
HS1-SIV (v1)
Submitted and designed by

Ted Krovetz1

ted@krovetz.net
15 March 2014

HS1-SIV uses a new PRF called HS1 to provide authenticated encryption via Rogaway and
Shrimpton’s SIV mode [5]. HS1 (mnemonic for “Hash-Stream 1”) is designed for high soft-
ware speed on systems with good 32-bit processing, including Intel SSE, ARM Neon, and 32-bit
architectures without SIMD support. HS1 uses a universal hash function to consume arbitrary
strings and a stream cipher to produce its output.

This document defines HS1 and how to use it in an SIV construction. HS1 takes an arbitrary input
string and IV and produces a pseudorandom string of any desired length. Each different (input,
IV) pair supplied to HS1 yields an independent pseudorandom stream with high probability.
SIV, as defined in [5], uses a block-cipher-based PRF to create a synthetic IV (an SIV) from given
associated data and plaintext. The SIV is then used to encrypt the plaintext using a block-cipher-
based encryption scheme. HS1-SIV instead uses HS1 to instantiate SIV mode. Ignoring many
details for the moment, if A is the associated data, M is the plaintext, and N is HS1’s IV, then
the SIV is defined as the first 16 bytes of HS1(A||M, N) and ciphertext C is defined as all but
the first 16 bytes of HS1(SIV, N) xor’ed with M. The SIV and ciphertext are bundled together
to create the final ciphertext. If (A, M, N) is repeated, then an observer knows this fact because
the scheme is deterministic and teh SIV will be identical, but no security degradation otherwise
occurs. Supplying N as a nonce thus improves security by masking repeated encryptions.

HS1 does its work by pairing an almost-universal hash function with a stream cipher. When given
an (input, IV) pair, HS1 uses the hash function to hash the input, it then xor’s this hash result
with the stream cipher’s key and uses the HS1 IV as the stream cipher’s IV. The stream cipher
produces as many bytes as desired. As long as a (hash result, IV) pair is never repeated, and the
stream cipher is secure against related-key attacks, the stream cipher will produce independent
pseudorandom output streams. We introduce a new hash HS1-Hash which we use for the almost-
universal phase of HS1, and Bernstein’s Chacha is used as the stream cipher [1].

1 Specification

The figures in this document fully specify HS1-SIV with the exception of the Chacha stream
cipher. We use the Chacha version specified in ChaCha20 and Poly1305 for IETF protocols [3],
and attach it to make this document self-contained. The interface defined in that document has
Chacha take four inputs: A 32-byte key, an initial counter value, a 12-byte IV, and a plaintext. The
ciphertext produced is the same length as the plaintext and is pseudorandom. This document
adopts that interface. Chacha[r](K, c, N, X) indicates the r-round Chacha encryption of X using
key K, initial counter value c, and IV N. When we simply want an n-byte pseudorandom string,
we let X be n zero bytes.

1 Department of Computer Science, California State University, Sacramento CA 95819. This work supported by the
generous support of NSF grants CNS-1314592 and CNS-0904380.

HS1-SIV-Encrypt[b, t, r, ℓ](K, M, A, N)
Inputs:

K, a non-empty string of up to 32 bytes
M, a string shorter than 264 bytes
A, a string shorter than 264 bytes
N, a 12-byte string

Output:
(T, C), strings of ℓ and |M| bytes, respectively

Algorithm:
1. k = HS1-subkeygen[b, t, r, ℓ](K)
2. M′ = pad(16, A) || pad(16, M) || toStr(8, |A|) || toStr(8, |M|)
3. T = HS1[b, t, r](k, M′, N, ℓ)
4. C = M ⊕HS1[b, t, r](k, T, N, 64 + |M|)[64, |M|]

Figure 1: Encryption. The ℓ-byte string T serves as authenticator for A and M, and serves as IV for the
encryption of M. If N is a nonce, then repeat encryptions yield different T and C. Algorithm parameters
b, t, r, and ℓ effect security and performance.

1.1 Parameters

There are four parameters used throughout this specification, b, t, r, ℓ. Parameter b specifies the
number of bytes used in part of the hashing algorithm (larger b tends to produce higher through-
put on longer messages). Parameter t selects the collision level of the hashing algorithm (higher
t produces higher security and lower throughput). Parameter r specifies the number of internal
rounds used by the stream cipher (higher r produces higher security and lower throughput). Pa-
rameter ℓ specifies the byte-length of synthetic IV used (higher ℓ improves security and increases
ciphertext lengths by ℓ bytes). The following table names parameter sets.

Name b t r ℓ
hs1-siv-lo 512 2 8 64
hs1-siv 512 4 12 128

hs1-siv-hi 512 6 20 256

1.2 Notation

The algorithms in this document manipulate integers, vectors of integers, and strings of bytes.
Vector and string indices begin with zero. If v is a vector, then v[a] is its a-th element and v[a, n]
is the n-element subvector beginning at index a: (v[a], v[a + 1], . . . , v[a + n − 1]). Similarly, if S is
a string, then S[a, n] is the n-byte substring of S beginning at index a. The number of elements
in v and bytes in S is indicated |v| and |S|. Concatenation is accomplished using “||” (eg,
(1, 2, 3)||(4, 5) = (1, 2, 3, 4, 5) and 0xf0||0xa8 = 0xf0a8). The bitwise exclusive-or of same-length
strings A and B is A ⊕ B. A string of k zero-bytes is represented 0k. pad(n, S) = S||0k where k is
the smallest non-negative integer making the length of S||0k a non-negative multiple of n bytes.
toStr(n, x) is the n-byte unsigned little-endian binary representation of integer x (eg, toStr(2, 3) =
0x0300). toInts(n, S) is the vector of integers obtained by breaking S into n-byte chunks and little-
endian interpreting each chunk as an unsigned integer (eg, toInts(2, 0x05000600) = (5, 6)). Given

2

HS1[b, t, r](k, M, N, y)
Inputs:

k, a vector (KS, kN , kP, kA), where
KS, is a string of 32 bytes,
kN , is a vector of b/4 + 4(t − 1) integers from Z232 ,
kP, is a vector of t integers from Z260 , and
kA, is a vector of 3t integers from Z264

M, a string of any length
N, a 12-byte string
y, an integer in Z238

Output:
Y, a string of y bytes

Algorithm:
1. Ai = HS1-Hash[b, t](kN [4i, b/4], kP[i], kA[3i, 3], M) for each 0 ≤ i < t
2. Y = Chacha[r](pad(32, A0 || A1 || . . . || At−1)⊕ Ks), 0, N, 0y)

Figure 2: HS1 PRF. Hash M a total of t times with different keys and combine the result with the stream
cipher’s key.

vectors of integers v1 and v2, Prod(v1, v2) = ∑n
i=1(v1[i]× v2[i]) where n = min(|v1|, |v2|).

2 Security Goals

HS1-SIV provides confidentiality of plaintexts and integrity of ciphertexts, associated data and
public message numbers. No private message numbers are employed by HS1-SIV. If we say
an adversary can win an attack against HS1-SIV by (i) guessing the key in use or (ii) causing
two different encryptions to use the same synthetic IV, then the following table summarizes an
adversary’s probability of success over n encryptions, each of no more than 232 bytes, or n key
guesses.

Name Key Search SIV Collision
hs1-siv-lo n/2256 n2/256 + n2/264

hs1-siv n/2256 n2/2112 + n2/2128

hs1-siv-hi n/2256 n2/2168 + n2/2256

SIV is designed to provide the maximum possible robustness against nonce reuse. HS1-SIV
maintains full integrity and confidentiality, except for leaking collisions of (plaintext, associated
data, public message number) via collisions of ciphertexts. If two different (plaintext, associated
data, public message number) triples produce the same SIV, then forgeries become possible.

3 Security Analysis

HS1 is a composition of HS1-Hash, an almost-universal hash function, with Chacha, a stream
cipher. HS1-Hash is itself a composition of two hashes. Similar to techniques used in VMAC [4],

3

HS1-Hash[b, t](kN , kP, kA, M)
Inputs:

kN , is a vector of b/4 integers from Z232 ,
kP, is an integer from Z260

kA, is a vector of 3 integers from Z264 (Not used when t ≤ 4)
M, a string of any length

Output:
Y, an 8 byte (if t ≤ 4) or 4 byte (if t > 4) string

Algorithm:
1. n = max(⌈|M|/b⌉, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for each 1 ≤ i < n.
3. mi = toInts(4, pad(16, Mi)) for each 1 ≤ i ≤ n
4. ai = Prod(kN , mi) mod 260 + (|Mi| mod 16) for each 1 ≤ i ≤ n
5. h = kn

P + a1kn−1
P + a2kn−2

P + . . . + ank0
P mod (261 − 1)

6. if (t ≤ 4) Y = toStr(8, h)
7. else Y = toStr(4, (kA[0] + kA[1]× (h mod 232) + kA[2]× (h div 232)) div 232)

Figure 3: The hash family HS1-Hash is (1/228 + ℓ/b260)-AU for all M up to ℓ bytes, when kN and kP
are chosen randomly and t ≤ 4. The hash family is (1/228 + 1/232 + ℓ/b260)-SU when additionally kA
is randomly chosen and t > 4.

an inner-product hash is used to reduce the input by a fixed ratio to an intermediate string which
is then hashed to a fixed size by a polynomial evaluation. It uses well-known and well-studied
techniques. The inner-product hashes inputs of length bm bytes to ones of length 8m bytes with
a collision probability of no more than 2−28. The resulting 8m-byte string is hashed using a
standard polynomial hash modulo the prime 261 − 1. Because the polynomial’s key is chosen
over a restricted set (for performance reasons), the final collision probability is no more than
m2−60 + 2−28. To reduce the chance of collision, this hashing procedure is repeated t times, with
different keys, for an ultimate collision probability of no more than (m2−60 + 2−28)

t.

We conjecture Chacha is secure against related-key attacks: an adversary with reasonably lim-
ited resources would have difficulty distinguishing between f (X, N) = Chacha(X ⊕ K, 0, N, 0ℓ)
and a randomly chosen function with the same signature {0, 1}256 × {0, 1}96 → {0, 1}ℓ when K
is a high-entropy 256-bit string unknown to the adversary and ℓ is any positive number. This
conjecture is supported by numerous statements by Bernstein and the way Chacha and Salsa
“cores” are deployed in Chacha, Salsa and Rumba. Bernstein’s statements have been directed
toward Salsa, Chacha’s predecessor, but Chacha is simply Salsa with a couple of small improve-
ments, and it is widely believed that Chacha inherits all of Salsa’s positive security features.
Bernstein’s statements and uses are consistent with the belief that the Salsa and Chacha cores are
simply pseudorandom functions mapping 48-byte inputs to 64-byte outputs. If this is true, then
the conjecture that Chacha is secure against related-key attacks is immediate. In Salsa20 security
Bernstein writes: “The reader might guess that Salsa is highly resistant to related-key attacks.”
In Response to “On the Salsa core function” Bernstein claims that the core is designed “to eliminate
all visible structure”. In the Rumba compression function, adversaries are allowed to provide
any selected 48-byte inputs to the cores, and in Salsa and Chacha the cores are used simply in
counter mode to produce their pseudorandom streams.

4

HS1-Subkeygen[b, t, r, ℓ](K)
Inputs:

K, a non-empty string of up to 32 bytes
Output:

(KS, kN , kP, kA), where
KS, is a 32-byte string,
kN , is a vector of b/4 + 4(t − 1) integers from Z232 ,
kP, is a vector of t integers from Z260 , and
kA, is a vector of 3t integers from Z264

Algorithm:
1. ChachaLen = 32
2. NHLen = b + 16(t − 1)
3. PolyLen = 8t
4. ASULen = 24t
5. y = ChachaLen + NHLen + PolyLen + ASULen
6. K′ = (K||K||K||K|| . . .)[0, 32]
7. N = toStr(12, b248 + t240 + r232 + ℓ216 + |K|)
8. T = Chacha[r](K′, 0, N, 0y)
9. KS = T[0, ChachaLen]
10. kN = toInts(4, T[ChachaLen, NHLen])
11. kP = map(mod 260, toInts(8, T[ChachaLen + NHLen, PolyLen]))
12. kA = toInts(8, T[ChachaLen + NHLen + PolyLen, ASULen])

Figure 4: HS1-Subkeygen takes any length key and uses Chacha to produce all internal keys needed by
HS1.

HS1 is essentially defined HS1(K, h, X, N, ℓ) = Chacha(h(X) ⊕ K, 0, N, 0ℓ) where K is a high-
entropy key and h is from HS1-Hash. As long as (h(X)⊕ K, N) values are distinct, Chacha will
always produce independent pseudorandom streams. HS1 is designed to make it unlikely that
(h(X)⊕ K, N) pairs ever repeat. A user supplied nonce is used for N with each message, and
even if this facility is misused by giving the same nonce repeatedly, h(X) will be distinct with
high probability over a sequence of distinct X values.

4 Features

HS1-SIV is designed to have the following features.

Competitive speed on multiple architectures. HS1-SIV is designed to exploit 32-bit multiplica-
tion and SIMD processing, which are well-supported on almost all current CPUs. This
ensures a consistent performance profile over a wide range of processors, including mod-
ern embedded ones.

Provable security. HS1-Hash and SIV are based on well-known and proven constructions [4, 5].
The only security assumption needed is that the Chacha stream cipher is a good pseudo-
random generator and secure against related-key attacks.

Nonce misuse resistant. No harm is done when a nonce is reused, except that it is revealed
whether corresponding (associated data, plaintext) pairs have been repeated. If (associated

5

HS1-SIV-Decrypt[b, t, r, ℓ](K, (T, C), A, N)
Inputs:

K, a non-empty string of up to 32 bytes
(T, C), an ℓ-byte string and a string shorter than 264 bytes, respectively
A, a string shorter than 264 bytes
N, a 12-byte string

Output:
M, a |C|-byte string, or AuthenticationError

Algorithm:
1. k = HS1-subkeygen[b, t, r, ℓ](K)
4. M = C ⊕HS1[b, t, r](k, T, N, 64 + |C|)[64, |C|]
2. M′ = pad(16, A) || pad(16, M) || toStr(8, |A|) || toStr(8, |M|)
3. T′ = HS1[b, t, r](k, M′, N, ℓ)
4. if (T = T′) then return M
4. else return AuthenticationError

Figure 5: Decryption. The ℓ-byte string T serves as authenticator for A and M, and serves as IV for
the decryption of C. Algorithm parameters b, t, r, and ℓ effect security and performance.

data, plaintext) pairs are known to never repeat, no nonce need be used at all.
Scalable. Different security levels are available for different tasks, with varying throughput.
General-purpose PRF. The general nature of HS1 makes it useful for a variety of tasks, such as

entropy harvesting, random generation, and other IV-based encryption and authentication
schemes. A single software library could provide multiple services under a single key by
simply partitioning the nonce space and providing access to HS1.

With the exception of provable security, all of the above features are improvements over GCM.

5 Design Rationale

HS1-SIV is designed to exploit a variable-input-length/variable-output-length PRF. This abstrac-
tion allows the PRF and its application to be designed separately. Although the PRF could be
used in several different ways to realize authenticated encryption, SIV is a natural fit because
its definition requires variable input-lengths to be consumed, variable output lengths to be pro-
duced, and the intermediate value–the synthetic IV–to be exposed. Furthermore, SIV enjoys
provable security, allowing the security focus of HS1-SIV to be entirely on HS1.

HS1 is conceived as a fast almost-universal hash function composed with a fast stream cipher,
with little integration overhead. HS1-Hash is heavily influence by VMAC [4], which targets beefy
CPUs, but with the assumption that 32-bit multiplication–with or without SIMD acceleration–will
be the maximum-size available efficient multiplication. This allows good performance on a wide
range of CPU’s; from modern embedded CPU’s (the 43 thousand gate ARM Cortex-M3 has 32-
bit multiplication with a 64-bit result) to modern Intel processors (Intel’s current AVX instruction
set can process four 32-bit multiplies in a single instruction). The result is a hash that performs
nearly as well on 32-bit CPUs as 64-bit ones. Bernstein’s Chacha is chosen as the stream cipher
for three reasons: it is one of the fastest stream ciphers in software on our target systems, its key

6

setup is simple and fast, and it is secure against related-key attacks.

The designer has not hidden any weaknesses in this cipher.

6 Intellectual Property

The submitter knows of no known patents, patent applications, planned patent applications,
or other intellectual-property constraints relevant to use of HS1-SIV. If any of this information
changes, the submitter/submitters will promptly (and within at most one month) announce these
changes on the crypto-competitions mailing list.

7 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided
by the committee. The submitter/submitters understand that the committee will not comment
on the algorithms, except that for each selected algorithm the committee will simply cite the pre-
viously published analyses that led to the selection of the algorithm. The submitter/submitters
understand that the selection of some algorithms is not a negative comment regarding other algo-
rithms, and that an excellent algorithm might fail to be selected simply because not enough anal-
ysis was available at the time of the committee decision. The submitter/submitters acknowledge
that the committee decisions reflect the collective expert judgments of the committee members
and are not subject to appeal. The submitter/submitters understand that if they disagree with
published analyses then they are expected to promptly and publicly respond to those analyses,
not to wait for subsequent committee decisions. The submitter/submitters understand that this
statement is required as a condition of consideration of this submission by the CAESAR selection
committee.

References

[1] Daniel Bernstein. ChaCha, a variant of Salsa20. Workshop Record of SASC 2008: The State of
the Art of Stream Ciphers. ECRYPT, 2008. Also available at http://cr.yp.to/chacha.html.

[2] Daniel Bernstein. The Salsa20 family of stream ciphers. In: New stream cipher designs: the
eSTREAM finalists. Springer 2008. Also available at http://cr.yp.to/snuffle.html

[3] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF protocols. IETF Internet
Draft. http://datatracker.ietf.org/doc/draft-nir-cfrg-chacha20-poly1305. Accessed
15 March 2014.

[4] Ted Krovetz. Message authentication on 64-bit architectures. Selected Areas of Cryptography
(SAC 2006), Springer, 2007. Also available at http://krovetz.net/csus.

[5] Phillip Rogaway and Tom Shrimpton. Deterministic Authenticated-Encryption: A Provable-
Security Treatment of the Keywrap Problem. EUROCRYPT 2006. Springer, 2006. Also avail-
able at http://www.cs.ucdavis.edu/~rogaway/papers.

7

http://cr.yp.to/chacha.html
http://cr.yp.to/snuffle.html
http://datatracker.ietf.org/doc/draft-nir-cfrg-chacha20-poly1305
http://krovetz.net/csus
http://www.cs.ucdavis.edu/~rogaway/papers

Network Working Group Y. Nir
Internet-Draft Check Point
Intended status: Informational A. Langley
Expires: August 4, 2014 Google Inc
 January 31, 2014

 ChaCha20 and Poly1305 for IETF protocols
 draft-nir-cfrg-chacha20-poly1305-01

Abstract

 This document defines the ChaCha20 stream cipher, as well as the use
 of the Poly1305 authenticator, both as stand-alone algorithms, and as
 a "combined mode", or Authenticated Encryption with Additional Data
 (AEAD) algorithm.

 This document does not introduce any new crypto, but is meant to
 serve as a stable reference and an implementation guide.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 4, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Nir & Langley Expires August 4, 2014 [Page 1]

http://tools.ietf.org/pdf/bcp78
http://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
http://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft ChaCha20 & Poly1305 January 2014

Table of Contents

 1. Introduction . 3
 1.1. Conventions Used in This Document 3
 2. The Algorithms . 4
 2.1. The ChaCha Quarter Round 4
 2.1.1. Test Vector for the ChaCha Quarter Round 4
 2.2. A Quarter Round on the ChaCha State 5
 2.2.1. Test Vector for the Quarter Round on the ChaCha
 state . 5
 2.3. The ChaCha20 block Function 6
 2.3.1. Test Vector for the ChaCha20 Block Function 7
 2.4. The ChaCha20 encryption algorithm 8
 2.4.1. Example and Test Vector for the ChaCha20 Cipher . . . 9
 2.5. The Poly1305 algorithm 10
 2.5.1. Poly1305 Example and Test Vector 12
 2.6. Generating the Poly1305 key using ChaCha20 13
 2.7. AEAD Construction . 14
 2.7.1. Example and Test Vector for AEAD_CHACHA20-POLY1305 . . 15
 3. Implementation Advice . 17
 4. Security Considerations 18
 5. IANA Considerations . 19
 6. Acknowledgements . 19
 7. References . 19
 7.1. Normative References 19
 7.2. Informative References 19
 Authors’ Addresses . 20

Nir & Langley Expires August 4, 2014 [Page 2]

Internet-Draft ChaCha20 & Poly1305 January 2014

1. Introduction

 The Advanced Encryption Standard (AES - [FIPS-197]) has become the
 gold standard in encryption. Its efficient design, wide
 implementation, and hardware support allow for high performance in
 many areas. On most modern platforms, AES is anywhere from 4x to 10x
 as fast as the previous most-used cipher, 3-key Data Encryption
 Standard (3DES - [FIPS-46]), which makes it not only the best choice,
 but the only choice.

 The problem is that if future advances in cryptanalysis reveal a
 weakness in AES, users will be in an unenviable position. With the
 only other widely supported cipher being the much slower 3DES, it is
 not feasible to re-configure implementations to use 3DES.
 [standby-cipher] describes this issue and the need for a standby
 cipher in greater detail.

 This document defines such a standby cipher. We use ChaCha20
 ([chacha]) with or without the Poly1305 ([poly1305]) authenticator.
 These algorithms are not just fast and secure. They are fast even if
 software-only C-language implementations, allowing for much quicker
 deployment when compared with algorithms such as AES that are
 significantly accelerated by hardware implementations.

 These document does not introduce these new algorithms. They have
 been defined in scientific papers by D. J. Bernstein, which are
 referenced by this document. The purpose of this document is to
 serve as a stable reference for IETF documents making use of these
 algorithms.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The description of the ChaCha algorithm will at various time refer to
 the ChaCha state as a "vector" or as a "matrix". This follows the
 use of these terms in DJB’s paper. The matrix notation is more
 visually convenient, and gives a better notion as to why some rounds
 are called "column rounds" while others are called "diagonal rounds".
 Here’s a diagram of how to martices relate to vectors (using the C
 language convention of zero being the index origin).

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

Nir & Langley Expires August 4, 2014 [Page 3]

http://tools.ietf.org/pdf/rfc2119

Internet-Draft ChaCha20 & Poly1305 January 2014

 The elements in this vector or matrix are 32-bit unsigned integers.

 The algorithm name is "ChaCha". "ChaCha20" is a specific instance
 where 20 "rounds" (or 80 quarter rounds - see Section 2.1) are used.
 Other variations are defined, with 8 or 12 rounds, but in this
 document we only describe the 20-round ChaCha, so the names "ChaCha"
 and "ChaCha20" will be used interchangeably.

2. The Algorithms

 The subsections below describe the algorithms used and the AEAD
 construction.

2.1. The ChaCha Quarter Round

 The basic operation of the ChaCha algorithm is the quarter round. It
 operates on four 32-bit unsigned integers, denoted a, b, c, and d.
 The operation is as follows (in C-like notation):
 o a += b; d ^= a; d <<<= 16;
 o c += d; b ^= c; b <<<= 12;
 o a += b; d ^= a; d <<<= 8;
 o c += d; b ^= c; b <<<= 7;
 Where "+" denotes integer addition without carry, "^" denotes a
 bitwise XOR, and "<<< n" denotes an n-bit left rotation (towards the
 high bits).

 For example, let’s see the add, XOR and roll operations from the
 first line with sample numbers:
 o b = 0x01020304
 o a = 0x11111111
 o d = 0x01234567
 o a = a + b = 0x11111111 + 0x01020304 = 0x12131415
 o d = d ^ a = 0x01234567 ^ 0x12131415 = 0x13305172
 o d = d<<<16 = 0x51721330

2.1.1. Test Vector for the ChaCha Quarter Round

 For a test vector, we will use the same numbers as in the example,
 adding something random for c.
 o a = 0x11111111
 o b = 0x01020304
 o c = 0x9b8d6f43
 o d = 0x01234567

 After running a Quarter Round on these 4 numbers, we get these:

Nir & Langley Expires August 4, 2014 [Page 4]

Internet-Draft ChaCha20 & Poly1305 January 2014

 o a = 0xea2a92f4
 o b = 0xcb1cf8ce
 o c = 0x4581472e
 o d = 0x5881c4bb

2.2. A Quarter Round on the ChaCha State

 The ChaCha state does not have 4 integer numbers, but 16. So the
 quarter round operation works on only 4 of them - hence the name.
 Each quarter round operates on 4 pre-determined numbers in the ChaCha
 state. We will denote by QUATERROUND(x,y,z,w) a quarter-round
 operation on the numbers at indexes x, y, z, and w of the ChaCha
 state when viewed as a vector. For example, if we apply
 QUARTERROUND(1,5,9,13) to a state, this means running the quarter
 round operation on the elements marked with an asterisk, while
 leaving the others alone:

 0 *a 2 3
 4 *b 6 7
 8 *c 10 11
 12 *d 14 15

 Note that this run of quarter round is part of what is called a
 "column round".

2.2.1. Test Vector for the Quarter Round on the ChaCha state

 For a test vector, we will use a ChaCha state that was generated
 randomly:

 Sample ChaCha State

 879531e0 c5ecf37d 516461b1 c9a62f8a
 44c20ef3 3390af7f d9fc690b 2a5f714c
 53372767 b00a5631 974c541a 359e9963
 5c971061 3d631689 2098d9d6 91dbd320

 We will apply the QUARTERROUND(2,7,8,13) operation to this state.
 For obvious reasons, this one is part of what is called a "diagonal
 round":

Nir & Langley Expires August 4, 2014 [Page 5]

Internet-Draft ChaCha20 & Poly1305 January 2014

 After applying QUARTERROUND(2,7,8,13)

 879531e0 c5ecf37d bdb886dc c9a62f8a
 44c20ef3 3390af7f d9fc690b cfacafd2
 e46bea80 b00a5631 974c541a 359e9963
 5c971061 ccc07c79 2098d9d6 91dbd320

 Note that only the numbers in positions 2, 7, 8, and 13 changed.

2.3. The ChaCha20 block Function

 The ChaCha block function transforms a ChaCha state by running
 multiple quarter rounds.

 The inputs to ChaCha20 are:
 o A 256-bit key, treated as a concatenation of 8 32-bit little-
 endian integers.
 o A 96-bit nonce, treated as a concatenation of 3 32-bit little-
 endian integers.
 o A 32-bit block count parameter, treated as a 32-bit little-endian
 integer.

 The output is 64 random-looking bytes.

 The ChaCha algorithm described here uses a 256-bit key. The original
 algorithm also specified 128-bit keys and 8- and 12-round variants,
 but these are out of scope for this document. In this section we
 describe the ChaCha block function.

 Note also that the original ChaCha had a 64-bit nonce and 64-bit
 block count. We have modified this here to be more consistent with
 recommendations in section 3.2 of [RFC5116]. This limits the use of
 a single (key,nonce) combination to 2^32 blocks, or 256 GB, but that
 is enough for most uses. In cases where a single key is used by
 multiple senders, it is important to make sure that they don’t use
 the same nonces. This can be assured by partitioning the nonce space
 so that the first 32 bits are unique per sender, while the other 64
 bits come from a counter.

 The ChaCha20 as follows:
 o The first 4 words (0-3) are constants: 0x61707865, 0x3320646e,
 0x79622d32, 0x6b206574.
 o The next 8 words (4-11) are taken from the 256-bit key by reading
 the bytes in little-endian order, in 4-byte chunks.
 o Word 12 is a block counter. Since each block is 64-byte, a 32-bit
 word is enough for 256 Gigabytes of data.

Nir & Langley Expires August 4, 2014 [Page 6]

http://tools.ietf.org/pdf/rfc5116#section-3.2

Internet-Draft ChaCha20 & Poly1305 January 2014

 o Words 13-15 are a nonce, which should not be repeated for the same
 key. The 13th word is the first 32 bits of the input nonce taken
 as a little-endian integer, while the 15th word is the last 32
 bits.

 cccccccc cccccccc cccccccc cccccccc
 kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
 kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk
 bbbbbbbb nnnnnnnn nnnnnnnn nnnnnnnn

 c=constant k=key b=blockcount n=nonce

 ChaCha20 runs 20 rounds, alternating between "column" and "diagonal"
 rounds. Each round is 4 quarter-rounds, and they are run as follows.
 Rounds 1-4 are part of the "column" round, while 5-8 are part of the
 "diagonal" round:
 1. QUARTERROUND (0, 4, 8,12)
 2. QUARTERROUND (1, 5, 9,13)
 3. QUARTERROUND (2, 6,10,14)
 4. QUARTERROUND (3, 7,11,15)
 5. QUARTERROUND (0, 5,10,15)
 6. QUARTERROUND (1, 6,11,12)
 7. QUARTERROUND (2, 7, 8,13)
 8. QUARTERROUND (3, 4, 9,14)

 At the end of 20 rounds, the original input words are added to the
 output words, and the result is serialized by sequencing the words
 one-by-one in little-endian order.

2.3.1. Test Vector for the ChaCha20 Block Function

 For a test vector, we will use the following inputs to the ChaCha20
 block function:
 o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
 14:15:16:17:18:19:1a:1b:1c:1d:1e:1f. The key is a sequence of
 octets with no particular structure before we copy it into the
 ChaCha state.
 o Nonce = (00:00:00:09:00:00:00:4a:00:00:00:00)
 o Block Count = 1.

 After setting up the ChaCha state, it looks like this:

 ChaCha State with the key set up.

 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000001 09000000 4a000000 00000000

Nir & Langley Expires August 4, 2014 [Page 7]

Internet-Draft ChaCha20 & Poly1305 January 2014

 After running 20 rounds (10 column rounds interleaved with 10
 diagonal rounds), the ChaCha state looks like this:

 ChaCha State after 20 rounds

 837778ab e238d763 a67ae21e 5950bb2f
 c4f2d0c7 fc62bb2f 8fa018fc 3f5ec7b7
 335271c2 f29489f3 eabda8fc 82e46ebd
 d19c12b4 b04e16de 9e83d0cb 4e3c50a2

 Finally we add the original state to the result (simple vector or
 matrix addition), giving this:

 ChaCha State at the end of the ChaCha20 operation

 e4e7f110 15593bd1 1fdd0f50 c47120a3
 c7f4d1c7 0368c033 9aaa2204 4e6cd4c3
 466482d2 09aa9f07 05d7c214 a2028bd9
 d19c12b5 b94e16de e883d0cb 4e3c50a2

2.4. The ChaCha20 encryption algorithm

 ChaCha20 is a stream cipher designed by D. J. Bernstein. It is a
 refinement of the Salsa20 algorithm, and uses a 256-bit key.

 ChaCha20 successively calls the ChaCha20 block function, with the
 same key and nonce, and with successively increasing block counter
 parameters. The resulting state is then serialized by writing the
 numbers in little-endian order. Concatenating the results from the
 successive blocks forms a key stream, which is then XOR-ed with the
 plaintext. There is no requirement for the plaintext to be an
 integral multiple of 512-bits. If there is extra keystream from the
 last block, it is discarded. Specific protocols MAY require that the
 plaintext and ciphertext have certain length. Such protocols need to
 specify how the plaintext is padded, and how much padding it
 receives.

 The inputs to ChaCha20 are:
 o A 256-bit key
 o A 32-bit initial counter. This can be set to any number, but will
 usually be zero or one. It makes sense to use 1 if we use the
 zero block for something else, such as generating a one-time
 authenticator key as part of an AEAD algorithm.
 o A 96-bit nonce. In some protocols, this is known as the
 Initialization Vector.
 o an arbitrary-length plaintext

 The output is an encrypted message of the same length.

Nir & Langley Expires August 4, 2014 [Page 8]

Internet-Draft ChaCha20 & Poly1305 January 2014

2.4.1. Example and Test Vector for the ChaCha20 Cipher

 For a test vector, we will use the following inputs to the ChaCha20
 block function:
 o Key = 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10:11:12:13:
 14:15:16:17:18:19:1a:1b:1c:1d:1e:1f.
 o Nonce = (00:00:00:00:00:00:00:4a:00:00:00:00).
 o Initial Counter = 1.

 We use the following for the plaintext. It was chosen to be long
 enough to require more than one block, but not so long that it would
 make this example cumbersome (so, less than 3 blocks):

 Plaintext Sunscreen:
 000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c|Ladies and Gentl
 016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73|emen of the clas
 032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63|s of ’99: If I c
 048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f|ould offer you o
 064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20|nly one tip for
 080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73|the future, suns
 096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69|creen would be i
 112 74 2e |t.

 The following figure shows 4 ChaCha state matrices:
 1. First block as it is set up.
 2. Second block as it is set up. Note that these blocks are only
 two bits apart - only the counter in position 12 is different.
 3. Third block is the first block after the ChaCha20 block
 operation.
 4. Final block is the second block after the ChaCha20 block
 operation was applied.
 After that, we show the keystream.

 First block setup:
 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000001 00000000 4a000000 00000000

 Second block setup:
 61707865 3320646e 79622d32 6b206574
 03020100 07060504 0b0a0908 0f0e0d0c
 13121110 17161514 1b1a1918 1f1e1d1c
 00000002 00000000 4a000000 00000000

Nir & Langley Expires August 4, 2014 [Page 9]

Internet-Draft ChaCha20 & Poly1305 January 2014

 First block after block operation:
 f3514f22 e1d91b40 6f27de2f ed1d63b8
 821f138c e2062c3d ecca4f7e 78cff39e
 a30a3b8a 920a6072 cd7479b5 34932bed
 40ba4c79 cd343ec6 4c2c21ea b7417df0

 Second block after block operation:
 9f74a669 410f633f 28feca22 7ec44dec
 6d34d426 738cb970 3ac5e9f3 45590cc4
 da6e8b39 892c831a cdea67c1 2b7e1d90
 037463f3 a11a2073 e8bcfb88 edc49139

 Keystream:
 22:4f:51:f3:40:1b:d9:e1:2f:de:27:6f:b8:63:1d:ed:8c:13:1f:82:3d:2c:06
 e2:7e:4f:ca:ec:9e:f3:cf:78:8a:3b:0a:a3:72:60:0a:92:b5:79:74:cd:ed:2b
 93:34:79:4c:ba:40:c6:3e:34:cd:ea:21:2c:4c:f0:7d:41:b7:69:a6:74:9f:3f
 63:0f:41:22:ca:fe:28:ec:4d:c4:7e:26:d4:34:6d:70:b9:8c:73:f3:e9:c5:3a
 c4:0c:59:45:39:8b:6e:da:1a:83:2c:89:c1:67:ea:cd:90:1d:7e:2b:f3:63

 Finally, we XOR the Keystream with the plaintext, yielding the
 Ciphertext:

 Ciphertext Sunscreen:
 000 6e 2e 35 9a 25 68 f9 80 41 ba 07 28 dd 0d 69 81|n.5.%h..A..(..i.
 016 e9 7e 7a ec 1d 43 60 c2 0a 27 af cc fd 9f ae 0b|.~z..C‘..’......
 032 f9 1b 65 c5 52 47 33 ab 8f 59 3d ab cd 62 b3 57|..e.RG3..Y=..b.W
 048 16 39 d6 24 e6 51 52 ab 8f 53 0c 35 9f 08 61 d8|.9.$.QR..S.5..a.
 064 07 ca 0d bf 50 0d 6a 61 56 a3 8e 08 8a 22 b6 5e|....P.jaV....".^
 080 52 bc 51 4d 16 cc f8 06 81 8c e9 1a b7 79 37 36|R.QM.........y76
 096 5a f9 0b bf 74 a3 5b e6 b4 0b 8e ed f2 78 5e 42|Z...t.[......x^B
 112 87 4d |.M

2.5. The Poly1305 algorithm

 Poly1305 is a one-time authenticator designed by D. J. Bernstein.
 Poly1305 takes a 32-byte one-time key and a message and produces a
 16-byte tag.

 The original article ([poly1305]) is entitled "The Poly1305-AES
 message-authentication code", and the MAC function there requires a
 128-bit AES key, a 128-bit "additional key", and a 128-bit (non-
 secret) nonce. AES is used there for encrypting the nonce, so as to
 get a unique (and secret) 128-bit string, but as the paper states,
 "There is nothing special about AES here. One can replace AES with
 an arbitrary keyed function from an arbitrary set of nonces to 16-
 byte strings.".

Nir & Langley Expires August 4, 2014 [Page 10]

Internet-Draft ChaCha20 & Poly1305 January 2014

 Regardless of how the key is generated, the key is partitioned into
 two parts, called "r" and "s". The pair (r,s) should be unique, and
 MUST be unpredictable for each invocation (that is why it was
 originally obtained by encrypting a nonce), while "r" MAY be
 constant, but needs to be modified as follows before being used: ("r"
 is treated as a 16-octet little-endian number):
 o r[3], r[7], r[11], and r[15] are required to have their top four
 bits clear (be smaller than 16)
 o r[4], r[8], and r[12] are required to have their bottom two bits
 clear (be divisible by 4)

 The following sample code clamps "r" to be appropriate:

 /*
 Adapted from poly1305aes_test_clamp.c version 20050207
 D. J. Bernstein
 Public domain.
 */

 #include "poly1305aes_test.h"

 void poly1305aes_test_clamp(unsigned char r[16])
 {
 r[3] &= 15;
 r[7] &= 15;
 r[11] &= 15;
 r[15] &= 15;
 r[4] &= 252;
 r[8] &= 252;
 r[12] &= 252;
 }

 The "s" should be unpredictable, but it is perfectly acceptable to
 generate both "r" and "s" uniquely each time. Because each of them
 is 128-bit, pseudo-randomly generating them (see Section 2.6) is also
 acceptable.

 The inputs to Poly1305 are:
 o A 256-bit one-time key
 o An arbitrary length message

 The output is a 128-bit tag.

 First, the "r" value should be clamped.

 Next, set the constant prime "P" be 2^130-5:
 3fffffffffffffffffffffffffffffffb. Also set a variable "accumulator"
 to zero.

Nir & Langley Expires August 4, 2014 [Page 11]

Internet-Draft ChaCha20 & Poly1305 January 2014

 Next, divide the message into 16-byte blocks. The last one might be
 shorter:
 o Read the block as a little-endian number.
 o Add one bit beyond the number of octets. For a 16-byte block this
 is equivalent to adding 2^128 to the number. For the shorter
 block it can be 2^120, 2^112, or any power of two that is evenly
 divisible by 8, all the way down to 2^8.
 o If the block is not 17 bytes long (the last block), pad it with
 zeros. This is meaningless if you’re treating it them as numbers.
 o Add this number to the accumulator.
 o Multiply by "r"
 o Set the accumulator to the result modulo p. To summarize: Acc =
 ((Acc+block)*r) % p.

 Finally, the value of the secret key "s" is added to the accumulator,
 and the 128 least significant bits are serialized in little-endian
 order to form the tag.

2.5.1. Poly1305 Example and Test Vector

 For our example, we will dispense with generating the one-time key
 using AES, and assume that we got the following keying material:
 o Key Material: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8:01:
 03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:f5:1b
 o s as an octet string: 01:03:80:8a:fb:0d:b2:fd:4a:bf:f6:af:41:49:
 f5:1b
 o s as a 128-bit number: 1bf54941aff6bf4afdb20dfb8a800301
 o r before clamping: 85:d6:be:78:57:55:6d:33:7f:44:52:fe:42:d5:06:a8
 o Clamped r as a number: 806d5400e52447c036d555408bed685.

 For our message, we’ll use a short text:

 Message to be Authenticated:
 000 43 72 79 70 74 6f 67 72 61 70 68 69 63 20 46 6f|Cryptographic Fo
 016 72 75 6d 20 52 65 73 65 61 72 63 68 20 47 72 6f|rum Research Gro
 032 75 70 |up

 Since Poly1305 works in 16-byte chunks, the 34-byte message divides
 into 3 blocks. In the following calculation, "Acc" denotes the
 accumulator and "Block" the current block:

Nir & Langley Expires August 4, 2014 [Page 12]

Internet-Draft ChaCha20 & Poly1305 January 2014

 Block #1

 Acc = 00
 Block = 6f4620636968706172676f7470797243
 Block with 0x01 byte = 016f4620636968706172676f7470797243
 Acc + block = 016f4620636968706172676f7470797243
 (Acc+Block) * r =
 b83fe991ca66800489155dcd69e8426ba2779453994ac90ed284034da565ecf
 Acc = ((Acc+Block)*r) % P = 2c88c77849d64ae9147ddeb88e69c83fc

 Block #2

 Acc = 2c88c77849d64ae9147ddeb88e69c83fc
 Block = 6f7247206863726165736552206d7572
 Block with 0x01 byte = 016f7247206863726165736552206d7572
 Acc + block = 437febea505c820f2ad5150db0709f96e
 (Acc+Block) * r =
 21dcc992d0c659ba4036f65bb7f88562ae59b32c2b3b8f7efc8b00f78e548a26
 Acc = ((Acc+Block)*r) % P = 2d8adaf23b0337fa7cccfb4ea344b30de

 Last Block

 Acc = 2d8adaf23b0337fa7cccfb4ea344b30de
 Block = 7075
 Block with 0x01 byte = 017075
 Acc + block = 2d8adaf23b0337fa7cccfb4ea344ca153
 (Acc + Block) * r =
 16d8e08a0f3fe1de4fe4a15486aca7a270a29f1e6c849221e4a6798b8e45321f
 ((Acc + Block) * r) % P = 28d31b7caff946c77c8844335369d03a7

 Adding s we get this number, and serialize if to get the tag:

 Acc + s = 2a927010caf8b2bc2c6365130c11d06a8

 Tag: a8:06:1d:c1:30:51:36:c6:c2:2b:8b:af:0c:01:27:a9

2.6. Generating the Poly1305 key using ChaCha20

 As said in Section 2.5, it is acceptable to generate the one-time
 Poly1305 pseudo-randomly. This section proposes such a method.

 To generate such a key pair (r,s), we will use the ChaCha20 block
 function described in Section 2.3. This assumes that we have a 256-
 bit session key for the MAC function, such as SK_ai and SK_ar in
 IKEv2, the integrity key in ESP and AH, or the client_write_MAC_key
 and server_write_MAC_key in TLS. Any document that specifies the use
 of Poly1305 as a MAC algorithm for some protocol must specify that
 256 bits are allocated for the integrity key.

Nir & Langley Expires August 4, 2014 [Page 13]

Internet-Draft ChaCha20 & Poly1305 January 2014

 The method is to call the block function with the following
 parameters:
 o The 256-bit session integrity key is used as the ChaCha20 key.
 o The block counter is set to zero.
 o The protocol will specify a 96-bit or 64-bit nonce. This MUST be
 unique per invocation with the same key, so it MUST NOT be
 randomly generated. A counter is a good way to implement this,
 but other methods, such as an LFSR are also acceptable. ChaCha20
 as specified here requires a 96-bit nonce. So if the provided
 nonce is only 64-bit, then the first 32 bits of the nonce will be
 set to a constant number. This will usually be zero, but for
 protocols with multiple sender, it may be different for each
 sender, but should be the same for all invocations of the function
 with the same key by a particular sender.

 After running the block function, we have a 512-bit state. We take
 the first 256 bits or the serialized state, and use those as the one-
 time Poly1305 key: The first 128 bits are clamped, and form "r",
 while the next 128 bits become "s". The other 256 bits are
 discarded.

 Note that while many protocols have provisions for a nonce for
 encryption algorithms (often called Initialization Vectors, or IVs),
 they usually don’t have such a provision for the MAC function. In
 that case the per-invocation nonce will have to come from somewhere
 else, such as a message counter.

2.7. AEAD Construction

 Note: Much of the content of this document, including this AEAD
 construction is taken from Adam Langley’s draft ([agl-draft]) for the
 use of these algorithms in TLS. The AEAD construction described here
 is called AEAD_CHACHA20-POLY1305.

 AEAD_CHACHA20-POLY1305 is an authenticated encryption with additional
 data algorithm. The inputs to AEAD_CHACHA20-POLY1305 are:
 o A 256-bit key
 o A 96-bit nonce - different for each invocation with the same key.
 o An arbitrary length plaintext
 o Arbitrary length additional data

 The ChaCha20 and Poly1305 primitives are combined into an AEAD that
 takes a 256-bit key and 64-bit IV as follows:
 o First the 96-bit nonce is constructed by prepending a 32-bit
 constant value to the IV. This could be set to zero, or could be
 derived from keying material, or could be assigned to a sender.
 It is up to the specific protocol to define the source for that
 32-bit value.

Nir & Langley Expires August 4, 2014 [Page 14]

Internet-Draft ChaCha20 & Poly1305 January 2014

 o Next, a Poly1305 one-time key is generated from the 256-bit key
 and nonce using the procedure described in Section 2.6.
 o The ChaCha20 encryption function is called to encrypt the
 plaintext, using the same key and nonce, and with the initial
 counter set to 1.
 o The Poly1305 function is called with the Poly1305 key calculated
 above, and a message constructed as a concatenation of the
 following:
 * The additional data
 * The length of the additional data in octets (as a 64-bit
 little-endian integer). TBD: bit count rather than octets?
 network order?
 * The ciphertext
 * The length of the ciphertext in octets (as a 64-bit little-
 endian integer). TBD: bit count rather than octets? network
 order?

 Decryption is pretty much the same thing.

 The output from the AEAD is twofold:
 o A ciphertext of the same length as the plaintext.
 o A 128-bit tag, which is the output of the Poly1305 function.

 A few notes about this design:
 1. The amount of encrypted data possible in a single invocation is
 2^32-1 blocks of 64 bytes each, for a total of 247,877,906,880
 bytes, or nearly 256 GB. This should be enough for traffic
 protocols such as IPsec and TLS, but may be too small for file
 and/or disk encryption. For such uses, we can return to the
 original design, reduce the nonce to 64 bits, and use the integer
 at position 13 as the top 32 bits of a 64-bit block counter,
 increasing the total message size to over a million petabytes
 (1,180,591,620,717,411,303,360 bytes to be exact).
 2. Despite the previous item, the ciphertext length field in the
 construction of the buffer on which Poly1305 runs limits the
 ciphertext (and hence, the plaintext) size to 2^64 bytes, or
 sixteen thousand petabytes (18,446,744,073,709,551,616 bytes to
 be exact).

2.7.1. Example and Test Vector for AEAD_CHACHA20-POLY1305

 For a test vector, we will use the following inputs to the
 AEAD_CHACHA20-POLY1305 function:

Nir & Langley Expires August 4, 2014 [Page 15]

Internet-Draft ChaCha20 & Poly1305 January 2014

 Plaintext:
 000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c|Ladies and Gentl
 016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73|emen of the clas
 032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63|s of ’99: If I c
 048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f|ould offer you o
 064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20|nly one tip for
 080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73|the future, suns
 096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69|creen would be i
 112 74 2e |t.

 AAD:
 000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 PQRS........

 Key:
 000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f|................
 016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f|................

 IV:
 000 40 41 42 43 44 45 46 47 @ABCDEFG

 32-bit fixed-common part:
 000 07 00 00 00

 Set up for generating poly1305 one-time key (sender id=7):
 61707865 3320646e 79622d32 6b206574
 83828180 87868584 8b8a8988 8f8e8d8c
 93929190 97969594 9b9a9998 9f9e9d9c
 00000000 00000007 43424140 47464544

 After generating Poly1305 one-time key:
 252bac7b af47b42d 557ab609 8455e9a4
 73d6e10a ebd97510 7875932a ff53d53e
 decc7ea2 b44ddbad e49c17d1 d8430bc9
 8c94b7bc 8b7d4b4b 3927f67d 1669a432

 Poly1305 Key:
 000 7b ac 2b 25 2d b4 47 af 09 b6 7a 55 a4 e9 55 84|{.+%-.G...zU..U.
 016 0a e1 d6 73 10 75 d9 eb 2a 93 75 78 3e d5 53 ff|...s.u..*.ux>.S.

 Poly1305 r = 455e9a4057ab6080f47b42c052bac7b
 Poly1305 s = ff53d53e7875932aebd9751073d6e10a

Nir & Langley Expires August 4, 2014 [Page 16]

Internet-Draft ChaCha20 & Poly1305 January 2014

 Keystream bytes:
 9f:7b:e9:5d:01:fd:40:ba:15:e2:8f:fb:36:81:0a:ae:
 c1:c0:88:3f:09:01:6e:de:dd:8a:d0:87:55:82:03:a5:
 4e:9e:cb:38:ac:8e:5e:2b:b8:da:b2:0f:fa:db:52:e8:
 75:04:b2:6e:be:69:6d:4f:60:a4:85:cf:11:b8:1b:59:
 fc:b1:c4:5f:42:19:ee:ac:ec:6a:de:c3:4e:66:69:78:
 8e:db:41:c4:9c:a3:01:e1:27:e0:ac:ab:3b:44:b9:cf:
 5c:86:bb:95:e0:6b:0d:f2:90:1a:b6:45:e4:ab:e6:22:
 15:38

 Ciphertext:
 000 d3 1a 8d 34 64 8e 60 db 7b 86 af bc 53 ef 7e c2|...4d.‘.{...S.~.
 016 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7 36 ee 62 d6|...Q)n......6.b.
 032 3d be a4 5e 8c a9 67 12 82 fa fb 69 da 92 72 8b|=..^..g....i..r.
 048 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6 7e cd 3b 36|.q.....)....~.;6
 064 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3 28 09 1b 58|...-w......(..X
 080 fa b3 24 e4 fa d6 75 94 55 85 80 8b 48 31 d7 bc|..$...u.U...H1..
 096 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65 86 ce c6 4b|?....Kz..v.e...K
 112 61 16 |a.

 AEAD Construction for Poly1305:
 000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 0c 00 00 00|PQRS............
 016 00 00 00 00 d3 1a 8d 34 64 8e 60 db 7b 86 af bc|.......4d.‘.{...
 032 53 ef 7e c2 a4 ad ed 51 29 6e 08 fe a9 e2 b5 a7|S.~....Q)n......
 048 36 ee 62 d6 3d be a4 5e 8c a9 67 12 82 fa fb 69|6.b.=..^..g....i
 064 da 92 72 8b 1a 71 de 0a 9e 06 0b 29 05 d6 a5 b6|..r..q.....)....
 080 7e cd 3b 36 92 dd bd 7f 2d 77 8b 8c 98 03 ae e3|~.;6...-w......
 096 28 09 1b 58 fa b3 24 e4 fa d6 75 94 55 85 80 8b|(..X..$...u.U...
 112 48 31 d7 bc 3f f4 de f0 8e 4b 7a 9d e5 76 d2 65|H1..?....Kz..v.e
 128 86 ce c6 4b 61 16 72 00 00 00 00 00 00 00 |...Ka.r.......

 Tag:
 18:fb:11:a5:03:1a:d1:3a:7e:3b:03:d4:6e:e3:a6:a7

3. Implementation Advice

 Each block of ChaCha20 involves 16 move operations and one increment
 operation for loading the state, 80 each of XOR, addition and Roll
 operations for the rounds, 16 more add operations and 16 XOR
 operations for protecting the plaintext. Section 2.3 describes the
 ChaCha block function as "adding the original input words". This
 implies that before starting the rounds on the ChaCha state, it is
 copied aside only to be added in later. This would be correct, but
 it saves a few operations to instead copy the state and do the work

Nir & Langley Expires August 4, 2014 [Page 17]

Internet-Draft ChaCha20 & Poly1305 January 2014

 on the copy. This way, for the next block you don’t need to recreate
 the state, but only to increment the block counter. This saves
 approximately 5.5% of the cycles.

 It is NOT RECOMMENDED to use a generic big number library such as the
 one in OpenSSL for the arithmetic operations in Poly1305. Such
 libraries use dynamic allocation to be able to handle any-sized
 integer, but that flexibility comes at the expense of performance as
 well as side-channel security. More efficient implementations that
 run in constant time are available, one of them in DJB’s own library,
 NaCl ([NaCl]).

4. Security Considerations

 The ChaCha20 cipher is designed to provide 256-bit security.

 The Poly1305 authenticator is designed to ensure that forged messages
 are rejected with a probability of 1-(n/(2^102)) for a 16n-byte
 message, even after sending 2^64 legitimate messages, so it is SUF-
 CMA in the terminology of [AE].

 Proving the security of either of these is beyond the scope of this
 document. Such proofs are available in the referenced academic
 papers.

 The most important security consideration in implementing this draft
 is the uniqueness of the nonce used in ChaCha20. Counters and LFSRs
 are both acceptable ways of generating unique nonces, as is
 encrypting a counter using a 64-bit cipher such as DES. Note that it
 is not acceptable to use a truncation of a counter encrypted with a
 128-bit or 256-bit cipher, because such a truncation may repeat after
 a short time.

 The Poly1305 key MUST be unpredictable to an attacker. Randomly
 generating the key would fulfill this requirement, except that
 Poly1305 is often used in communications protocols, so the receiver
 should know the key. Pseudo-random number generation such as by
 encrypting a counter is acceptable. Using ChaCha with a secret key
 and a nonce is also acceptable.

 The algorithms presented here were designed to be easy to implement
 in constant time to avoid side-channel vulnerabilities. The
 operations used in ChaCha20 are all additions, XORs, and fixed
 rotations. All of these can and should be implemented in constant
 time. Access to offsets into the ChaCha state and the number of
 operations do not depend on any property of the key, eliminating the
 chance of information about the key leaking through the timing of

Nir & Langley Expires August 4, 2014 [Page 18]

Internet-Draft ChaCha20 & Poly1305 January 2014

 cache misses.

 For Poly1305, the operations are addition, multiplication and
 modulus, all on >128-bit numbers. This can be done in constant time,
 but a naive implementation (such as using some generic big number
 library) will not be constant time. For example, if the
 multiplication is performed as a separate operation from the modulus,
 the result will some times be under 2^256 and some times be above
 2^256. Implementers should be careful about timing side-channels for
 Poly1305 by using the appropriate implementation of these operations.

5. IANA Considerations

 There are no IANA considerations for this document.

6. Acknowledgements

 None of the algorithms here are my own. ChaCha20 and Poly1305 were
 invented by Daniel J. Bernstein, and the AEAD construction was
 invented by Adam Langley.

 Thanks to Robert Ransom and Ilari Liusvaara for their helpful
 comments and explanations.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [chacha] Bernstein, D., "ChaCha, a variant of Salsa20", Jan 2008.

 [poly1305]
 Bernstein, D., "The Poly1305-AES message-authentication
 code", Mar 2005.

7.2. Informative References

 [AE] Bellare, M. and C. Namprempre, "Authenticated Encryption:
 Relations among notions and analysis of the generic
 composition paradigm",
 <http://cseweb.ucsd.edu/~mihir/papers/oem.html>.

 [FIPS-197]

Nir & Langley Expires August 4, 2014 [Page 19]

http://tools.ietf.org/pdf/bcp14
http://tools.ietf.org/pdf/rfc2119
http://cseweb.ucsd.edu/~mihir/papers/oem.html

Internet-Draft ChaCha20 & Poly1305 January 2014

 National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [FIPS-46] National Institute of Standards and Technology, "Data
 Encryption Standard", FIPS PUB 46-2, December 1993,
 <http://www.itl.nist.gov/fipspubs/fip46-2.htm>.

 [NaCl] Bernstein, D., Lange, T., and P. Schwabe, "NaCl:
 Networking and Cryptography library",
 <http://nacl.cace-project.eu/index.html>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [agl-draft]
 Langley, A. and W. Chang, "ChaCha20 and Poly1305 based
 Cipher Suites for TLS", draft-agl-tls-chacha20poly1305-04
 (work in progress), November 2013.

 [standby-cipher]
 McGrew, D., Grieco, A., and Y. Sheffer, "Selection of
 Future Cryptographic Standards",
 draft-mcgrew-standby-cipher (work in progress).

Authors’ Addresses

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 6789735
 Israel

 Email: synp71@live.com

 Adam Langley
 Google Inc

 Email: agl@google.com

Nir & Langley Expires August 4, 2014 [Page 20]

http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://nacl.cace-project.eu/index.html
http://tools.ietf.org/pdf/rfc5116
http://tools.ietf.org/pdf/draft-agl-tls-chacha20poly1305-04
http://tools.ietf.org/pdf/draft-mcgrew-standby-cipher

	Specification
	Parameters
	Notation

	Security Goals
	Security Analysis
	Features
	Design Rationale
	Intellectual Property
	Consent

