2-4 algorithm is slightly modified in Calico to support associated data.  Each 

message tag is generated using a unique Message MAC key, which is constructed by XORing 

the Public Message Number in little-endian byte order into the low half of the Encryption 

MAC key.  This guarantees that each Message MAC key is unique for each message.  This 

implicitly authenticates the Public Message Number, as the same Ciphertext sent with two 

message will be overwhelmingly unlikely to have the same tag.  This is efficient because it 

requires only a single XOR operation to implement.

The Message MAC key is used as input to the SipHash-2-4 algorithm along with the 

Ciphertext data, concatenated by the Associated Data such that the Associated Data comes 

second.  The output is the 8 byte message MAC tag.

In Datagram mode, it is recommended to truncate the Public Message Number to 23 bits 

(losing its high bit) so that the Encryption Ratchet Bit can be stored in the low bit.  Note that 

since the Public Message Number is ideally incremented by one each time, it is trivial to write 
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branchless code to reconstruct the full implicit number from its low bits based on the last 

number received.  This trick saves 5 bytes of overhead on each message to encrypt.

The output of the Datagram encryption process is: Message Ciphertext, Message Associated 

Data, Message MAC tag, Message Ratchet Bit, and Public Message Number.  The Public 

Message Number is ideally truncated to 23 bits as recommended above.  As a result the extra 

data added to each encrypted message is just 11 bytes.

2.5.5 Datagram Decryption

Stream mode decryption involves first authenticating the input message received.

If the public message number attached to the message has already been used or this cannot be 

determined, then the message will be rejected immediately.  Typically a (roughly) 1024-bit 

sliding window is used to check for this with incrementing public message numbers.

If the received Message Ratchet Bit differs from the Decryption Ratchet Bit, then the 

ratcheted key is used in place of the current Decryption MAC/Cipher key during decryption.  

In practice this means that the ratchet bit selects which key 0 or 1 to use.  When ratcheting 

happens the bit flips, and the inactive key is the ratcheted version of the key specified by the 

ratchet bit.

The expected Message MAC tag is constructed from the Decryption MAC key as in 

encryption by XORing the low 8 bytes of the Decryption MAC key by the Public Message 

Number in little-endian byte order.  The Ciphertext is appended by the Associated Data and 

then used as input to the SipHash-2-4 to produce an 8 byte tag, which is then truncated as 

before to produce the 63-bit truncated expected MAC tag.  This is checked in constant time to 

verify that the expected tag matches the 63-bit received tag.  If these tags do not match then 

decryption fails out immediately to avoid allowing unauthenticated data from affecting the 

rest of the state.

The Decryption Ratchet Key is set to the Message Ratchet key after authentication.  On the 

Responder, if the Decryption Ratchet Key was flipped then the Responder will ratchet its key 
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and flip its Encryption Ratchet Key, which also serves to acknowledge the Initiator’s ratchet.  

A 1 minute timer is started on the Responder side to ratchet the Decryption Ratchet Key to 

erase the Initiator’s encryption keys, which gives plenty of time in most implementations for 

out-of-order messages from the Initiator to finish arriving, avoiding data loss during rekeying.

At this point it is recommended to update the Public Message Number if it is incrementing by 

one each time, after authentication.

The Decryption Cipher key is then used as input to the ChaCha-14 algorithm along with the 

Ciphertext and Public Message Number.  The output should be the original Plaintext that was 

encrypted.

2.6 Stream Mode

This section describes the Stream Mode Calico algorithm.  This is not implemented in the 

reference version because it requires a different API.  Instead, this mode serves as a practical 

example of how the Calico construction results in a highly efficient AEAD algorithm.

2.6.1 Stream Definitions

“Stream Mode” : Refers to the parameter set of Calico designed for TCP-like data transport.

“Master Key” : The pre-shared secret key between all parties in the communication, either 

through online or offline agreement.  It is used during initialization as input to the ChaCha-20 

algorithm to expand into other keys.

“Ratchet bit” : A bit present in the overhead of each encrypted message indicating which key 

was used to encrypt the message.

“MAC Tag” : The authentication tag attached to each message, produced by SipHash-2-4.

“Cipher Key” : A key derived from the Master Key on initialization, used to key the 

ChaCha-14 algorithm.

“MAC Key” : A key derived from the Master Key on initialization, used to key the 

SipHash-2-4 algorithm.
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“Role”: A parameter that describes the common role of a participant in the encrypted 

communications.  As Calico supports either full-duplex or multicast communications, there 

are only two roles: Initiator or Responder.  In multicast mode, the Responder is the data 

source and the Initiator is the data sink.

2.6.2 Stream Parameters

The parameters listed here include, in addition to traditional variables such as allowed 

plaintext lengths, Calico-specific parameters that are used as inputs for the initialization, 

encryption, and decryption procedures.

The accepted parameter ranges for Stream and Datagram modes are mostly identical, 

excepting that Stream mode MAC tags are one bit shorter.  This matches the security goals of 

Calico.

In Stream mode:

Size Notes

Plaintext 0 .. 263 −1  bytes Authenticated, encrypted

Associated Data 0 .. 263 −1  bytes
Does not include the 

Public Message Number

Secret Message Number 0 bytes Unused

Public Message Number 8 bytes Ideally implicit

Message MAC tag 63 bits Carved by ratchet bit

Message MAC key 16 bytes Unique per-message key

Encryption Ratchet bit 1 bit Triggers rekeying

Encryption MAC key 16 bytes SipHash-2-4 key

Encryption Cipher key 32 bytes ChaCha14 key

Decryption Ratchet bit 1 bit Tracks rekeying

Decryption MAC key 16 bytes SipHash-2-4 key

Decryption Cipher key 32 bytes ChaCha14 key
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Master key 32 bytes ChaCha20 key

Role 1 bit Initiator or responder role

Last Ratchet Time 32 bits

Timestamp in milliseconds 

since the last key ratchet

2.6.3 Stream Initialization

The input to initialization for each instance of Calico is explicitly the Role and Master 

Key.  The Role (1 bit) in the communication is either Initiator (0) or Responder (1) and 

will be used to select keys appropriately.  For multicast communication, the data source 

selects the Responder role, and the data sink selects the Initiator role.

The Master Key is used to key a ChaCha-20 instance, which produces 96 bytes of 

keystream.  The Initiator uses the low 32 bytes as the Encryption Cipher key, and it uses 

the next 16 bytes as the Encryption MAC key, and it uses the next 32 bytes as the 

Decryption Cipher key, and it uses the high 16 bytes as the Decryption MAC key.  The 

Responder uses the low 32 bytes as the Decryption Cipher key, and it uses the next 16 

bytes as the Decryption MAC key, and it uses the next 32 bytes as the Encryption 

Cipher key, and it uses the high 16 bytes as the Encryption MAC key.

Each instance of Calico initializes the Last Ratchet Time to a current timestamp.

At this point it is recommended to set the outgoing and incoming public message 

number to zero, with the intent of incrementing it by one for each message.

2.6.4 Stream Encryption

In a multicast setting only the Responder (the data source) is permitted to encrypt data, which 

can simplify implementation.

During encryption, a public message number is selected uniquely for the message.

It is recommended to increment the public message number by one each time, since this 
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meets the goal with minimal complexity to guarantee that public message numbers are not 

reused.  In this case, simply checking if the high bit of the next 64-bit public message number 

is set is enough to determine if encryption can proceed or not.  If the high bit is set than there 

are no unique numbers left to use.  An additional benefit of this incrementing approach is that 

the Public Message Number does not ever need to be explicitly transmitted.  It can be 

implicitly understood from the order in which messages are received in Stream mode.

At this point if the Role is Initiator, the current time and the Last Ratchet Time are compared, 

minding register overflows.  If more than 2 minutes has gone by and the Encryption Ratchet 

Bit matches the Decryption Ratchet Bit, indicating that the Responder is synchronized with 

the current key, then the Encryption Cipher key is ratcheted.  After ratcheting the key as 

described below, the Encryption Ratchet bit is flipped to indicate that the ratchet occurred.

To ratchet keys, the BLAKE2b[6] hash algorithm is used.  The input to the hash algorithm is 

the previous Cipher and MAC keys, concatenated explicitly so that the low 32 bytes 

correspond to the Cipher key and the high 16 bytes correspond to the MAC key.  The output 

is truncated to 48 bytes, and the low 32 bytes are used as the new Cipher key, and the high 16 

bytes are used as the new MAC key.  This can be done in-place to erase the old Cipher and 

MAC keys, providing forward secrecy.

The 32 byte Encryption Cipher key is used as input to the ChaCha-14 algorithm along with 

the Plaintext data and the 8 byte Public Message Number.  The result is Ciphertext of the 

same length as the Plaintext data.

The SipHash-2-4 algorithm is slightly modified in Calico to support associated data.  Each 

message tag is generated using a unique Message MAC key, which is constructed by XORing 

the Public Message Number in little-endian byte order into the low half of the Encryption 

MAC key.  This guarantees that each Message MAC key is unique for each message.  This 

implicitly authenticates the Public Message Number, as the same Ciphertext sent with two 

message will be overwhelmingly unlikely to have the same tag.  This is efficient because it 
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requires only a single XOR operation to implement.

The Message MAC key is used as input to the SipHash-2-4 algorithm along with the 

Ciphertext data, concatenated by the Associated Data such that the Associated Data comes 

second.  The output is the 8 byte message MAC tag.

In Stream mode, the MAC tag is truncated to 63 bits (losing its high bit) so that the 

Encryption Ratchet Bit can be stored in the low bit.

The output of the Stream encryption process is: Message Ciphertext, Message Associated 

Data, Message MAC tag, and Message Ratchet Bit.  The Public Message Number is ideally 

implicit.  As a result the extra data added to each encrypted message is just 8 bytes.

2.6.5 Stream Decryption

Stream mode decryption involves first authenticating the input message received.

If the received Message Ratchet Bit differs from the Decryption Ratchet Bit, then the 

ratcheted key is used in place of the current Decryption MAC/Cipher key during decryption.

Note that it is recommended but not necessary to pre-calculate the next ratcheted key as is 

done in Datagram mode to avoid allowing an attacker from being able to trigger a full 

BLAKE2b calculation in the decryption code.

The expected Message MAC tag is constructed from the Decryption MAC key as in 

encryption by XORing the low 8 bytes of the Decryption MAC key by the Public Message 

Number in little-endian byte order.  The Ciphertext is appended by the Associated Data and 

then used as input to the SipHash-2-4 to produce an 8 byte tag, which is then truncated as 

before to produce the 63-bit truncated expected MAC tag.  This is checked in constant time to 

verify that the expected tag matches the 63-bit received tag.  If these tags do not match then 

decryption fails out immediately to avoid allowing unauthenticated data from affecting the 

rest of the state.

The Decryption Ratchet Key is set to the Message Ratchet key after authentication.  On the 
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Responder, if the Decryption Ratchet Key was flipped then the Responder will ratchet its key 

and flip its Encryption Ratchet Key, which also serves to acknowledge the Initiator’s ratchet.  

Since message cannot arrive out of order, the Responder will also immediately ratchet the key 

for the Initiator, erasing both local and remote copies of that key.

At this point it is recommended to update the Public Message Number if it is incrementing by 

one each time, after authentication.

The Decryption Cipher key is then used as input to the ChaCha-14 algorithm along with the 

Ciphertext and Public Message Number.  The output should be the original Plaintext that was 

encrypted.

3 Security Goals

3.1 Bits of Security

In terms of bits of security, the following security levels are claimed for attacks with 50% 

probability of success.

Bits of security

Confidentiality for the plaintext 127

Integrity for the plaintext 63*

Integrity for the associated data 63*

Integrity for the public message 

number
63*

Confidentiality for erased, old keys in 

Stream/Datagram modes
127

* Note that Calico Stream mode reduces this to 62 bits of security.
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3.2 Nonce Reuse

Users are required to use the concatenation of the secret message number and the public 

message number as a nonce, i.e., that the cipher may lose all integrity and confidentiality if 

the legitimate key holder uses the same (secret message number,public message number) pair 

to encrypt two different (plaintext,associated data) pairs under the same key.

With different keys, using the a public message number from an earlier key does not lead to a 

compromise.  This assumes that the key is chosen uniformly at random and that it is not 

linearly related to the public message number.

4 Security Analysis

4.1 Security of Primitives

Calico leverages existing security analysis of the primitives used.

The ChaCha cipher has gone through a lot of analysis since it was proposed[1][2][3][4].  In 

[4], a proof for security against differential cryptanalysis was presented up to 15 rounds.  As a 

result Calico uses the 14-round variant.

The SipHash MAC is fairly new but is based on the ChaCha round function and is simple in 

design.  Its security analysis is provided in [5].

The BLAKE2 hash function is also fairly new and is similarly based on the ChaCha round 

function.  Its security analysis is provided in [6].

4.2 Explicit Limitations

Calico Stream/Datagram modes are designed for network communications.  These modes are 

not, for example, designed with virtual file system encryption in mind.  Generalizing to cover 

all possible use cases of encryption may lead to overly complex and inefficient software.



22

The forward secrecy of Calico is only guaranteed for two-way communications between two 

endpoints.  For e.g. Multicast UDP applications, synchronizing rekeying is the responsibility 

of the application.  Multicast rekeying is not covered by this algorithm because it would 

unnecessarily add complexity, as multicast rekeying can be safely implemented outside of the 

Calico algorithm.

Calico does not hide the length of the original encrypted data.  This allows the application 

developer to decide on a trade-off between security and encrypted data size.

Calico encrypts/decrypts plaintext message data from zero to 263 −1  bytes in length.  It 

authenticates associated data from zero to 263 −1  bytes in length, not including the public 

message number.  It refuses to encrypt more than 263 −1 messages.  These practical 

limitations simplify input checking and avoid possible platform-specific software bugs related 

to sign bits.

4.3 Nonce Re-Use

Calico specifies that Public Message Numbers should be unique for each key, which prevents 

attacks caused by nonce re-use.

In the Stream/Datagram modes the IV is XORed into the MAC key, which does not affect the 

likelihood for MAC key collision.  This is because the Public Message Numbers are unique, 

so for a given fixed key all of the resulting keys are unique.

4.4 Encrypt-then-MAC

Calico uses the well-known Encrypt-then-MAC construction to allow the SipHash MAC tag 

to prevent the cipher from being affected by unauthenticated ciphertext.

4.5 Constant-Time Execution

All of the Calico algorithms run in constant-time without key-dependent memory accesses, 

and do not present timing or power analysis (PA) side channels.
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5 Features

The design of Calico is somewhat conservative, reusing existing primitives.  The most 

innovative features of the Calico algorithm are found in how the primitives are used.  Forward 

secrecy is made part of the algorithm design by forcing periodic rekeying in a way that does 

not lose data.  This enables use Calico to be a completely separate choice from the method of 

key agreement.  As a result it is more flexible for incorporation into existing codebases.

Calico also fits the algorithm to the way that the data is transported.  Applications that 

currently use TCP or some other reliable-in-order transport will use the stream-oriented mode, 

called “Stream mode”.  And other applications that currently use UDP or some other 

unreliable/unordered transport will use a datagram-oriented mode, called “Datagram mode”.  

By optimizing for each of these use cases (Stream and Datagram), lower memory usage and 

message size are achieved in each case.  Calico does not require a specific packet format, 

allowing it to be fit to existing applications that have a legacy format.

Over AES-GCM, users of Calico will benefit from much lower packet overhead and much 

higher throughput on mobile devices.  Furthermore the Calico software is much simpler to 

implement and easier to audit.

6 Design Rationale

6.1 Backdoors

It may be possible to hide backdoors in the constants used to initialize each of the ARX 

algorithms used by Calico.  However these constants are well-explained by the designers[1]

[5][6] and are thus unlikely to be maliciously designed.

The designer has not hidden any weaknesses in this cipher.  It is unlikely that the primitives it 

is based on have backdoors, and the submitter is not able to speak on behalf of the designers 

of the primitives used, but it is understood that no backdoor was installed in the design of any 

part of Calico.
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6.2 Parameters

The parameters for Stream and Datagram modes are fundamentally identical to reduce code 

complexity.

The accepted parameter ranges for Stream and Datagram modes are mostly identical, 

excepting that Stream mode MAC tags are one bit shorter, allowing software implementations 

to save one byte of overhead.

Note that the datagram mode, when used for multicast, is unnecessarily transmitting a Ratchet 

bit to all the recipients.  This is an acceptable tradeoff for simplicity because in practice, the 

Ratchet bit can be carved out of the truncated public message number, which does not need 

more than 20 or so bits, so there is no extra overhead for the Ratchet bit in practice even in a 

multicast setting.

6.3 Encrypt-then-MAC

Calico uses the well-known Encrypt-then-MAC construction.  This allows invalid packets to 

be rejected by a receiver more quickly because the decryption algorithm does not need to be 

run.

6.4 SipHash-2-4 Tweak

Calico tweaks the SipHash-2-4 function to incorporate the public message number.  This is an 

optimization that improves the speed of the SipHash function.

7 Intellectual Property and Consent

7.1 Intellectual Property

The submitter hereby declares that Calico will remain patent-free and open-source.

Calico is built on existing, patent-free primitives:

1. ChaCha14, ChaCha20 by Daniel J. Bernstein [1].  The submitter is unaware of any patent 

claims made by the designer.
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2. SipHash-2-4 by Jean-Philippe Aumasson and Daniel J. Bernstein [5].  The submitter is 

unaware of any patent claims made by the designers.

3. BLAKE2 by Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and 

Christian Winnerlein.  Patent-free status is declared explicitly in [6] by the designers.

If any of this information changes, the submitter will promptly (and within at most one 

month) announce these changes on the crypto-competitions mailing list.

7.2 Consent to CAESAR Committee

The submitter hereby consents to all decisions of the CAESAR selection committee regarding 

the selection or non-selection of this submission as a second-round candidate, a third-round 

candidate, a finalist, a member of the final portfolio, or any other designation provided by the 

committee.

The submitter understands that the committee will not comment on the algorithms, except that 

for each selected algorithm the committee will simply cite the previously published analyses 

that led to the selection of the algorithm.

The submitter understands that the selection of some algorithms is not a negative comment 

regarding other algorithms, and that an excellent algorithm might fail to be selected simply 

because not enough analysis was available at the time of the committee decision.  The 

submitter acknowledges that the committee decisions reflect the collective expert judgements 

of the committee members and are not subject to appeal.  The submitter understands that if 

they disagree with published analyses then they are expected to promptly and publicly 

respond to those analyses, not to wait for subsequent committee decisions.

The submitter understands that this statement is required as a condition of consideration of 

this submission by the CAESAR selection committee.

Chris Taylor, MSEE

Mountain View, CA, USA

March 15, 2014
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