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Preface

This is a specification for CBEAMr1, a first round submission to the CAESAR competition.
The document has been written to strictly adhere to the structure suggested in the CAESAR
call for submissions:

http://competitions.cr.yp.to/caesar-call.html

Therefore this particular document may not be easily accessible to someone who is not a
professional cryptographer, even though I try to illuminate key parts with examples.
My two CAESAR submissions, CBEAM and STRIBOB [32], utilize the same BLNK Sponge
padding mechanism, and relevant sections appear almost identical (apart from some very
important parameter selections). CAESAR submission documents need be effectively self-
contained when it comes to specifying the AEAD mode.
However, the sponge permutations themselves have almost nothing in common and are based
on entirely different design paradigms.

• CBEAM is based on rotation-invariant ϕ functions, feeble Boolean one-wayness, and
other novel ideas. CBEAM is completely original work. Its design is geared towards
limited-resource ("lightweight") medium-security applications.

• STRIBOB uses traditional S-Boxes and MDS matrices, and is therefore a close relative of
the AES Block Cipher. STRIBOB gets additional security assurance from its even closer
relationship with the new Russian hash standard, Streebog. The design is geared to-
wards general high-security applications.

Some of the material used in these submissions has recently appeared in technical conferences
or has been submitted to such [29, 30, 31].
This is the version 1.20140315200000 of this document. We urge the reader to check for up-
dates, revisions, and reference data at:

http://www.cbeam.mx

If you find bugs, typos, obvious security blunders, or clever cryptanalytic attacks, I would be
very interested to hear about that. My e-mail address can be found at the front page.

Cheers and have fun,
- Markku, the fjords
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Chapter 1

Specification

1.1 CBEAMr1 Family and Parameters
CBEAM is an algorithm for Authenticated Encryption with Associated Data (AEAD). CBEAM accepts
almost arbitrary ranges for its input parameters; however for CAESAR we propose only one concrete
parameter set "cbeam128r1" as follows:

Secret key size 128 bits CRYPTO_KEYBYTES 16
Secret sequence number Unused (but supported) CRYPTO_NSECBYTES 0
Public sequence number (nonce) 64 bits CRYPTO_NPUBBYTES 8
Authentication tag (message expansion) 64 bits CRYPTO_ABYTES 8

We first give a mathematical description of the cryptographic permutation mx in Section 1.2, together
with some example computations, and then describe its use to implement Authenticated Encryption in
Section 1.3, followed by a trace of full AEAD computation in 1.4.

Note on Conventions
A little-endian convention is used throughout. We use C-style zero-based indexing for arrays and ma-
trices. For transport and storage, and for use by the BLNK mode, the state must be accessible as a byte
sequence as described here. We index the 256-bit state s interchangeably as:

- A 16× 16 - bit matrix s[ 0 · · · 15 ][ 0 · · · 15 ].

- A vector of 16-bit words sw[ 0 · · · 15 ] with sw[ i ] =
∑15

j=0 2
js[ i ][ j ].

- Four quadwords sq[ 0 · · · 3 ] with sq[ i ] =
∑3

j=0 2
16jsw[ 4i+ j ].

- Byte sequence sb[ 0 · · · 31 ] is interpreted as sw[ i ] = sb[ 2i ] + 28sb[ 2i+ 1 ], 0 ≤ i ≤ 15.
Modulo 16 arithmetic in indexing is equivalent to logical masking with 0xF; a mod 16 is always in

the range 0, 1, · · · , 15.
We give a rather sparse logic-base description here. This description is poorly suited for direct soft-

ware implementation. Please see Chapter 4 for implementation notes on a variety of platforms.

1.2 Mixing Function mx
The basic building block of CBEAM is the mx mixing function, which is a bijective transform on a 256-bit
state variable s. Six rounds of mx make up mx6 = π, the core cryptographic permutation of CBEAM.

The mixing function mx is composed of (in order of execution): exclusive-or addition of a round
constant rcr, bit matrix transpose, linear mixing λ, and nonlinear mixing ϕ. For rounds r = 0, 1, . . . 5 we
iterate s = mxr(s) on the state:

mxr(s) = ϕ(λ((s⊕ rcr)T )) = (ϕ ◦ λT )(s⊕ rcr). (1.1)

To evaluate π = mx6 we compute six rounds r = 0 . . . 5 by iterating these three steps:
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1.2.1 Round Constant rcr

Let the individual round bits be r = 4r2 + 2r1 + r0. We have s′[ i ][ j ] = s[ i ][ j ] for all 0 ≤ i, j ≤ 15
except the following:

s′[ 0 ][ 0 ] = s[ 0 ][ 0 ]⊕ (r0 ∧ ¬r1)
s′[ 1 ][ 0 ] = s[ 1 ][ 0 ]⊕ (r0 ∧ r2)

s′[ 3 ][ 0 ] = s[ 3 ][ 0 ]⊕ r0

s′[ 4 ][ 1 ] = s[ 4 ][ 1 ]⊕ r0

s′[ 5 ][ 1 ] = s[ 5 ][ 1 ]⊕ (r0 ∧ ¬r1)
s′[ 6 ][ 1 ] = s[ 6 ][ 1 ]⊕ (r0 ∧ r2)

s′[ 8 ][ 2 ] = s[ 8 ][ 2 ]⊕ (r0 ∧ r1)

s′[ 10 ][ 2 ] = s[ 10 ][ 2 ]⊕ r0

s′[ 11 ][ 2 ] = s[ 11 ][ 2 ]⊕ (r0 ∧ r2)

s′[ 13 ][ 3 ] = s[ 13 ][ 3 ]⊕ r0

s′[ 14 ][ 3 ] = s[ 14 ][ 3 ]⊕ (r0 ∧ r1)

s′[ 15 ][ 3 ] = s[ 15 ][ 3 ]⊕ (r0 ∧ r2).

(1.2)

Finally s← s′. Observe that the round constants are active only on odd rounds (when r0 = 1).

1.2.2 Linear transform λT

Let s′ = λ(sT ) for 0 ≤ i, j ≤ 15:

s′[ i ][ j ] = s[ (j + 4) mod 16 ][ i ]⊕ s[ (j + 8) mod 16 ][ i ]⊕ s[ (j + 12) mod 16 ][ i ]. (1.3)

Finally s← s′. λT transposes the matrix (note swapped i and j) and performs a nibble parity operation.

1.2.3 Nonlinear transform ϕ

We define s′ = ϕ(s) for 0 ≤ i, j ≤ 15 as:

s′[ i ][ j ] = ϕ5

(
s[ i ][ j ], s[ i ][ (j − 1) mod 16 ], s[ i ][ (j − 2) mod 16 ],

s[ i ][ (j − 3) mod 16 ], s[ i ][ (j − 4) mod 16 ]
)
, (1.4)

where ϕ5 is defined the following Algebraic Normal Form (ANF) polynomial in Z2:

ϕ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4. (1.5)

Finally s← s′. The truth table for ϕ5 is given below:

x0 x1 x2 x3 x4 ϕ5

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 1
1 1 0 0 0 1
0 0 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 1
1 1 1 0 0 1
0 0 0 1 0 1
1 0 0 1 0 0
0 1 0 1 0 1
1 1 0 1 0 0
0 0 1 1 0 0
1 0 1 1 0 0
0 1 1 1 0 1
1 1 1 1 0 1

x0 x1 x2 x3 x4 ϕ5

0 0 0 0 1 1
1 0 0 0 1 1
0 1 0 0 1 0
1 1 0 0 1 1
0 0 1 0 1 0
1 0 1 0 1 0
0 1 1 0 1 1
1 1 1 0 1 0
0 0 0 1 1 1
1 0 0 1 1 0
0 1 0 1 1 1
1 1 0 1 1 0
0 0 1 1 1 0
1 0 1 1 1 0
0 1 1 1 1 1
1 1 1 1 1 1

3



1.2.4 Example of π = mx6 Computation
We compute π(V ) = mx6(V ) where V is given by the following byte sequence:
23 01 34 12 45 23 56 34 67 45 89 57 89 67 9A 78 AB 89 BC 9A CD AB DE BC EF CD F0 DE 01 EF 12 F0

Since CBEAM follows the little-endian convention, when loaded up to the internal state V is accessible
as 16- and 64-bit words in the following way:

Vw[ 0 · · · 15 ] = ( 0123 1234 2345 3456 4567 5789 6789 789A 89AB 9ABC ABCD BCDE CDEF DEF0 EF01 F012 )

Vq[ 0 · · · 3 ] = ( 3456234512340123 789A678957894567 BCDEABCD9ABC89AB F012EF01DEF0CDEF )

The corresponding binary matrix and its transpose (recall rc0 = 0, hence no key addition) are:

v[ 0 · · · 15 ][ 0 · · · 15 ] =



1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0
1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0
1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0
1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1
0 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1
1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1
0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1
1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1
0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1



vT =



1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0
0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


vTw = ( 5575 9999 1E1E 1FE0 AA8A 3313 3C1C 3FE0 5575 6666 7878 7F80 AAAA CCCC F0F0 FF00 )

The λ and ϕ transforms complete the first round (note that λ has an exceptionally small effect on this
particular vector with repeated nibbles).

λ(vT ) = ( 7757 9999 1E1E 1FE0 88A8 1131 1E3E 1DC2 7757 6666 7878 7F80 AAAA CCCC F0F0 FF00 )

ϕ(λ(vT )) = ( 88A8 3333 BDBD BFC1 DD5D B87B BF7D A3B5 88A8 CCCC F6F6 FF06 5555 9999 EDED FE0D )

= mx(V ).

For second round the first step is constant addition (since this is an odd round), followed by the same
steps as before. We set s← mx(V ) and update it:

rc1 = ( 0001 0000 0000 0001 0002 0002 0000 0000 0000 0000 0004 0000 0000 0008 0000 0000 )

s← s⊕ rc1 = ( 88A9 3333 BDBD BFC0 DD5F B879 BF7D A3B5 88A8 CCCC F6F2 FF06 5555 9991 EDED FE0D )

s← sT = ( F0F7 0C12 DAD4 C375 34F6 45E7 5678 678D 78DE 8CCA DE5C EB7D BC7E CCEE DE10 EFFD )

s← λ(s) = ( 8780 F3ED 343A 1EA8 DA18 CD6F 9AB4 23C9 B412 AEE8 74F6 1482 5290 CCEE FC32 DCCE )

s← ϕ(s) = ( 6F0D E713 4B47 B151 25BD 929F 2540 7780 4985 511D 818C A135 8426 9911 FB65 3991 )

s = mx2(V ).

Intermediate values for the rest of the rounds and round constants (where nonzero) are:

mx3(V ) = ( E50C EAE4 07F3 B08A 6476 2138 D90D F629 3919 3071 1E59 1458 DEEC 15F3 96DF 1FB2 )

rc3 = ( 0000 0000 0000 0001 0002 0000 0000 0000 0004 0000 0004 0000 0000 0008 0008 0000 )

mx4(V ) = ( 8922 B751 6648 0EED C285 89E5 2DFC DBBF 4310 77FA 3494 7F13 47D9 6DD3 1E59 E502 )

mx5(V ) = ( 2CA0 67B3 4F96 0A46 B209 AC7E 5C64 A125 CF7C B46F EB8A FAED 1130 934D CC02 0D67 )

rc5 = ( 0001 0001 0000 0001 0002 0002 0002 0000 0000 0000 0004 0004 0000 0008 0000 0008 )

mx6(V ) = ( 5432 281E B184 9481 AAF0 C9BE A028 4C79 4B69 53BF 53C0 CFE8 8839 9D2A 89E3 1300 )
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1.3 BLNK Sponge Mode and Padding
BLNK ("Blink") is a general and highly flexible Sponge mode of operation modified from the padding
used in the original BLINKER [29] lightweight protocol.

In this section we describe only how it is used specifically in the CBEAM128r1 Authenticated Encryp-
tion with Associated Data (AEAD) algorithm, ignoring many of its more advanced features.

Sponge functions in BLNK mode are characterized by the parameters permutation size b, rate r, and
capacity c. These quantities are related by b = r + c+ δ, where:

b State size. π has b = 256 bits.

r Data rate or block size. r = 64 bits.

c Capacity, the amount of secret information in the state. c = b− δ bits.

δ Capacity consumed by padding. For CBEAM128r1 we can bound this to δ < 2 bits.

Furthermore, we fix the key size to k = 128 bits and the authentication tag to t = 64 bits. Authentication
tags are contained in a ciphertext block.

1.3.1 BLNK Block Operations
We define four basic sponge operations for data absorption, squeezing, encryption, and decryption. Each
one performs an operation on n bytes in a data domain specified by a single-byte padding argument pad,
invoking the Sponge permutation π a total of max(⌈n/8⌉, 1) times.

The four basic operations are:

put( D[ n ], pad ) Absorb n bytes of data D into the state.

D[ n ]← get( n, pad ) Squeeze out n bytes of data D from the state.

C[ n ]← enc( P [ n ], pad ) Encrypt n bytes of plaintext P to ciphertext C.

P [ n ]← dec( C[ n ], pad ) Decrypt n bytes of data ciphertext C to plaintext C.

In the following generic pseudocode op ∈ {put, get, enc, dec} and V [ 8 ] is the state.

1: i← 0 state index, initialized to first byte
2: for j = 0 to n− 1 do
3: if i = 8 then
4: V [ 8 ]← V [ 8 ]⊕ BLNK_END⊕ pad full block padding with block end marker
5: V ← π(V ) cryptographic permutation
6: i← 0 zero index
7: end if
8: if op = put then
9: V [ i ]← V [ i ]⊕D[ j ] XOR input data to the state

10: else if op = get then
11: D[ j ]← V [ i ] simply save the data
12: else if op = enc then
13: C[ j ]← V [ i ]⊕ P [ j ] encrypt as in a stream cipher
14: V [ i ]← C[ j ] store ciphertext in state
15: else if op = dec then
16: P [ j ]← V [ i ]⊕ C[ j ] decrypt as in a stream cipher
17: V [ i ]← C[ j ] store ciphertext in state
18: end if
19: i← i+ 1 advance block index
20: end for
21: V [ i ]← V [ i ]⊕ BLNK_END end marker (note: i = 8 possible)
22: V [ 8 ]← V [ 8 ]⊕ BLNK_FIN⊕ pad final padding
23: V ← π(V ) final cryptographic permutation
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The byte constants and padding argument pad made up as a combination of some of these byte values:

Flag name Value Padding bit or Domain identifier
BLNK_END 0x01 Padding marker bit
BLNK_FIN 0x02 Data element final block marker bit
BLNK_KEY 0x10 Secret key (in)
BLNK_NPUB 0x20 Public sequence number (in)
BLNK_NSEC 0x30 Secret sequence number (in / out)
BLNK_AAD 0x40 Authenticated Associated Data (in)
BLNK_MSG 0x50 Confidential Message Payload (in/out)
BLNK_MAC 0x60 Message Authentication Code (out)

1.3.2 The CAESAR encrypt() and decrypt() AEAD API
Input and output parameters to the encryption and decryption primitives are given below. Each one
of these is used as a C-style zero-indexed byte vector in the descriptions that follow. Furthermore,
V [ 0 · · · 31 ] is the 32-byte internal state of CBEAM .

K[ 16 ] Secret key of k = 128 bits, or 16 bytes.

N [ 8 ] A 64-bit public sequence number or nonce for the message. Only integrity is protected
for this data and the contents are not part of ciphertext.

A[ a ] Associated Authenticated data, 0 ≤ a bytes. Only integrity is protected for this data and
the contents are not part of ciphertext. If unused, set a = 0.

P [ n ] Plaintext payload, 0 ≤ n bytes. Integrity and confidentiality is protected for this data.

C[ n+ 8 ] Ciphertext, 8 ≤ n+ 8 bytes. Integrity and confidentiality is protected for this data.

Pseudocode for implementing standard AEAD API encryption:

C[ n+ 8 ]← encrypt( K[ 16 ], N [ 8 ], A[ a ] , P [ n ] )

1: V [ 32 ]← ( 0, 0, · · · , 0 ) initialize the state with zeros
2: put(K[ 16 ], BLNK_KEY ) secret key, two π ops
3: put( N [ 8 ], BLNK_NPUB ) public nonce, single π op
4: put( A[ a ], BLNK_AAD ) associated authenticated data
5: C[ 0 · · ·n− 1 ]← enc( P [ n ], BLNK_MSG ) encryption
6: C[ n · · ·n+ 7 ]← get( 8 , BLNK_MAC ) message authentication code
7: return C[ n+ 8 ] authenticated ciphertext

Inverse operation by the recipient:

{ P [ n ] or FAIL } ← decrypt(K[ 16 ], N [ 8 ], A[ a ] , C[ n+ 8 ] )

1: V [ 32 ]← ( 0, 0, · · · , 0 ) initialize the state with zeros
2: put(K[ 16 ], BLNK_KEY ) secret key, two π ops
3: put( N [ 8 ], BLNK_NPUB ) public nonce, single π op
4: put( A[ a ], BLNK_AAD ) associated authenticated data
5: P [ n ]← dec( P [ 0 · · ·n− 1 ], BLNK_MSG ) decryption
6: if C[ n · · ·n+ 7 ] = get( 8 , BLNK_MAC ) then
7: return P [ N ] auth match: C[ n · · ·n+ 7 ] = V [ 0 · · · 7 ]
8: else
9: return FAIL plaintext should be ignored (and cleared)

10: end if

The encryption function always returns the protected ciphertext message. Decryption either returns
the plaintext or FAIL, indicating authentication failure. It is important that the decryption routine always
performs full processing regardless of fail condition in order to minimize the risk of a timing attack. Also
the confidential state can be cleared in order to minimize leakage.
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1.4 Trace of cbeam128r1 Computation
To illustrate the operation with CAESAR parameters, we use following plain ASCII values for input to
encrypt() with n = 18:

K[ 16 ] = "128-Bit Test Key"
N [ 8 ] = "Nonce 64"
A[ 3 ] = "AAD"

P [ 18 ] = "cbeam128r1 payload"

Steps 1-2: Keying. After zeroing V , the first input to π is the first half of the secret key K[ 0 · · · 7 ]:
31 32 38 2D 42 69 74 20 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The state V after mixing the first half of the key is:
2F FF 3C 9F BD D1 74 14 D1 ED B1 A6 8D 38 03 FC D6 A5 35 09 AA 2A BB C9 53 56 49 F4 41 9A C9 22

We XOR in the padded second half of the secret key K[ 8 · · · 15 ]:
54 65 73 74 20 4B 65 79 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The state V after both keying mix π ops is:
31 D1 9A 01 BC 7A BF 32 7D 98 97 3D 96 0F 8F B2 96 9D 2D 16 BF 94 FE 84 DB AE E4 28 C2 D0 68 12

Step 3: Nonce mixing. The nonce N [ 8 ] padded XOR value:
4E 6F 6E 63 65 20 36 34 23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The state V after nonce mixing π is:
C9 78 61 F1 99 FC CF 20 E9 C6 CD 3D 40 54 89 74 0D 59 92 A5 80 7C 49 9E B6 9F 90 AE 06 90 36 03

Step 4: Associated Authenticated Data. Padded AAD A[ 3 ] XOR value.
41 41 44 01 00 00 00 00 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The state V after AAD mixing π is:
78 DB C6 B1 91 05 35 B6 A9 E9 CD 90 0E C6 47 81 C3 B9 71 F1 26 03 A5 23 B8 8A DC 61 F6 49 BB 28

Step 5: Payload Encryption. First 8 bytes of plaintext P [ 0 · · · 7 ] with padding:
63 62 65 61 6D 31 32 38 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Resulting state V after first plaintext block:
02 49 10 6E 88 F4 49 89 90 09 3D 9E E4 DE 22 F5 AF 38 8B C0 78 BF 67 D6 BE 0A DD F3 7C 76 29 B7

Second block of plaintext P [ 8 · · · 15 ] with padding:
72 31 20 70 61 79 6C 6F 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Resulting state V after second plaintext block:
00 4D 52 D1 2E 1F 61 A0 AF E5 B2 80 47 DE F1 C2 05 39 DB 11 71 A1 2E 1D 22 F7 3E 02 23 8E 8C EC

Final block of plaintext P [ 16 · · · 17 ] with padding:
61 64 01 00 00 00 00 00 00 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

State V after encryption process:
07 8D BB 1E 48 0A 20 0E E3 F5 C7 F4 8C E3 89 45 AB 33 DA B8 70 22 DC 68 23 03 C3 1C 36 6E A5 5A

Step 6: Authentication code. Here are the ciphertext bytes C[ 26 ] from Step 5, together with the authen-
tication code, underlined. These 8 bytes correspond to first 8 bytes of the final state above.

1B B9 A3 D0 FC 34 07 8E 70 78 30 1E E9 8D 25 E6 61 29 07 8D BB 1E 48 0A 20 0E

7



Chapter 2

Security Goals

2.1 Specific Goals
With the "cbeam128r1" set of parameters (as specified in Sections 1.1 and 1.3) we have the following
security claims and goals:

Category Effort Attack Goal
Confidentiality for the plaintext. 2127 To recover to the plaintext from cipher-

text or vice versa.
Integrity for the plaintext. 263 To forge plaintext payload.
Integrity for the associated data. 263 To forge Associated Data .
Integrity for the public message number. 263 To forge public message number.

Here we assume that the secret key is entirely unknown to the attacker. The complexities are given
for P = 0.5 success probability. Furthermore we assume that no more than 264 bits of data is processed
under any specific key, sequence number pair. The "unit" for the effort is equivalent to the effort required
to compute the π permutation.

2.2 Nonce Re-Use
CBEAM does not allow re-use of public message numbers under the same key. In other words, users are
required to use the public message number as a nonce. CBEAM may lose all of its security if a legitimate
key holder uses the same sequence number and key to encrypt (and authenticate) two different messages.

2.3 General Goals
Our main security goals are largely compatible with those laid out for Authenticated Encryption [26] and
Duplex Sponges in particular -- proofs in [7, 9] are applicable. For the primitives of Section 1.3.2:

priv The expected effort to distinguish ciphertext C = encrypt(K, N, A, P ) from random is 2k−1 for
random unknown key K and nonrepeating nonce N . Multiple (N, A, P ) may be chosen by the
attacker, up to the data limit.

auth The expected effort to forge a message (N, A, C) that does not result in decrypt(K, N, A, C) =
FAIL authentication failure is 2t−1 for random unknown key K and nonrepeating nonce N . Mul-
tiple (N, A, C) may be chosen by the attacker, up to the data limit.

In general, confidentiality of plaintext will be consistent with key size k and the integrity (authenti-
cation) will be consistent with authentication tag size t if conditions for data limits and nonce re-use are
held. Secret message numbers will have the same confidentiality as other payload, if used. There should
not be any easily exploitable related-key properties.
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Chapter 3

Security Analysis

We show that efficient and secure cryptographic mixing functions can be constructed from low-degree
rotation-invariant ϕ functions rather than conventional S-Boxes. These novel functions have surprising
properties; many exhibit inherent feeble (Boolean circuit) one-wayness and offer speed/area trade-offs
unobtainable with traditional constructs. Recent theoretical results indicate that even if the inverse is
not explicitly computed in an implementation, its degree plays a fundamental role to the security of the
iterated composition [16].

3.1 Rotation-Invariant ϕ Functions
Introduced in Daemen's 1995 PhD Thesis [19], ϕ functions are rotation-invariantn-bit invertible (bijective)
functions. We use a slightly different notation from Daemen who used ϕ to denote non-invertible as well
as invertible rotation-invariant functions.

Definition 1. Let f : {0, 1}n 7→ {0, 1}n be a function from n-bit vectors to n-bit vectors. f is a ϕ function
if it is bijective (uniquely invertible) and rotation-invariant: f(x) = y ⇒ f(x ≪ r) = y ≪ r for all r.

Lemma 1. Any n×n-bit ϕ function f is unambiguously characterized by an n× 1 - bit function f(1) that
satisfies f(1)(x) = f(x) ∧ 1.

Proof. Directly from rotation invariance.

Each output bit of the function may be dependent only on some subset of n input bits. This subset is
not arbitrary; we found that neighboring input bits are more likely to yield invertible functions. In the
present work ϕ5 is a specific 5 × 1 - bit function and ϕ16 is a 16 × 16 - bit function defined by it as per
Lemma 1. We note that each output bit of the inverse function f−1 may be dependent on all input bits
even though this is not the case for f (See Figure 3.1.)

3.1.1 Invertibility
It is easy to see that there are invertible n × n - bit ϕ functions for any n > 1 by considering f(x) =
cx (mod 2n − 1), where gcd(c, 2n − 1) = 1. Rotation invariance: 2n ≡ 1 (mod 2n − 1) and f(2kx) =
2kcx (mod 2n − 1). For invertibility f−1(x) = c−1x (mod 2n − 1).

The inverse function f−1 can also be characterized by an n× 1 - bit function f−1
(1) (Lemma 1) since the

inverse of any ϕ function is clearly also a ϕ function. It may also be the case that f = f−1. Hummingbird-
2ν is an example of a cipher that utilizes two 16-bit ϕ functions which are in fact involutions [28]. The
SIMON family of block ciphers from NSA is an example of a cipher that utilizes a non-surjective rotation-
invariant function f as part of a Feistel construction [2].

It is nontrivial to characterize which one-bit f(1) functions generate invertible f functions apart from
simple properties such as bit balance:

∑2n−1
x=0 f(1)(x) = 2n−1. Good ϕ functions appear to be rather hard

to find -- we resorted to optimized exhaustive tabulation methods to find our implementation-friendly
and ``feebly asymmetric'' ϕ5.
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3.1.2 On Cryptanalysis of ϕ Functions
Algorithms for finding differential [12] and linear [25, 24] cryptanalytic properties of a ϕ function are
relatively fast and straightforward to implement. Thanks to Lemma 1, when determining linear bounds
we may assume that the input mask is a subset of the input bits to its f(1).

For differential cryptanalysis we must consider the convolution of the input differential w.r.t. a single
output bit. Due to rotation we may always by convention set the bit at index 0 in the input differential.

Countermeasures must be taken against rotational cryptanalysis [23] due to inherent rotational in-
variance of ϕ functions. Algebraically these functions have surprising properties. See Section 3.2.4 and
Section 3.3 for tables and conjectures related to ϕ5.

3.2 CBEAM Analysis
Ignoring the round constant, the mx transform may be viewed as a transpose of a matrix followed by 16
parallel, independent invocations of a 16 - bit permutation, (ϕ◦λ)16. We start with the most fundamental
observation:

Theorem 1. The mx transform is bijective (reversible).

Proof. The mx transform is bijective as all of its component functions are individually reversible. It is
trivial to see that the linear transform λ is bijective. Since convolution by a nonlinear Boolean function is
generally not reversible, one may compute the 216 - entry table of ϕ16 to verify that it is surjective.

Figure 3.1: On left, a circuit implementing KECCAK's 5 × 5 - bit χ component, which happens to be a
rotation-invariant ϕ function of degree 2. On right, a circuit implementing its inverse permutation, χ−1,
which has Degree 3 with each output bit dependent on all input bits. Such asymmetric Boolean and
circuit complexity is characteristic of ϕ functions.
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Table 3.1: Probabilities (%) of best differentials for (λ ◦ ϕ)16 with specific input weight (rows) and out-
put weight (columns). The best overall differential and the best differential with output weight 1 are
emphasized in bold.

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 1.07 .513 .635 .562 .385 .330 .140 .137 .064 .021 .003 0 0 0
2 0 4.30 2.15 2.54 2.15 1.37 .592 .443 .284 .256 .116 .098 .037 .027 .006 .006
3 17.2 5.47 5.47 3.91 1.78 .922 .787 .476 .330 .195 .177 .119 .079 .052 .027 .003
4 .009 1.46 3.37 5.15 1.95 1.32 .903 .439 .305 .375 .232 .159 .101 .064 .049 .021
5 .684 2.93 6.74 2.49 2.20 1.76 .885 .635 .446 .363 .266 .192 .140 .085 .064 .021
6 7.03 18.4 5.47 3.91 2.34 1.37 .894 .702 .412 .354 .214 .168 .131 .128 .052 .018
7 .928 2.00 4.17 2.12 3.09 1.64 1.14 .671 .470 .299 .247 .223 .165 .101 .040 .024
8 2.93 3.22 3.22 4.15 3.12 1.95 1.20 .732 .522 .360 .220 .256 .140 .070 .049 .034
9 8.20 4.00 11.1 4.59 3.52 1.95 1.28 .885 .525 .366 .253 .171 .134 .101 .067 .024
10 .598 1.39 1.66 2.73 1.46 2.27 1.44 .781 .586 .323 .220 .208 .131 .153 .043 .021
11 .964 2.44 3.27 2.05 3.96 2.22 1.27 .879 .403 .232 .266 .192 .165 .092 .037 .027
12 .781 5.57 2.83 6.74 2.34 1.86 .696 .439 .290 .296 .198 .171 .128 .058 .040 .031
13 0 .122 .159 .323 .247 .269 .327 .317 .272 .214 .223 .119 .082 .058 .031 .009
14 0 .018 .073 .150 .177 .250 .269 .424 .235 .275 .140 .104 .061 .052 .024 .015
15 0 0 .003 .006 .079 .064 .122 .058 .076 .064 .055 .037 .043 .034 .021 0
16 0 0 0 0 0 .006 .006 .049 .024 .055 .031 .058 .015 .021 0 .012

3.2.1 Rotational and Slide Attacks
The choice of round constants was specially crafted to deter rotational [23] and slide [13, 14] attacks,
while having minimal impact on implementation footprint.

Theorem 2. Without the round constants the mx transform is shift-invariant both horizontally and vertically. Let
s′ = mx(s) and t′ = mx(t). If each element s[ i ][ j ] = t[ (i+4∆i) mod 16 ][ (j+∆j) mod 16 ] for some offsets
∆i and ∆j , then s′[ i ][ j ] = t′[ (i+∆j) mod 16 ][ (j + 4∆i) mod 16 ].

Proof. The theorem follows form shift-invariant properties of all component functions. Note the exchange
of indices 4∆i and ∆j due to transpose.

3.2.2 Selection of ϕ5

We analyzed all 225 = 232 five-input Boolean functions, searching for ones that result in invertible 16-bit ϕ
functions with particularly good properties. Five neighboring bits are used since rotation amounts that
would yield better branching (such as the set {0, 1, 2, 4, 8}) didn't result in any appropriate functions.
Single left rotations are used as it is universally available (16-bit left rotation can be implemented by
adding a number to itself and then adding the carry bit back to the least significant bit of the sum).

There were 260 invertible functions, of which 56 were dependent on all five input bits in nonlinear
fashion. Eight of these exhibited optimal differential and linear properties. However there are three
independent mirror symmetries (inversion of all input and output bits and the order of input bits) and
therefore 23 = 8 equivalent functions. Discounting these symmetries, there is only one optimal function,
ϕ5 (Equation 1.5).

Invertibility ϕ5 of for other word sizes besides n = 16 and the surprising properties of these inverse
functions are analyzed in Section 3.3.

3.2.3 Differential and Linear Cryptanalysis
Sponge functions can be attacked with DC [12] and LC [25, 24] even though reasonable attack models
are radically different from block ciphers.

Because of λ, changing one bit of the input will spread the difference to at least three bit positions
outside the first quadword which can be modified by the attacker. After four of six mx iterations, there
is no easily detectable bias regardless of input difference, which we feel is an appropriate security mar-
gin. See Table 3.3 for an illustration of progress of differentials in the state during forward and reverse
iterations.
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Table 3.2: Absolute biases (%) of best linear approximations for (λ◦ϕ)16 with specific input mask weight
(rows) and output weight (columns). The best approximation is emphasized in bold.

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 6.25 3.71 4.69 3.12 2.73 1.56 1.17 .586 .439 0 0 0 0 0
2 0 12.5 7.03 9.38 6.25 4.88 3.71 2.93 3.32 1.86 1.27 1.27 .684 .391 0 0
3 25.0 12.5 9.38 6.25 5.08 4.49 4.59 3.71 2.73 1.95 1.66 1.42 1.37 .830 .684 0
4 0 7.03 9.38 7.81 7.81 7.03 3.91 3.81 3.03 2.88 4.39 6.15 3.37 2.73 1.27 2.15
5 6.25 12.5 9.38 8.59 9.38 5.86 5.08 3.91 5.27 6.05 6.84 3.47 2.64 2.49 1.95 1.07
6 18.8 18.8 15.6 10.9 7.03 5.47 5.27 6.45 6.25 8.01 4.83 3.32 2.15 1.95 1.46 1.17
7 0 7.81 10.9 12.5 7.81 6.64 7.42 8.40 8.40 4.59 3.91 4.15 4.74 2.78 3.42 1.27
8 6.25 15.6 14.1 9.38 10.2 8.59 8.59 9.77 6.45 4.79 4.83 3.96 3.76 3.76 2.25 .977
9 18.8 18.8 15.6 10.9 8.59 10.5 10.9 6.25 4.69 3.96 4.39 3.56 2.88 2.15 1.95 .879
10 0 7.03 7.81 9.38 9.38 14.1 8.59 5.08 4.49 4.54 3.61 3.96 3.76 4.98 2.83 2.25
11 6.25 7.81 7.81 10.9 15.6 7.81 6.25 4.59 3.61 3.32 4.20 4.88 3.08 2.98 1.86 1.17
12 6.25 9.38 14.1 17.2 9.38 6.25 3.91 3.32 3.37 3.32 3.66 4.20 2.98 2.59 1.46 1.56
13 0 0 1.95 2.93 2.93 2.93 3.71 2.88 3.27 4.20 3.52 2.78 3.27 3.52 5.08 .586
14 0 0 .391 .684 1.90 2.05 2.44 2.29 2.93 2.98 2.59 2.98 2.69 2.78 1.46 .977
15 0 0 0 .684 .635 1.22 1.66 1.76 1.81 1.76 2.05 1.86 2.29 1.17 .684 0
16 0 0 0 0 0 0 0 .488 .537 .684 .977 1.37 1.32 2.78 1.17 9.38

For this analysis we view (ϕ ◦ λ)16 row operation as a 16× 16 - bit ``S-Box''. The highest-probability
differential is 0CCC → 8001 and its rotational equivalents. The probability of this differential is 12032

216 ≈
0.1836. From Table 3.1 we observe that a 1-bit input difference never yields a 1-bit output difference
(branch number is greater than 2).

The best linear approximation for (ϕ ◦λ)16 is 0888→ 0001 and its rotational equivalents, which have
a bias of 16384

216 = 1
4 . The other best approximations are given in Table 3.2. Significantly, all single bit

approximations have 0 linear bias, as do 2-to-1 and 1-to-2 - bit approximations.

3.2.4 Algebraic Properties and One-Wayness
From its definition in Equation 1.5 one easily see that the degree of ϕ5 is 4 (and ANF weight 13), and that
is also the algebraic degree of ϕ state transform mx (see Equation 1.4).

The mx function has been designed to have a significant amount of algebraic ``one-wayness'' in the
sense discussed by Hiltgen [21]. The following somewhat surprising observation can be verified by ex-
amining the inverse of ϕ16:

Observation 1. The algebraic degree of the ϕ−1
16 inverse function is 11. The weight (number of nonzero terms) of

the ANF polynomial for each output bit of ϕ−1
16 is 13465.

For a characterization of the Algebraic properties of the inverse of ϕ−1
n for n other than 16, we refer

to Section 3.3, where more general tables and conjectures are presented.
The algebraic degree of mxn is bound by 4n. We have verified that the output after six invocations

actually has a degree up to 256. If state bits are observed as a function of sq[ 0 ], the number of terms
of each degree are distributed in a way that indicates that CBEAM is not vulnerable to d-monomial
distinguishers [27] or other traditional algebraic attacks.

Research by Boura and Canteaut on the algebraic degree of iterated permutations seen as multivariate
polynomials shows that the degree depends on the algebraic degree of the inverse of the permutation
which is iterated [16]. This indicates exceptional algebraic security for our proposal.
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Table 3.3: Progression of differentials in consecutive invocations of mx. Here the zeroth bit has been
flipped; ∆ = 0255 || 1. Particular bit selection does not significantly alter outcome (as these are rotation-
invariant functions). We observe that the full state is affected and there is no detectable bias after mx4.
The π transform has six rounds by default.

mx(x)⊕ mx(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 38 50 63 50 37 50 62 50 37 50 63 38 00 00 00 25
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

mx2(x)⊕ mx2(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 09 12 16 12 09 12 16 12 09 12 16 09 00 00 00 06
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
05 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
06 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
07 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
08 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
09 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
10 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
11 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
12 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
13 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
14 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
15 14 19 24 19 14 19 23 19 14 19 23 14 00 00 00 09

mx3(x)⊕ mx3(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 33 34 33 32 33 34 33 32 33 36 36 37 38 39 36 32
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
05 47 48 47 45 47 49 47 45 46 48 48 47 49 49 48 45
06 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
07 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
08 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
09 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
10 44 46 45 43 44 46 45 42 44 46 46 46 47 48 46 43
11 40 42 41 39 40 42 41 39 40 42 43 42 44 45 43 39
12 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
13 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
14 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
15 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
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mx4(x)⊕ mx4(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49 49
01 49 49 50 49 49 50 50 49 49 50 50 50 50 50 50 49
02 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
03 50 50 50 50 50 50 50 49 50 50 50 50 50 50 50 50
04 49 50 50 49 49 50 50 49 49 50 50 50 50 50 50 49
05 49 49 50 49 49 49 50 49 49 49 50 50 50 50 50 49
06 49 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
07 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49
08 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
09 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
10 50 50 50 49 49 50 50 49 50 50 50 50 50 50 50 49
11 49 49 49 49 49 49 50 49 49 49 50 50 50 50 50 49
12 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
13 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
14 50 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
15 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49

Table 3.4: Progression of differentials in consecutive invocations of inverse function mx−1. Here again
the zeroth bit is flipped. There is no detectable bias after third round.

mx−1(x)⊕ mx−1(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
01 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
02 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
03 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
04 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
05 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
06 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
07 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
08 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
09 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
10 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
11 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
12 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
13 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
14 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
15 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50

mx−2(x)⊕ mx−2(x⊕∆)
# 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 20 25 19 25 34 34 24 25 24 25 25 25 25 25 25 25
01 24 21 22 20 20 20 20 21 20 21 21 20 21 21 21 21
02 23 21 21 21 21 21 20 21 20 21 21 21 21 21 21 22
03 39 39 39 39 40 40 39 39 39 39 39 39 39 39 39 39
04 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
05 49 50 50 50 49 49 50 50 50 50 50 50 50 50 50 50
06 46 47 47 48 49 49 48 47 48 47 47 48 47 47 47 47
07 49 48 47 47 47 47 46 47 46 48 48 47 48 48 48 49
08 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
09 49 50 50 50 47 47 49 50 49 50 50 50 50 50 50 50
10 44 46 44 47 51 51 47 46 47 46 46 47 46 46 46 46
11 50 47 48 47 47 47 46 47 46 47 47 47 47 47 48 48
12 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
13 49 49 49 49 47 47 49 49 49 49 49 49 49 49 49 50
14 41 45 42 45 50 50 46 45 46 45 45 45 45 45 45 45
15 47 38 40 36 38 38 35 37 34 38 37 36 39 38 39 40
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3.3 Tables and Conjectures on Algebraic Properties of ϕ−1n

The ϕ5 (Equation 1.5) Boolean mapping also defines reversible n × n - bit shift-invariant functions for other n apart from n = 16 via Definition 1. Each
forward function has degree 4 as is evident from the function itself.

The characteristics of the Algebraic Normal Form of inverse functions up to n = 29 are given below (we have computed them up to n = 32). Each
column contains the number of monomials of given degree in each output bit.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6 Nonsurjective.
7 4 11 17 15 6
8 3 9 13 13 9 2
9 Nonsurjective.
10 5 21 55 91 95 56 14
11 4 18 45 75 88 69 28 4
12 Nonsurjective.
13 6 34 125 303 502 565 408 168 30
14 5 30 106 253 433 543 471 252 72 8
15 Nonsurjective.
16 7 50 236 753 1705 2797 3293 2686 1430 446 62
17 6 45 205 640 1456 2504 3236 3017 1912 766 172 16
18 Nonsurjective.
19 8 69 397 1570 4506 9678 15684 19001 16832 10532 4402 1104 126
20 7 63 351 1356 3866 8472 14450 18965 18645 13266 6554 2114 396 32
21 Nonsurjective.
22 9 91 617 2910 10112 26816 55170 88281 109077 102570 71834 36250 12464 2618 254
23 8 84 553 2548 8750 23352 49428 83181 110136 112723 87302 49868 20260 5510 892 64
24 Nonsurjective.
25 10 116 905 4956 20216 63770 158824 315095 498190 624397 614364 467824 269904 114084 33356 6036 510
26 9 108 820 4390 17654 55622 140638 288151 477827 636095 671875 555352 353222 168890 58546 13834 1980 128
27 Nonsurjective.
28 11 144 1270 7918 37078 135562 396082 936523 1801051 2816653 3568633 3638674 2956588 1887016 925480 336844 85766 13646 1022
29 10 135 1161 7083 32664 118764 349392 843177 1676448 2740338 3661044 3966297 3452310 2386518 1289610 532002 161404 33822 4348 256

We offer the following two conjectures:
Conjecture 1. The inverse of ϕn is defined for each n ≥ 5 with n ̸= 0 (mod 3) and degϕ−1

n =
⌈
2
3n

⌉
.

Conjecture 2. Computation of ϕ−1
n has at least polynomial complexity (with degree ≥ 2).

The computation of ϕn has linear complexity O(n) but the complexity of ϕ−1
n is at least O(n2) since the number of input bits grows with n as per

observation in Conjecture 1. Therefore these functions really appear to be "one-way".
Even super-polynomial complexity has not been ruled out as we do not know a polynomial time algorithm for ϕ−1

n . The progression of the total number
of nonzero monomials in the polynomials is captured in the two vectors

v = (53, 337, 2141, 13465, 83909, 519073, 3192557, 19545961, 119228885) (3.1)
w = (49, 331, 2173, 13975, 88537, 554659, 3445141, 21256783, 130470385) (3.2)

Where vi corresponds to n = 3i+4 and wi to n = 3i+5. These sequences are clearly exponential and correspond to≈ 1.8n. Based on current evidence we
are reluctant to believe in exponential evaluation complexity, however.
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3.4 Sponge Functions
Sponge constructions generally consist of a state S = (Sr || Sc) which has b = r + c bits and a b-bit
keyless cryptographic permutation π. The Sr component of the state has r "rate" bits which interact with
the input and the internal Sc component has c private "capacity" bits. Our selection for these parameters
is given in Section 1.3.

These components, together with suitable padding and operating rules can be used to build provable
Sponge-based hashes [4], Tree Hashes [10], Message Authentication Codes (MACs) [8], Authenticated
Encryption (AE) algorithms [7], and pseudorandom extractors (PRFs and PRNGs) [5].

3.4.1 Absorbing and Squeezing
We recall the basic Sponge hash [4] concepts of "absorbing" and "squeezing" which intuitively correspond
to insertion and extraction of data to or from the sponge. Let Si and Si+1 be b-bit input and output states.
For absorption of padded data blocks Mi (of r bits each) we iterate:

Si+1 = π( Sr
i ⊕Mi || Sc

i ). (3.3)

This stage is followed by squeezing out the hash H = H(M) by consecutive iterations of:

H = H || Sr
i

Si+1 = π(Si). (3.4)

These constructions may be transformed into a keyed MAC by considering the state Si as secret
(keyed) [8]. Keying is then equivalent to initial absorption of keying material before the payload data.
MAC is squeezed out exactly like a hash.

3.4.2 Duplexing
A further development was the Duplex construction [7] which allows us to encrypt and decrypt data
while also producing a MAC in the end with a single pass.

The state is first initialized by inserting secret keying material and non-secret randomization data
to the state via the absorption mechanism of Equation 3.3. To encrypt plaintext blocks Pi to ciphertext
blocks Ci we iterate:

Ci = Sr
i ⊕ Pi

Si+1 = π(Ci || Sc
i ). (3.5)

The effect on the state is the same as that of Equation 3.3. The inverse -- decryption operation -- is almost
equivalent to encryption, which in itself has significant implementation advantages:

Pi = Sr
i ⊕ Ci

Si+1 = π(Ci || Sc
i ). (3.6)

After encryption or decryption, a message authentication code for the message may be squeezed out
as in Equation 3.4 and verified. To simplify exposition, we have left some key details regarding padding.
We will come back to these in Section 3.4.4. Figure 3.2 shows operation of a generic Sponge-based AEAD.

3.4.3 MAC-and-Continue
There is really no need to constrain the iteration to a single message. With appropriate domain-separating
padding the security proofs allow the sponge states to be used for any number of consecutive authenti-
cated messages ("MAC-and-Continue") without the need for sequence numbers, and re-keying. This is
one of the main observations which led to the present work and greatly reduces the latency of implemen-
tation as "initialization rounds" are not required for each message. This was also proposed as part of the
original SW construction. However, we are not using this capability as a part of the CAESAR
proposal.
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3.4.4 Duplex, Triplex, Multiplex
The SW [7] and D [9] padding rules offer concrete Sponge-based methods for per-
forming authenticated encryption. Recent work on implementation of SW and its variants on
low-resource platforms is reported in [36].

The requirements laid out in [7] for the padding rule are that they are reversible, non-empty and that
the last block is non-zero. The padding rule in K is that a single 1 bit is added after the last bit of
the message and also at the end of the input block.

In the Duplex construction of SW additional padding is included for each input block; a
secondary information bit called frame bit is used for domain separation. S [10] uses additional
frame bits to facilitate tree hashing. It is essential that the various bits of information such as the key,
authenticated data, and authenticated ciphertext can be exactly "decoded" from the Sponge input to
avoid trivial padding collisions. We use a more explicit padding mechanism but the following priv and
auth bounds proven in [7] (Section 5.2 on Page 332) and [8] also hold for enc():

Theorem 3 (Theorem 1 from [7]). The SW and BLINKER authenticated encryption modes satisfy the
following privacy and authentication security bounds:

Advpriv
enc (A) < q2−k +

N(N + 1)

2c+1
(3.7)

Advauth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(3.8)

against any single adversary A if K $← {0, 1}k, tags of l ≥ t bits are used, π is a randomly chosen permutation, q
is the number of queries and N is the number of times π is called.

Note that even the Squeezing phase can utilize padding to mark the size of desired output (as we do
in Section 1.3). In K and SW a convention has been adopted to have a null Sr input to
π during squeezing in order to separate it from other phases (hence the requirement that padding rule
does not produce null blocks). However this may lead to problems in some applications where the MAC
length is not clear.

Current variants of Blinker utilize padding on MAC output, but this is not detectable on output unless
MAC-and-Continue is used 3.4.3.

3.4.5 Multiplexing the Sponge
We term our multi-purpose padding as "Multiplex padding". There are more than two different data
domains (as in Duplex padding). Input and output blocks, encrypted and authenticated data, keys, and
nonces are all different data domains and are encoded unambiguously as Sponge inputs.

Rather than using frame bits per block for domain separation as in SW, the data domains are
explicitly encoded. This allows many more data types to be entered into the sponge as well and clearer
domain separation between them. In a shared-state two-party half-duplex protocol that the originating

π π π π π π π

r

c

IV

d0 d··· p1 c1 p··· c··· h0 h···p0 c0

squeezing phaseencryption phaseabsorbtion phase

Figure 3.2: A simplified view of a Sponge-based AEAD. First the padded Secret Key, Nonce, and Asso-
ciated Authenticated Data - all represented by du words - are "absorbed" or mixed into the Sponge state.
The π permutation is then used to also encrypt data pi into ciphertext ci (or vice versa) and finally to
"squeeze" out a Message Authentication Code hi.
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party of the block (Alice or Bob) is also used to mark domain separation between the two [29], but this
feature is not used in this proposal.

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc′) with c′ = c−d. The iteration
for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π( Sr
i ⊕Mi || Sd

i ⊕Di || Sc′

i ). (3.9)

For decryption we have the following update function:

Si+1 = π( Ci || Sd
i ⊕Di || Sc′

i ). (3.10)

In our implementation d = 8 bits. Section 1.3.1 gives a description of padding mask byte bits (which
may be OR'ed together). Message blocks are always padded with a single "1" bit and by zeros to fill r
bits, followed by the multiplex padding byte. If full r bits are used in a block, the padding bit is the bit 0
in the multiplex word.

3.4.6 Domain Separation and Capacity Reduction
The domain indicator word is XORed with the capacity bits on all operations (Equations 3.9 and 3.10).
We do this in order to remove the requirement for additional message padding buffers (caused by frame
bits) and also to follow Horton's Principle [20, 34], "Authenticate what is being meant, not what is being said."

In CAESAR AEAD mode the different data domains follow each other in specific predetermined
order (Section 1.3.2) and hence only two bits of entropy is sufficient to encode the final bit and separation
between block and domain types. Therefore the effective c for values bounds of Theorem 3 need to
be modified only by two bits when multiplex padding is used. We estimate the effective information
theoretic capacity is reduced by the Multiplex construction to no less than c− 2 rather than c′ = c− d.

The separation of the domain mask word from main "rate" input allows later expansions of functional-
ity without breaking interface designs; for example we may adopt tree-based hashing - and by extension,
tree MACs and encryption - by utilizing additional bits of Di for this purpose rather than adding more
frame bits as in S [10]. If tree structure is used, the capacity should be reduced to c− 3 or c− 4 for
security analysis. Adding further options or even increasing d > 8 for some applications will not break
compatibility with existing implementations if these features are not used.

Since the protocol exchange can be unambiguously decoded from the sponge input and we do not
reset the state between messages, the proofs of Theorem 3 [7, 8] apply to the protocol as a whole as well
as individual messages. If one can forge an individual message authentication code or (by induction) a
multi-message exchange, one can also break the Sponge in a SHA-3 - type hash construction.
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Chapter 4

Features

4.1 Advantages over AES-GCM
CBEAM has been designed for resource-limited platforms. We expect serialized hardware implemen-
tations to have truly exceptionally small footprint in the range of only few hundred gate equivalents,
excluding the state memory (which can be shared with other functionality such as protocol implemen-
tation). The reasons should be evident when examining the specification in Section 1.2.

We show in Section 4.5 that on a standard 16-bit MSP430 ultra-lightweight sensor platform CBEAM
throughput is better to that of best hand-optimized AES-128 implementations, with implementation foot-
print of less than 10%. If we factor in the added complexity of running GCM on such a platform, CBEAM
is signficantly faster.

However, unlike many other "lightweight" ciphers such as PRESENT [15] or KATAN [17], CBEAM
scales very well with higher-end systems. We show in Section 4.6 how CBEAM reaches superior perfor-
mance to AES on the Haswell architecture (when AES-specific assembler instructions are not used).

CBEAM also has a wider application base compared to many other lightweight cryptographic algo-
rithms. Even full communications security suites can be implemented [29]. To summarize:

• Originality. CBEAM is a radically different type of novel design. The types of attacks that can be
devised against AES-GCM are very unlikely to be applicable to CBEAM.

• Lightweight applications. CBEAM is very well suited for lightweight platforms, providing en-
cryption, authentication, hashing, random number generation in only few hundred bytes or gates.

• Scalability. CBEAM scales very well with hardware, all the way to the latest 256-bit architectures.

Additionally we feel that CBEAM opens many interesting avenues for future exploration and theo-
retical research, especially considering the "one-wayness" conjectures given in Section 3.3.

4.2 Implementation Flexibility
One the most useful features of ϕ functions is its extreme flexibility with the amount of implementation
trade-offs allowed. Computation of an n×n - bit ϕ function can take anywhere from 1 (fully unrolled) to
c× n cycles (serial implementation -- here c is some constant), depending on target hardware platform.
This is illustrated in Figure 4.1.

On software platform, ϕ functions allow efficient implementation of large "S-boxes" via a Boolean
sequence programming technique resembling bit-slicing [11]. Finding a good bit-slicing Boolean de-
scription for an n× 1 - bit function is much easier than for a generic n× n - bit S-Box. Such straight-line
code is resistant to cache-based side-channel timing attacks such as those reported against AES [1, 3, 35].

CBEAM is highly flexible when it comes to implementation platforms. A standard C implementation
may compute four rows in parallel using 64-bit data types whereas specific implementation strategies
exist that fully utilize architectures from 16-bit to 256-bit word size. In hardware implementations, an
invocation of the mxn transform can take anywhere between 1 and several thousand clock cycles, de-
pending on the number of gates, peak energy and amount of surface area available.
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Figure 4.1: Example of a 16× 16 - bit function ϕ16 based on a 5× 1 - bit Boolean function ϕ5. We observe
16, 8, and 1 cycle implementations of the same function. Note that the last example is similar to a 16-bit
"bit slicing" software implementation using rotated words (of course ϕ5 requires more than one cycle in
software). With larger word sizes even higher levels of parallelism can be achieved.

4.3 Hardware Implementations
Figure 4.2 shows a simplified interface for a module that implements CBEAM in hardware. The mode of
operation is determined by the domain separation padding word PADDING IN (as specified in Section
1.3.1) together with the SEND / RECEIVE signal that distinguishes between encryption and decryption,
MAC generation and verification.

In a hardware implementation the secret "capacity" state bits never have to leave (or cannot leave) a
specific hardware component, making the design attractive in HSM and smart card applications. Such
separation is very difficult (and costly) to achieve with SSL and other legacy protocols which generally
require CPU/MCU interaction to create encryption and authentication keys from session secrets. Note
that this feature is not available in all sponge constructions.
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Figure 4.2: A simplified interface architecture for a semi-autonomous hardware component implement-
ing CBEAM. The mode BLNK allows allows all c "capacity" bits to be protected inside HSM.

4.3.1 Block Implementation
This is a 1 - cycle implementation of the mx function (with e.g. 256 parallel ϕ5 circuits). Depending on
target platform and area, timing constraints, it is possible to implement more than one round of mx2 in
a single cycle. The interface is similar to that given in Figure 4.2. Pipelined operation using S-like
[10] hopping hash trees can also be considered with this mx core.

4.3.2 Serial Implementation
The Serial implementation assumes external 256-bit memory for the state and operates on that state
one bit at a time. The implementation sacrifices a lot of clock cycles for reduction of gates and area.
The implementation requires only 16 internal register bits in addition to address/clock counters. The
implementation with a 1-bit data bus requires 256 read cycles and 256 write cycles for each  iteration,
3072 clocks in total for full π = mx6. We estimate that the implementation footprint is only about 300
GE without the 256-bit external state memory. Note that this state memory is to be shared with other
components such as IO hardware.

4.4 Implementing CBEAM in Software Without Matrix Transpose
In Software, an optimized bit-slicing method for ϕ5 is used. The ANSI C reference implementation
ref/mx6-gcc.c implements ϕ5 as a macro as follows:

#define CBEAM_PHI5(x0, x1, x2, x3, x4) \
((~(x0 & ((~x3 & x4) ^ (~x2 & x3))) & \
(x1 | (~x2 & x3))) ^ (~x2 & (~x3 & x4)))

Here we put our faith to the compiler optimizer for common subexpression elimination of (~x2 & x3)
and (~x3 & x4), which both appear twice. One can assign these to temporary variables if necessary.
We have exhaustively verified that ϕ5 cannot be implemented with less than eight logical instructions.
Note that (~x & y) is a single op since it corresponds to the ANDN machine instruction (equivalent
instruction is available at least in Intel, Power, ARM, Alpha SIMD architectures).

Since transposing a binary matrix is generally slow in software, one would typically want to combine
two mx operations into a double-round with separate ``vertical'' and ``horizontal'' parts.

Figure 4.3 shows how the state fits into the register sets of various CPU architectures. Here's our data
type definition which makes data accessible in various ways:

// 256-bit state
typedef union w256 {

uint8_t b[32]; // bytes (octets)
uint16_t w[16]; // words (16-bit)
uint32_t d[8]; // doublewords (32-bit)
uint64_t q[4]; // quadwords (64-bit)

#ifdef __AVX2__
__m256i y; // a single 256-bit integer type

#endif
} cbeam_w256;
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We only give some generic guidance on how to implement mx2 in software this way. One should
examine the reference 16-bit, 64-bit, and 256-bit implementations for architecture-specific optimizations.

Step 1: Vertical linear transform λ

This step is easiest to implement by viewing the state as 64-bit words (``quadwords'') sq[0..3] with s =
( sq[ 0 ], sq[ 1 ], sq[ 2 ], sq[ 3 ] ).

t = sq[ 0 ] ⊕ sq[ 1 ] ⊕ sq[ 2 ] ⊕ sq[ 3 ]

s′ = (sq[ 0 ] ⊕ t, sq[ 1 ] ⊕ t, sq[ 2 ] ⊕ t, sq[ 3 ] ⊕ t ). (4.1)

Equivalent C code:

// 256-bit vertical Linear Mix
t1 = cb->q[0] ^ cb->q[1] ^ cb->q[2] ^ cb->q[3];
cb->q[0] ^= t1;
cb->q[1] ^= t1;
cb->q[2] ^= t1;
cb->q[3] ^= t1;

Step 2: Vertical nonlinear transform

We use the optimized bitslice method to compute one or more (depending on system word size) instances
of ϕ16 simultaneously. For 0 ≤ i ≤ 15 we can write with 16-bit words:

s′w[ i ] = ϕ5

(
sw[ i ], sw[ (i− 1) mod 16 ], sw[ (i− 2) mod 16 ],

sw[ (i− 3) mod 16 ], sw[ (i− 4) mod 16 ]
)
. (4.2)

In 64-bit implementations two adjacent input 64-words are needed to construct the five words shifted
versions. We can compute four parallel ϕ16 functions:

// 4x Vertical Nonlinear Mix on t1
t1 = cb->q[i];
t5 = cb->q[(i - 1) & 3];
t2 = (t1 << 16) ^ (t5 >> 48);
t3 = (t1 << 32) ^ (t5 >> 32);
t4 = (t1 << 48) ^ (t5 >> 16);
t1 = CBEAM_PHI5(t1, t2, t3, t4, t5);

// .. proceed to RC / horiz. Lambda with t1

Step 3: Round Constant

As the round constants are only active at odd rounds, they are in fact always applied between vertical and
horizontal rounds in this type of implementation. Written as transposed quadwords, the three nonzero
round constants are:

rc1q = 0x2000040000300009
rc3q = 0x6000050000100008 (4.3)
rc3q = 0xA0000C000070000B

Constants from Equation 4.3 are XORed over the first 64-bit word of state at round i:

s′q[ 0 ] = sq[ 0 ]⊕ rciq. (4.4)
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// Round constants
const uint64_t rc[3] =

{ 0x2000040000300009 , 0x6000050000100008 , 0xA0000C000070000B };

Step 4: Horizontal linear transform λ

There are many ways to implement this step -- it is a simple 4-bit nibble XOR parity operation. The step
is highly parallelizable. For 0 ≤ i ≤ 15 we can write it with 16-bit rotations:

t = sw[ i ] ⊕ (sw[ i ] ≪ 4) ⊕ (sw[ i ] ≪ 8) ⊕ (sw[ i ] ≪ 12)

s′w[ i ] = sw[ i ] ⊕ t. (4.5)

The following piece of C computes four horizontal linear transforms in parallel on a 64-bit register:

// 4x Horizontal Linear Mix on t1
t2 = t1;
t2 ^= t2 >> 8;
t2 ^= t2 >> 4;
t2 &= 0x000F000F000F000Fllu;
t2 ^= t2 << 4;
t2 ^= t2 << 8;
t1 ^= t2;

Step 5: Horizontal nonlinear transform

Again a bit-slicing implementation of ϕ5 is used, but on rotated values of each word. For 0 ≤ i ≤ 15:

s′w[ i ] = ϕ5

(
sw[ i ], sw[ i ] ≪ 1, sw[ i ] ≪ 2, sw[ i ] ≪ 3, sw[ i ] ≪ 4

)
. (4.6)

This step is slightly more complicated to parallelize:

// 4x Horizontal Nonlinear Mix on t1
t2 = ((t1 << 1) & 0xFFFEFFFEFFFEFFFEllu) ^

((t1 >> 15) & 0x0001000100010001llu);
t3 = ((t1 << 2) & 0xFFFCFFFCFFFCFFFCllu) ^

((t1 >> 14) & 0x0003000300030003llu);
t4 = ((t1 << 3) & 0xFFF8FFF8FFF8FFF8llu) ^

((t1 >> 13) & 0x0007000700070007llu);
t5 = ((t1 << 4) & 0xFFF0FFF0FFF0FFF0llu) ^

((t1 >> 12) & 0x000F000F000F000Fllu);

t1 = CBEAM_PHI5(t1, t2, t3, t4, t5);

4.5 Sensors and Pervasive Devices: MSP430
Texas Instruments MSP430 is a well known family of low-cost and ultra-low power 16-bit SoC micro-
controllers, widely used in sensor networks. CBEAM beats the more than dozen MSP430 encryption
algorithm implementations reported in [18], often by an order of magnitude.

Our implementation of π is able to execute entirely on 12 general-purpose registers without having
to resort to stack (except the top value) and therefore the running RAM requirement is equivalent to
the state size, 32 bytes. The ϕ5 function was realized with nine logic instructions. The additional logic
instruction caused by the fact that MSP430 only has two-operand machine instructions.

Unfortunately the MSP430 instruction set only has single-bit shifts and no multi-bit rotation instruc-
tion, which created a bottleneck for "horizontal" λ.

23



rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Figure 4.3: Illustration on how to fit the 256-bit state into a single Haswell+ AVX2 YMM register, two
Pentium 3+ SSE XMM registers, four Pentium+ MMX or ARM NEON registers or eight ARM general
purpose registers for bit-slicing computation.

/* r14 = Phi5(r15,r14,r13,r12,r11) */
bic r12, r11
inv r13
and r13, r12
and r11, r13
xor r12, r11
and r11, r15
bis r12, r14
bic r15, r14
xor r13, r14

The cipher is as fast as the very fastest AES implementations on this platform but has significantly
smaller implementation footprint. The following numbers are only for cores, modes of operation not
included. The IAIK [22] implementation is commercial and written in hand-optimized assember. The
Texas Instruments [33] implementation is recommended by the SoC vendor. Note that GCM is nontrivial
to implement on this platform and we can expect it to add a significant overhead to the AES numbers.

Code Flash RAM Encryption Decryption Cycles / Byte
CBEAM 386 B 32 B 4369 C 4404 C 550.5
AES-128 [22] 2536 B ? 5432 C 8802 C 550.1
AES-128 [33] 2423 B 80 B 6600 C 8400 C 525.0
AES-256 [22] 2830 B ? 7552 C 12258 C 766.1

4.6 Latest Server / Desktop / Laptop Systems: x86-64 with AVX2
The Intel Haswell (Generation 4 Core) and later x86-64 CPUs support 256-bit AVX2 (Advanced Vector
Extensions 2) SIMD instructions. The AVX2 platform provides shuffle and vector shift instructions for
16-bit vector sub-units in addition to 256-bit Boolean logic for the nonlinear function ϕ5 (Equation 1.5).
We can implement full 256-bit ϕ5 with only eight instructions. This roughly doubles the overall execution
speed when compared to optimized 64-bit gcc versions.

Here is a code snippet written in AVX2 C intrinsics for implementing the ϕ5 function with 8 logical
instructions on 256-bit registers:

// t0 = Phi5(x0,x1,x2,x3,x4)
t0 = _mm256_andnot_si256(x3, x4);
t1 = _mm256_andnot_si256(x2, x3);
t2 = _mm256_andnot_si256(x2, t0);
t3 = _mm256_or_si256(x1, t1);
t0 = _mm256_xor_si256(t0, t1);
t1 = _mm256_and_si256(x0, t0);
t0 = _mm256_andnot_si256(t1, t3);
t0 = _mm256_xor_si256(t0, t2);
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Please see the reference implementation file ymm/mx6-avx2.c for tricks on how to implement λ and
various shifts efficiently on this platform.

The following speeds were measured on a MacBook Air (Q3/2013) with Intel Core i5 - 4250U CPU
@1.30 GHz running Ubuntu Linux 13.04. Linux reported internal clock frequency as 1.90 GHz during
the tests. We compare to the OpenSSL 1.0.1e AES implementation, which is the de facto standard AES
implementation. Generic optimizations were enabled but we disabled the full hardware AES for fairness.

Implementation Troughput Cycles / Byte
CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

These are wall-clock measurements. Note that the cycles / byte numbers are calculated directly from
the internal clock frequency and throughput, and are therefore influenced by I/O and other factors.
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Chapter 5

Design Rationale

CBEAM design and analysis were interdependent and were largely performed concurrently. Therefore
detailed design rationale is more completely given in Chapter 3, "Security Analysis". Here we just give
some broad rationale to our overall component and parameter selection.

5.1 Design of π = mx6

See Section 3.2:

• The round constants were optimized to offer resistance against rotational and slide (Section 3.2.1).

• We exhaustively examined all 232 5-input Boolean functions when selecting ϕ5, which was optimal
in that class. (Section 3.2.2).

• The design offers resistance to classical Differential and Linear cryptanalysis (Section 3.2.3). CBEAM
has exceptional Algebraic properties (Section 3.2.4).

• Six rounds provides very efficient mixing of data (Tables 3.3 and 3.4). However this is not a block
cipher and a distinguisher for the mixing function (isolated from the mode of operation) should
not be considered a fatal weakness.

We also wanted to avoid data-conditional processing and lookup tables to minimize opportunities
for timing attacks. CBEAM can be implemented entirely in straight-line code without table lookups,
making it more resistant to side-channel attacks than some alternatives.

5.2 Generic notes on Sponge Parameters
• The Sponge construct is a flexible method for building cryptographic algorithms of different kinds

from a single permutation.

• The Sponge parameters (Section 1.3) were derived from well-established theorems regarding Sponge
functions and a large body of research. [4, 5, 6, 7, 8, 10].

• The BLNK padding variant as used in CBEAM allows flexible later extensions such as "Parallelized
Tree AEAD" without breaking the core.

5.3 Hidden Weaknesses
The designer of CBEAM has not hidden any weaknesses in this cipher. We are not aware of any method
for hiding weaknesses to an algorithm of this type, as it has no large constants, tables, or other special
cases. Shift-Invariance of Theorem 2 (Section 3.2.1) indicates that the π function output is homogeneous.
Therefore there are no "special bits" that would leak out secret information.
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Chapter 6

Intellectual Property and Consent

6.1 Intellectual Property
A patent application was filed by the submitter in December 2013 with USPTO. The application was filed
to protect CBEAM against claims by third parties and to secure its free usage by anyone, should a version
get accepted into the CAESAR portfolio.

This application covers the design and some software and hardware implementation techniques of
CBEAM, and thereby CBEAM is "patent pending." However, we will withdraw this application if re-
quired by the CAESAR selection committee.

The author/inventor grants permission to use CBEAMr1 (as specified in this document) in any way,
in any application, free of charge, indefinitely. However, this permission does not apply to derived or
modified works without separate, specific consent.

If any of this information changes, the submitter will promptly (and within at most one month) an-
nounce these changes on the crypto-competitions mailing list.

6.2 Consent to CAESAR Selection Committee
The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee.

The submitter understands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led to the
selection of the algorithm.

The submitter understands that the selection of some algorithms is not a negative comment regarding
other algorithms, and that an excellent algorithm might fail to be selected simply because not enough
analysis was available at the time of the committee decision. The submitter acknowledges that the com-
mittee decisions reflect the collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if they disagree with published analyses then they are expected
to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions.

The submitter understands that this statement is required as a condition of consideration of this sub-
mission by the CAESAR selection committee.

Dr. Markku-Juhani O. Saarinen
Trondheim, NORWAY
March 15, 2014
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