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HS1-SIV uses a new PRF called HS1 to provide authenticated encryption via Rogaway and
Shrimpton’s SIV mode [6]. HS1 (mnemonic for “Hash-Stream 1”) is designed for high soft-
ware speed on systems with good 32-bit processing, including Intel SSE, ARM Neon, and 32-bit
architectures without SIMD support. HS1 uses a universal hash function to consume arbitrary
strings and a stream cipher to produce its output.

This document defines HS1 and how to use it in an SIV construction. HS1 takes an arbitrary input
string and IV and produces a pseudorandom string of any desired length. Each different (input,
IV) pair supplied to HS1 yields an independent pseudorandom stream with high probability.
SIV, as defined in [6], uses a block-cipher-based PRF to create a synthetic IV (an SIV) from given
associated data and plaintext. The SIV is then used to encrypt the plaintext using a block-cipher-
based encryption scheme. HS1-SIV instead uses HS1 to instantiate SIV mode. Ignoring many
details for the moment, if A is the associated data, M is the plaintext, and N is HS1’s IV, then
the SIV is defined as the first 16 bytes of HS1(A||M, N) and ciphertext C is defined as all but
the first 16 bytes of HS1(SIV, N) xor’ed with M. The SIV and ciphertext are bundled together
to create the final ciphertext. If (A, M, N) is repeated, then an observer knows this fact because
the scheme is deterministic and the SIV will be identical, but no security degradation otherwise
occurs. Supplying N as a nonce thus improves security by masking repeated encryptions.

HS1 does its work by pairing an almost-universal hash function with a stream cipher. When given
an (input, IV) pair, HS1 uses the hash function to hash the input, it then xor’s this hash result
with the stream cipher’s key and uses the HS1 IV as the stream cipher’s IV. The stream cipher
produces as many bytes as desired. As long as a (hash result, IV) pair is never repeated, and the
stream cipher is secure against related-key attacks, the stream cipher will produce independent
pseudorandom output streams. We introduce a new hash HS1-Hash which we use for the almost-
universal phase of HS1, and Bernstein’s Chacha is used as the stream cipher [1].

1 Specification

The figures in this document fully specify HS1-SIV with the exception of the Chacha stream
cipher. We use the Chacha version specified in ChaCha20 and Poly1305 for IETF protocols [5],
and attach it to make this document self-contained. The interface defined in that document has
Chacha take four inputs: A 32-byte key, an initial counter value, a 12-byte IV, and a plaintext. The
ciphertext produced is the same length as the plaintext and is pseudorandom. This document
adopts that interface. Chacha[r](K, c, N, X) indicates the r-round Chacha encryption of X using
key K, initial counter value c, and IV N. When we simply want an n-byte pseudorandom string,
we let X be n zero bytes.
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HS1-SIV-Encrypt[b, t, r, ℓ](K, M, A, N)
Inputs:

K, a non-empty string of up to 32 bytes
M, a string shorter than 264 bytes
A, a string shorter than 264 bytes
N, a 12-byte string

Output:
(T, C), strings of ℓ and |M| bytes, respectively

Algorithm:
1. k = HS1-subkeygen[b, t, r, ℓ](K)
2. M′ = pad(16, A) || pad(16, M) || toStr(8, |A|) || toStr(8, |M|)
3. T = HS1[b, t, r](k, M′, N, ℓ)
4. C = M ⊕HS1[b, t, r](k, T, N, 64 + |M|)[64, |M|]

Figure 1: Encryption. The ℓ-byte string T serves as authenticator for A and M, and serves as IV for the
encryption of M. If N is a nonce, then repeat encryptions yield different T and C. Algorithm parameters
b, t, r, and ℓ effect security and performance.

1.1 Parameters

There are four parameters used throughout this specification, b, t, r, ℓ. Parameter b specifies the
number of bytes used in part of the hashing algorithm (larger b tends to produce higher through-
put on longer messages). Parameter t selects the collision level of the hashing algorithm (higher
t produces higher security and lower throughput). Parameter r specifies the number of internal
rounds used by the stream cipher (higher r produces higher security and lower throughput). Pa-
rameter ℓ specifies the byte-length of synthetic IV used (higher ℓ improves security and increases
ciphertext lengths by ℓ bytes). The following table names parameter sets.

Name b t r ℓ
hs1-siv-lo 64 2 8 8
hs1-siv 64 4 12 16

hs1-siv-hi 64 6 20 32

1.2 Notation

The algorithms in this document manipulate integers, vectors of integers, and strings of bytes.
Vector and string indices begin with zero. If v is a vector, then v[a] is its a-th element and v[a, n]
is the n-element subvector beginning at index a: (v[a], v[a + 1], . . . , v[a + n − 1]). Similarly, if S is
a string, then S[a, n] is the n-byte substring of S beginning at index a. The number of elements
in v and bytes in S is indicated |v| and |S|. Concatenation is accomplished using “||” (eg,
(1, 2, 3)||(4, 5) = (1, 2, 3, 4, 5) and 0xf0||0xa8 = 0xf0a8). The bitwise exclusive-or of same-length
strings A and B is A ⊕ B. A string of k zero-bytes is represented 0k. pad(n, S) = S||0k where k is
the smallest non-negative integer making the length of S||0k a non-negative multiple of n bytes.
toStr(n, x) is the n-byte unsigned little-endian binary representation of integer x (eg, toStr(2, 3) =
0x0300). toInts(n, S) is the vector of integers obtained by breaking S into n-byte chunks and
little-endian interpreting each chunk as an unsigned integer (eg, toInts(2, 0x05000600) = (5, 6)).
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HS1[b, t, r](k, M, N, y)
Inputs:

k, a vector (KS, kN , kP, kA), where
KS, is a string of 32 bytes,
kN , is a vector of b/4 + 4(t − 1) integers from Z232 ,
kP, is a vector of t integers from Z260 , and
kA, is a vector of 3t integers from Z264

M, a string of any length
N, a 12-byte string
y, an integer in Z238

Output:
Y, a string of y bytes

Algorithm:
1. Ai = HS1-Hash[b, t](kN [4i, b/4], kP[i], kA[3i, 3], M) for each 0 ≤ i < t
2. Y = Chacha[r](pad(32, A0 || A1 || . . . || At−1)⊕ Ks), 0, N, 0y)

Figure 2: HS1 PRF. Hash M a total of t times with different keys and combine the result with the stream
cipher’s key.

Given vectors of integers v1 and v2, NH(v1, v2) = ∑n/4
i=1((v1[4i − 3] + v2[4i − 3])× (v1[4i − 1] +

v2[4i − 1]) + (v1[4i − 2] + v2[4i − 2])× (v1[4i] + v2[4i])) where n = min(|v1|, |v2|) and is always
a multiple of four.

2 Security Goals

HS1-SIV provides confidentiality of plaintexts and integrity of ciphertexts, associated data and
public message numbers. No private message numbers are employed by HS1-SIV. If we say
an adversary can win an attack against HS1-SIV by (i) guessing the key in use or (ii) causing
two different encryptions to use the same synthetic IV, then the following table summarizes an
adversary’s probability of success over n encryptions, each of no more than 232 bytes, or n key
guesses.

Name Key Search SIV Collision
hs1-siv-lo n/2256 n2/256 + n2/264

hs1-siv n/2256 n2/2112 + n2/2128

hs1-siv-hi n/2256 n2/2168 + n2/2256

SIV is designed to provide the maximum possible robustness against nonce reuse. HS1-SIV
maintains full integrity and confidentiality, except for leaking collisions of (plaintext, associated
data, public message number) via collisions of ciphertexts. If two different (plaintext, associated
data, public message number) triples produce the same SIV, then forgeries become possible.
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HS1-Hash[b, t](kN , kP, kA, M)
Inputs:

kN , is a vector of b/4 integers from Z232 ,
kP, is an integer from Z260

kA, is a vector of 3 integers from Z264 (Not used when t ≤ 4)
M, a string of any length

Output:
Y, an 8 byte (if t ≤ 4) or 4 byte (if t > 4) string

Algorithm:
1. n = max(⌈|M|/b⌉, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for each 1 ≤ i < n.
3. mi = toInts(4, pad(16, Mi)) for each 1 ≤ i ≤ n
4. ai = NH(kN , mi) mod 260 + (|Mi| mod 16) for each 1 ≤ i ≤ n
5. h = kn

P + a1kn−1
P + a2kn−2

P + . . . + ank0
P mod (261 − 1)

6. if (t ≤ 4) Y = toStr(8, h)
7. else Y = toStr(4, (kA[0] + kA[1]× (h mod 232) + kA[2]× (h div 232)) div 232)

Figure 3: The hash family HS1-Hash is (1/228 + ℓ/b260)-AU for all M up to ℓ bytes, when kN and kP
are chosen randomly and t ≤ 4. The hash family is (1/228 + 1/232 + ℓ/b260)-SU when additionally kA
is randomly chosen and t > 4.

3 Security Analysis

HS1 is a composition of HS1-Hash, an almost-universal hash function, with Chacha, a stream
cipher. HS1-Hash is itself a composition of two hashes. Similar to techniques used in UMAC
and VMAC [3, 4], the NH hash is used to reduce the input by a fixed ratio to an intermediate
string which is then hashed to a fixed size by a polynomial evaluation. It uses well-known and
well-studied techniques. The inner-product hashes inputs of length bm bytes to ones of length
8m bytes with a collision probability of no more than 2−28. The resulting 8m-byte string is hashed
using a standard polynomial hash modulo the prime 261 − 1. Because the polynomial’s key is
chosen over a restricted set (for performance reasons), the final collision probability is no more
than m2−60 + 2−28. To reduce the chance of collision, this hashing procedure is repeated t times,
with different keys, for an ultimate collision probability of no more than (m2−60 + 2−28)

t.

We conjecture Chacha is secure against related-key attacks: an adversary with reasonably lim-
ited resources would have difficulty distinguishing between f (X, N) = Chacha(X ⊕ K, 0, N, 0ℓ)
and a randomly chosen function with the same signature {0, 1}256 × {0, 1}96 → {0, 1}ℓ when K
is a high-entropy 256-bit string unknown to the adversary and ℓ is any positive number. This
conjecture is supported by numerous statements by Bernstein and the way Chacha and Salsa
“cores” are deployed in Chacha, Salsa and Rumba. Bernstein’s statements have been directed
toward Salsa, Chacha’s predecessor, but Chacha is simply Salsa with a couple of small improve-
ments, and it is widely believed that Chacha inherits all of Salsa’s positive security features.
Bernstein’s statements and uses are consistent with the belief that the Salsa and Chacha cores are
simply pseudorandom functions mapping 48-byte inputs to 64-byte outputs. If this is true, then
the conjecture that Chacha is secure against related-key attacks is immediate. In Salsa20 security
Bernstein writes: “The reader might guess that Salsa is highly resistant to related-key attacks.”
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HS1-Subkeygen[b, t, r, ℓ](K)
Inputs:

K, a non-empty string of up to 32 bytes
Output:

(KS, kN , kP, kA), where
KS, is a 32-byte string,
kN , is a vector of b/4 + 4(t − 1) integers from Z232 ,
kP, is a vector of t integers from Z260 , and
kA, is a vector of 3t integers from Z264

Algorithm:
1. ChachaLen = 32
2. NHLen = b + 16(t − 1)
3. PolyLen = 8t
4. ASULen = 24t
5. y = ChachaLen + NHLen + PolyLen + ASULen
6. K′ = (K||K||K||K|| . . .)[0, 32]
7. N = toStr(12, b248 + t240 + r232 + ℓ216 + |K|)
8. T = Chacha[r](K′, 0, N, 0y)
9. KS = T[0, ChachaLen]
10. kN = toInts(4, T[ChachaLen, NHLen])
11. kP = map(mod 260, toInts(8, T[ChachaLen + NHLen, PolyLen]))
12. kA = toInts(8, T[ChachaLen + NHLen + PolyLen, ASULen])

Figure 4: HS1-Subkeygen takes any length key and uses Chacha to produce all internal keys needed by
HS1.

In Response to “On the Salsa core function” Bernstein claims that the core is designed “to eliminate
all visible structure”. In the Rumba compression function, adversaries are allowed to provide
any selected 48-byte inputs to the cores, and in Salsa and Chacha the cores are used simply in
counter mode to produce their pseudorandom streams.

HS1 is essentially defined HS1(K, h, X, N, ℓ) = Chacha(h(X) ⊕ K, 0, N, 0ℓ) where K is a high-
entropy key and h is from HS1-Hash. As long as (h(X)⊕ K, N) values are distinct, Chacha will
always produce independent pseudorandom streams. HS1 is designed to make it unlikely that
(h(X)⊕ K, N) pairs ever repeat. A user supplied nonce is used for N with each message, and
even if this facility is misused by giving the same nonce repeatedly, h(X) will be distinct with
high probability over a sequence of distinct X values.

4 Features

HS1-SIV is designed to have the following features.

Competitive speed on multiple architectures. HS1-SIV is designed to exploit 32-bit multiplica-
tion and SIMD processing, which are well-supported on almost all current CPUs. This
ensures a consistent performance profile over a wide range of processors, including mod-
ern embedded ones.
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HS1-SIV-Decrypt[b, t, r, ℓ](K, (T, C), A, N)
Inputs:

K, a non-empty string of up to 32 bytes
(T, C), an ℓ-byte string and a string shorter than 264 bytes, respectively
A, a string shorter than 264 bytes
N, a 12-byte string

Output:
M, a |C|-byte string, or AuthenticationError

Algorithm:
1. k = HS1-subkeygen[b, t, r, ℓ](K)
4. M = C ⊕HS1[b, t, r](k, T, N, 64 + |C|)[64, |C|]
2. M′ = pad(16, A) || pad(16, M) || toStr(8, |A|) || toStr(8, |M|)
3. T′ = HS1[b, t, r](k, M′, N, ℓ)
4. if (T = T′) then return M
4. else return AuthenticationError

Figure 5: Decryption. The ℓ-byte string T serves as authenticator for A and M, and serves as IV for
the decryption of C. Algorithm parameters b, t, r, and ℓ effect security and performance.

Provable security. HS1-Hash and SIV are based on well-known and proven constructions [4, 6].
The only security assumption needed is that the Chacha stream cipher is a good pseudo-
random generator and secure against related-key attacks.

Nonce misuse resistant. No harm is done when a nonce is reused, except that it is revealed
whether corresponding (associated data, plaintext) pairs have been repeated. If (associated
data, plaintext) pairs are known to never repeat, no nonce need be used at all.

Scalable. Different security levels are available for different tasks, with varying throughput.
General-purpose PRF. The general nature of HS1 makes it useful for a variety of tasks, such as

entropy harvesting, random generation, and other IV-based encryption and authentication
schemes. A single software library could provide multiple services under a single key by
simply partitioning the nonce space and providing access to HS1.

With the exception of provable security, all of the above features are improvements over GCM.

5 Design Rationale

HS1-SIV is designed to exploit a variable-input-length/variable-output-length PRF. This abstrac-
tion allows the PRF and its application to be designed separately. Although the PRF could be
used in several different ways to realize authenticated encryption, SIV is a natural fit because
its definition requires variable input-lengths to be consumed, variable output lengths to be pro-
duced, and the intermediate value–the synthetic IV–to be exposed. Furthermore, SIV enjoys
provable security, allowing the security focus of HS1-SIV to be entirely on HS1.

HS1 is conceived as a fast almost-universal hash function composed with a fast stream cipher,
with little integration overhead. HS1-Hash is heavily influence by VMAC [4], which targets beefy
CPUs, but with the assumption that 32-bit multiplication–with or without SIMD acceleration–will
be the maximum-size available efficient multiplication. This allows good performance on a wide
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range of CPU’s; from modern embedded CPU’s (the 43 thousand gate ARM Cortex-M3 has 32-
bit multiplication with a 64-bit result) to modern Intel processors (Intel’s current AVX instruction
set can process four 32-bit multiplies in a single instruction). The result is a hash that performs
nearly as well on 32-bit CPUs as 64-bit ones. Bernstein’s Chacha is chosen as the stream cipher
for three reasons: it is one of the fastest stream ciphers in software on our target systems, its key
setup is simple and fast, and it is secure against related-key attacks.

The designer has not hidden any weaknesses in this cipher.

6 Intellectual Property

The submitter knows of no known patents, patent applications, planned patent applications,
or other intellectual-property constraints relevant to use of HS1-SIV. If any of this information
changes, the submitter/submitters will promptly (and within at most one month) announce these
changes on the crypto-competitions mailing list.

7 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided
by the committee. The submitter/submitters understand that the committee will not comment
on the algorithms, except that for each selected algorithm the committee will simply cite the pre-
viously published analyses that led to the selection of the algorithm. The submitter/submitters
understand that the selection of some algorithms is not a negative comment regarding other algo-
rithms, and that an excellent algorithm might fail to be selected simply because not enough anal-
ysis was available at the time of the committee decision. The submitter/submitters acknowledge
that the committee decisions reflect the collective expert judgments of the committee members
and are not subject to appeal. The submitter/submitters understand that if they disagree with
published analyses then they are expected to promptly and publicly respond to those analyses,
not to wait for subsequent committee decisions. The submitter/submitters understand that this
statement is required as a condition of consideration of this submission by the CAESAR selection
committee.

8 Revision History

The submitted v1 version mistakenly defined Prod. This version replaces it with NH and updates
a few sentences to accommodate the change. Also, v1 mistakenly gave bitlengths in the table of
Section 1.1, and they are now listed as bytelengths.
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