
iFeed[AES] v1

Designers and Submitters:

Liting Zhang1 Wenling Wu1 Han Sui1 Peng Wang2

Trusted Computing and Information Assurance Laboratory
State Key Laboratory of Computer Science

Institute of Software1

Data Assurance and Communication Security Research Center2

Chinese Academy of Sciences1,2

liting.zhang@hotmail.com

March 15, 2014

Contents

1 Introduction 1

2 Specification 2
2.1 Symbols . 2
2.2 Parameters . 3
2.3 Recommended Parameter Sets 3
2.4 Authenticated Encryption . 3
2.5 Authenticated Decryption . 5
2.6 Test Vectors . 6

3 Security Goals 8

4 Security Analysis 10
4.1 Definitions . 10
4.2 Main Results . 11
4.3 Analysis . 12

5 Features 21

6 Design Rationale 24

7 Intellectual Property 27

8 Consent 28

9 Acknowledgements 29

Chapter 1

Introduction

iFeed is a mode of operation for authenticated encryption, that can use
blockciphers or compression functions as its underlying primitives.

In this submission, we specify iFeed[AES] that uses blockcipher AES-128
as its underlying primitive.

By a random key K and a public message number, which should never
be repeated, iFeed[AES] can provide both integrity and confidentiality pro-
tections for plaintext PT. Since associated data AD needs only integrity
protection, we introduce a PMAC-like mode Mac[AES] (using the same K).

Based on pseudorandomness of AES-128, iFeed[AES] is proved to be
secure up to a birthday bound with q (the number of queries) and σ (the
total block length of queried messages).

iFeed[AES] is rate-1, in the sense that it needs only one forward invo-
cation on AES-128 to process each block in AD and PT on average. It is
also one-pass in the sense that in processing PT its mechanisms for integrity
and confidentiality protections are closely combined that by a single pass
through PT we get both protections for it.

Furthermore, iFeed[AES] has many other good features, such as one-
key, on-line, inverse-free, parallel encryption, ciphertext length preserving,
endian-less, intermediate tag supporting and etc. All these make it conve-
nient to use in many practical applications, e.g. encrypting Internet packets.

1

Chapter 2

Specification

2.1 Symbols

Symbols Descriptions

{0, 1}n the set containing all n-bit strings
{0, 1}a∼b the set containing all the strings of bit length between

a and b
{0, 1}≤l the set containing all the strings of bit length no longer

than l
X||Y the concatenation of strings X and Y
0n the string of n successive “0”
|X| the bit length of string X
|X|n the block length of string X, equals to the least number

no smaller than |X|/n, where n is the block size

K
$←K select an element K from set K uniformly at random

X · 2 128-bit value X multiplied by 2 over GF(2128)
X · 2 = X << 1 if the left most bit of X is 0 otherwise
X · 2 = X << 1⊕ (0120||10000111)

AES the advanced encryption standard, and we specially refer
it to AES-128 throughout this submission

AES(K,X) encrypting 128-bit string X by blockcipher AES-128
under a 128-bit key K

Pad(A) A||10n−1−|A| mod n if |A| < n, or A if |A| = n
Partition(A) break string A into a successive parts A1A2 · · ·Aa that

|Ai| = n (i = 1, 2, · · · , a− 1) and |Aa| ≤ n
Cut(A, b) the string A is cut into two parts, with the left part

of bit length b ≤ |A|
Truncate(A, b) the left part of Cut(A, b)

2

2.2 Parameters

Parameter Size (in bytes) iFeed[AES]

Key 16
Secret Message Number 0
Public Message Number [1,15]
Tag [2,16]

2.3 Recommended Parameter Sets

Parameter Size (in bytes) 1st recommended 2nd recommended

Key 16 16
Secret Message Number 0 0
Public Message Number 12 13
Tag 16 16

2.4 Authenticated Encryption

Although in the following iFeed[AES] is defined on bit strings, the bit lengths
of inputs (key, public message number, associated data, plaintext) and out-
puts (ciphertext, tag) shall all be multiples of 8, so that these values are
byte strings.

In authenticated encryption, the inputs to iFeed[AES] include a 128-bit
secret keyK, a public message number PMN of bit length between 1 and 127,
a plaintext PT of bit length between 0 and |PT|max, and an associated data
AD of bit length between 0 and |AD|max, with |PT|max+|AD|max ≤ 271−512.

The outputs from iFeed[AES] include a ciphertext CT and a tag T . CT
is the result of encrypting PT. It can be used to recover PT, but without
integrity checking. Its length equals to the length of PT. T is a τ -bit value
to be used to check the validity of CT, with 32 ≤ τ ≤ 128.

The public message number PMN should be a nonce, a value that never
repeated in different encryptions. If unfortunately PMN is reused by some
wrong operations, the security of iFeed[AES] would be reduced. See details
in Chapter 3.

iFeed[AES] takes K as the AES-128 key. By calculating a secret value
Z0 = AES(K, 0128), we can pre-compute the secret masks Zi by the multipli-
cation “·2” over GF(2128). The detailed authenticated encryption procedure
is described in the next page, and illustrated in Figure 2.1.

3

U

Z’i=U Zi

P10
n

Z’3 Z’4

Pl-1 Pl ||RPl-2

Z’l+1 Z’l+2

 Cl||R

Z’1

Z’2

T= Cl+1 TA

Pad(Pl)

EK EK EK EK EK EK

C1 C2 Cl-1 Cl+1

0
n

Zi=Zi-1 .2i

A1 A2 Aa-1 Pad(Aa)

Z3 Z4 Za+1

Z1 Z2
EK EK EK EK

EK TA

N

Z0

Figure 2.1: Illustration of iFeed[AES].AEnc, with EK denoted as AES-128
under K.

iFeed[AES].AEnc(K,PMN,AD,PT)

Input: K
$←{0, 1}128, PMN ∈ {0, 1}1∼127, AD ∈ {0, 1}≤|AD|max , PT ∈ {0, 1}≤|PT|max

Output: CT ∈ {0, 1}|PT|, T ∈ {0, 1}τ
101. Z0 = AES(K, 0128)
102. for i = 1 to max{|AD|128, |PT|128}+ 2 do
103. Zi = Zi−1 · 2
104. N = PMN||10127−|PMN|

105. U = AES(K,N)
106. if |AD| = 0 then TA = 0128 else TA = Mac[AES](K,Z,AD)
107. C1C2 · · ·Cl+1 = Enc[AES](K,Z,U,PT)
108. T = Truncate(TA ⊕ Cl+1, τ)
109. return CT = C1C2 · · ·Cl, T

iFeed[AES] uses two subroutines Mac[AES] and Enc[AES]. The former
is PMAC-like and is used to authenticate AD, with Z = Z1Z2 · · ·Z|AD|128+1.
The latter deals with PT for both integrity and confidentiality protections,
with Z = Z1Z2 · · ·Z|PT|128+2. Since AES has 128-bit block size, we have
n = 128 for Partition and Pad funtions.

4

Mac[AES](K,Z,AD)

Input: K
$←{0, 1}128, Z ∈ {0, 1}128×|AD|128+128, AD ∈ {0, 1}1∼|AD|max

Output: TA ∈ {0, 1}128
111. A1A2 · · ·Aa = Partition(AD)
112. SumB = 0128

113. for i = 1 to a− 1 do
114. Bi = AES(K,Ai ⊕ Zi+2)
115. SumB = SumB⊕Bi

116. if |Aa| < 128 then TA = AES(K, SumB⊕ Z1 ⊕Pad(Aa))
117. else TA = AES(K, SumB⊕ Z2 ⊕Aa)
118. return TA

Enc[AES](K,Z,U,PT)

Input: K
$←{0, 1}128, Z ∈ {0, 1}128×|PT|128+256, U ∈ {0, 1}128, PT ∈ {0, 1}≤|PT|max

Output: C1C2 · · ·Cl+1 ∈ {0, 1}|PT|+128

121. P1P2 · · ·Pl = Partition(PT)
122. P0 = 0128

123. for i = 1 to l − 1 do
124. Ci = AES(K,Pi−1 ⊕ Zi+2 ⊕ U)⊕ Pi ⊕ Zi+3 ⊕ U
125. Cl = AES(K,Pl−1 ⊕ Zl+2 ⊕ U)⊕Pad(Pl)
126. if |Pl| < 128 then ClR = Cut(Cl, |Pl|)
127. Cl+1 = AES(K, (Pl||R)⊕ Z1 ⊕ U)
128. else Cl+1 = AES(K,Pl ⊕ Z2 ⊕ U)
129. return C1C2 · · ·Cl+1

2.5 Authenticated Decryption

The authenticated decryption procedure naturally inverses the authenti-
cated encryption procedure. Its inputs include a 128-bit secret key K, a
public message number PMN of bit length between 1 and 127, a cipher-
text CT of bit length between 0 and |PT|max, an associated data AD of
bit length between 0 and |AD|max, plus a tag T ′ of τ bits. Notice that we
restrict |PT|max + |AD|max ≤ 271 − 512.

Its output is either a plaintext PT of length |CT| or a failure symbol ⊥,
depending on the tag checking of CT is valid of not.

The detailed authenticated decryption procedure is described in the next
page and illustrated in Figure 2.2.

5

iFeed[AES].ADec(K,PMN,AD,CT, T ′)

Input: K ∈ {0, 1}128, PMN ∈ {0, 1}1∼127, AD ∈ {0, 1}≤|AD|max ,

CT ∈ {0, 1}≤|PT|max , T ′ ∈ {0, 1}τ
Output: PT ∈ {0, 1}|CT| or ⊥
201. Z0 = AES(K, 0128)
202. for i = 1 to max{|AD|128, |CT|128}+ 2 do
203. Zi = Zi−1 · 2
204. N = PMN||10127−|PMN|

205. U = AES(K,N)
206. if |AD| = 0 then T ′

A = 0128 else T ′
A = Mac[AES](K,Z,AD)

207. P1P2 · · ·Pl, C
′
l+1 = Dec[AES](K,Z,U,CT)

208. if T ′ ̸= Truncate(T ′
A ⊕ C ′

l+1, τ) then return ⊥
209. else return CT = P1P2 · · ·Pl

iFeed[AES].ADec also uses two subroutines. Mac[AES] has been intro-
duced previously, and Dec[AES] is used to decrypt CT, with Z = Z1Z2 · · ·Z|CT|128+2,
as follows.

Dec[AES](K,Z,U,CT)

Input: K ∈ {0, 1}128, Z ∈ {0, 1}128×|CT|128+256, U ∈ {0, 1}128, CT ∈ {0, 1}≤|PT|max

Output: P1P2 · · ·PlC
′
l+1 ∈ {0, 1}|CT|+128

211. C1C2 · · ·Cl = Partition(CT)
212. P0 = 0128

213. for i = 1 to l − 1 do
214. Pi = AES(K,Pi−1 ⊕ Zi+2 ⊕ U)⊕ Ci ⊕ Zi+3 ⊕ U
215. Pl = AES(K,Pl−1 ⊕ Zl+2 ⊕ U)⊕Pad(Cl)
216. if |Cl| < 128 then PlR = Cut(Pl, |Cl|)
217. C ′

l+1 = AES(K, (Pl||R)⊕ Z1 ⊕ U)

218. else C ′
l+1 = AES(K,Pl ⊕ Z2 ⊕ U)

219. return P1P2 · · ·Pl, C
′
l+1

2.6 Test Vectors

Inputs #bytes Values (in hex)

Key 16 0123456789abcdeffedcba9876543210

Public Message Number 13 6946656564204145204d6f6465

Associated Data 26 6162636465666768696a6b6c6d6e6f70

7172737475767778797a

Plaintext 36 4142434445464748494a4b4c4d4e4f505152

535455565758595a30313233343536373839

Ciphertext 36 9f7aecdd989cb5eb26490e69f7d06bf4cfcc

10b85055f642a1ad15ea4b3f3c6c3efee234

Tag 16 ba6239be4e2c687c58b807d6a508c073

6

0
n

Z’3

Z’4 Z’5

Pl-1

Z’l+2

P1 P2

Pad(Cl)

Pl ||R

Z’1

Z’2

Z’i=U Zi T’=?= C’l+1 T’
A

EK Ek EK EKEK

C1 C2 Cl-1

C’l+1

0
n

Zi=Zi-1 .2i

A1 A2 Aa-1 Pad(Aa)

Z3 Z4 Za+1

Z1 Z2
EK EK EK EK

EK TA

U

EK

N

Z0

Figure 2.2: Illustration of iFeed[AES].ADec, with EK denoted as AES-128
under K.

7

Chapter 3

Security Goals

Goals in nonce-respecting settings iFeed[AES] bits of security

confidentiality for the plaintext 128
pseudorandomness of the ciphertext 64
integrity for the plaintext 64
integrity for the associated data 64
integrity for the public message number 64

There is no secret message number in iFeed[AES]. Public message num-
ber should be used as a nonce, never repeated in any two queries to iFeed[AES].
AEnc.

1. The confidentiality of plaintext is 128-bit secure means the expected
number of key guesses to find the secret key is no less than 2128. This
in fact depends on the expectation that to guess AES-128 key we need
2128 attempts.

2. The pseudorandomness of ciphertext is 64-bit secure means in distin-
guishing ciphertext from random strings, the expected number of total
blocks of queried plaintext and associated data is no less than 264.

3. The integrity for plaintext, associated data and public message number
is 64-bit secure means in forging against iFeed[AES] with a new tuple
(PMN′, AD′, CT′, T ′), the number of total blocks of queried plaintext,
ciphertext and associated data in online attempts is no less than 264.
Note here we let τ = 128.

Any successful forgery, plaintext recovery, or successful key guess should
be assumed to completely compromise integrity or confidentiality of all mes-
sages. The table assumes that the legitimate key holder does not approach
264 − 4 blocks of plaintext and associated data under a single key.

iFeed[AES] does not promise any integrity or confidentiality if the le-
gitimate key holder uses the same public message number to encrypt two

8

different (plaintext, associated data) pairs under the same key. If public mes-
sage number is reused by some careless operation, the security of iFeed[AES]
would be reduced. Specifically,

1. the confidentiality of plaintext is still 128-bit secure, but attackers can
find plaintext differentials from ciphertext differentials.

2. the pseudorandomness of ciphertext would completely lose, because
attackers can distinguish ciphertext from random strings with only
two forward queries.

3. the integrity for plaintext, associated data and public message number,
would completely lose, i.e. attackers can make forgeries with a tuple
(PMN′, AD′, CT′, T ′), where CT′ is new, by only two forward queries.
However, note that Mac[AES] itself is still 64-bit secure, i.e. it is
unforgeable against any new AD.

Security in nonce-reuse settings iFeed[AES] bits of security

confidentiality for the plaintext 128
pseudorandomness of the ciphertext O(1)
integrity for the plaintext O(1)
integrity for the associated data O(1)
integrity for the public message number O(1)

9

Chapter 4

Security Analysis

4.1 Definitions

PRP for Blockciphers Let Perm(n) be the set of all permutations over

{0, 1}n, P (·) is said to be a random permutation if P (·) $←Perm(n). For a
blockcipher E : {0, 1}k ×{0, 1}n → {0, 1}n, its PRP security is evaluated as

AdvPRP
E (A) def= |Pr[K $←{0, 1}k : AEK(·) = 1]− Pr[AP (·) = 1]|,

where the first probability is taken over K
$←{0, 1}k and the random choices

of A, and the second probability is taken over P (·) $←Perm(n) and the ran-
dom choices of A. By AdvPRP

E (t, q) we mean the maximum advantage for
all adversaries over computation time at most t and number of queries at
most q.

Privacy for AE schemes We follow the definitions given by Rogaway
[1, 2]. A chosen plaintext adversary A is given an encryption oracle, which
is either iFeed[E].AEnc or a random-bit oracle $ with equal probability.
A is asked to be nonce-respecting. That is, it should never repeat PMN
in queries to its encryption oracle. For any input (PMN, AD, PT) within
iFeed domain, iFeed[E] returns (CT, T) = iFeed[EK].AEnc(PMN,AD,PT),
and the random-bit oracle always returns random bits of length |CT|+ |T |.
Let

AdvPriv
iFeed[E](A)

def
= |Pr[K $←{0, 1}k : AiFeed[EK](·) = 1]− Pr[A$(·) = 1]|,

with the first probability is taken over the random choices of K and A, and
the second probability is taken over the random-bit oracle $ and the random
choices of A. By AdvPriv

iFeed[E](t, q, σ) we mean the maximum advantage for
all adversaries over computation time at most t, number of queries at most
q whose total length at most σ blocks.

10

Authenticity for AE schemes A chosen ciphertext adversary A is given
two oracles iFeed[E].AEnc and iFeed[E].ADec, and it can make forward
queries to iFeed[E].AEnc and backward queries to iFeed[E].ADec, where
the latter behaves as for any given (PMN, AD, CT, T) returning either
PT= iFeed[EK].ADec(PMN, AD, CT, T) or ⊥ = iFeed[EK].ADec(PMN,
AD, CT, T). Let

AdvAuth
iFeed[E](A)

def
= Pr[K

$←{0, 1}k : AiFeed[EK].AEnc(·),iFeed[EK].ADec(·)forges],

with the probability taken over the random choices ofK andA. ByAdvAuth
iFeed[E]

(t, q, qv, σ, σv) we mean the maximum advantage for all adversaries over com-
putation time at most t, number of forward queries at most q whose total
length at most σ blocks, and number of backward queries at most qv whose
total length at most σv blocks.

Here adversary A forges means iFeed[E].ADec returns a plaintext PT=
iFeed[EK].ADec (PMN, AD, CT, T) other than ⊥, conditioned on (CT, T)
was never outputted by iFeed[EK].AEnc in corresponding to (PMN, AD)
and some plaintext.

Note that A should also be nonce-respecting in queries to iFeed[E].AEnc.
However, there is no restrictions for A to either repeating PMN in queries
to iFeed[E].ADec or using the same PMN in both queries to iFeed[E].AEnc
and iFeed[E].ADec. Without loss of generality, we assume A never made
trivial queries. That is, A never repeats queries to iFeed[E].AEnc and
iFeed[E].ADec, and A never queries (PMN, AD, CT, T) to iFeed[E].ADec
if it has obtained (CT, T)=iFeed[EK].Enc(PMN, AD, PT) before, and vise
visa.

4.2 Main Results

If AES-128 is secure as a PRP, we get iFeed[AES] is secure as an authenti-
cated encryption scheme against nonce-respecting adversaries. Specifically,
we have

Theorem 1. For any adversary A making at most q forward queries of total
(including both associated data and plaintext) block length no more than σ,
and at most qv backward queries of total (including both associated data and
ciphertext) block length no more than σv, we have

{
AdvPriv

iFeed[AES](t1, q, σ) ≤ AdvPRP
AES (t2, σ1) +

(σ+2q)2+2.5(σ+2q)
2128

,

AdvAuth
iFeed[AES](t3, q, qv, σ, σv) ≤ AdvPRP

AES (t4, σ2) +
(σ+σv+2q+2qv+1)2

2128
+ qv

2τ ,

with t2 ≈ t1, t4 ≈ t3, σ1 = σ + q + 1 and σ2 = σ + σv + q + qv + 1.

11

4.3 Analysis

In both privacy and authenticity aspects of iFeed[AES], security relies on the
pseudorandomness of AES. Specifically, the privacy of iFeed[AES] is guaran-
teed by making AES inputs pairwise distinct, and thus iFeed construction
outputs pseudorandom values seemingly independent of each other. This
is achieved by the none repetition of public message numbers and keeping
secrecy of inputs to AES. In any two queries (PMNi, ADi, PTi) and (PMNj ,
ADj , PTj) to iFeed[AES].AEnc, the inputs to AES are differed by two ran-
dom values N i and N j derived from PMNi and PMNj respectively. Within
any single query (PMNi, ADi, PTi), the inputs to AES are differed by differ-
ent Z ′

l (derived from Z0 = AES(K, 0n) and N i) XORed to plaintext blocks.
Z ′
1 and Z ′

2 are specially arranged to the end to prevent sliding attacks, and
to differ plaintexts of full blocks long or not.

The authenticity of iFeed[AES] is guaranteed by the secrecy of AES
inputs, and the advantage of EMAC structure and PMAC structure [3, 4]. In
a forgery with a new PMN, the inputs to AES can hardly collide with those
in previously queried messages (including PT, CT, AD, PMN and 0128). In a
forgery with an old PMN but not its corresponding CT, the EMAC structure
ensures internal states can hardly collide after the common prefix of CTs.
In both above cases, no collision in AES inputs implies random tags in the
forgery that adversaries can hardly predict. A third case is adversary forges
with an old PMN but a new AD, then Mac[AES] would output random
values by the advantage of PMAC structure. The remaining two cases of
forgery are trivial.

Let Rand(n, n) be the set of all functions from {0, 1}n to {0, 1}n, F (·) is
said to be a random function if F (·) $←Rand(n, n). Define iFeed[E], iFeed[P]
and iFeed[F] as iFeed modes with underlying primitives being a blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n, a random permutation P and a random
function F respectively.

We first prove the security of iFeed[F] in the information-theoretic set-
ting, then turn the results to iFeed[P] by PRP/PRF switching lemma [5],
at last we give the results for iFeed[AES].

Proof for Privacy A nonce-respecting adversary A has access to an en-
cryption oracle, which is either iFeed[F].AEnc or a random-bit oracle $ with
equal probability. Without loss of generality, we assume A makes exactly q
queries. In the following, we check the process details of iFeed[F].AEnc on
every A’s query, and show that in most cases it outputs random bits, just
like the random-bit oracle $ does, and its probability to fail to do this is
sufficiently small.

BeforeAmakes its first query, we define several flags Bad[i] (i = 1, 2, · · · , 9),
any one of which being True indicates iFeed[F].AEnc may fail to output

12

random strings. We also define five sets CDom, ADom, SDom, NDom
and PDom, which are used to record the inputs to F when A querying
iFeed[F].AEnc. Specifically, CDom contains only the constant 0n, ADom
contains all the inputs to F in Mac[F] except the last one, SDom contains
the last input to F in Mac[F], NDom contains all the nonces from the public
message numbers, and PDom contains all the inputs to F in Dec[F]. Note
that these five sets cover all the inputs to F in A querying iFeed[F].AEnc.

According to iFeed[F].AEnc, a value Z0 = F (0n) is secretly produced,
and we further calculate Zj = Zj−1 · 2 for sufficient times as below, where
LADmax (or LPTmax) stands for the maximum number of blocks of all A’s
querying AD (or PT).

301. Bad[i] = False for i = 1, 2, · · · , 9
302. CDom = {0n}; ADom, SDom, NDom, PDom =EmptySet
303. Z0 = F (0n)
304. for j = 1 to max{LADmax, LPTmax}+ 2 do Zj = Zj−1 · 2

Proof. We let A start to query iFeed[F].AEnc, and return it with the cor-
responding outputs. Suppose in the previous i − 1 queries (PMNj , ADj ,
PTj) for j = 1, 2, · · · , i − 1, iFeed[F].AEnc has successfully output i − 1
random strings (CTj , T j) of length |CTj | = |PTj | and |T j | = τ . Now, let
A make its i-th query (PMNi,ADi,PTi), and we check the process details
of iFeed[F].AEnc(PMNi,ADi,PTi).

311. N i = PMNi||10n−|PMNi|

312. if N i ∈ CDom ∪NDom then reject
313. else if N i ∈ ADom ∪ SDom ∪ PDom then Bad[1] = True

314. else U i = F (N i), NDom = NDom ∪ {N i}

In line 312, N i ∈ CDom would never occur by our padding rule for
PMN, and N i ∈ NDom shouldn’t happen because A is required to be nonce-
respecting.

For line 313, we notice that every element in sets ADom, SDom and
PDom is related to the random value Z0 = F (0n), so Pr[Bad[1] = True] ≤
(#ADom+#SDom+#PDom)/2n ≤ (

∑i−1
j=1(L

j
AD−1)+(i−1)+

∑i−1
j=1(L

j
PT+

1))/2n, where Lj
AD and Lj

PT are the block lengths of ADj and PTj in A’s
j-th query. After line 313, we are sure N i is a new input to F , so U i is a
random value.

13

321. if |ADi| = 0 then T i
A = 0n

322. else if ∃j ∈ [1, i− 1] s.t. ADi = ADj then T i
A = T j

A

323. else T i
A = Mac[F](ADi)

Mac[F](ADi) for a new ADi

331. Ai
1A

i
2 · · ·Ai

ai = Partition(ADi)
332. for j = 1 to ai − 1 do
333. if Ai

j ⊕ Zj+2 ∈ CDom ∪NDom ∪ SDom ∪ PDom then Bad[2] = True.

334. else if ∃j′ ̸= j, i′ ≤ i s.t. Ai′
j′ ⊕ Zj′+2 = Ai

j ⊕ Zj+2 then Bad[3] = True

335. else Bi
j = F (Ai

j ⊕ Zj+2), ADom = ADom ∪ {Ai
j ⊕ Zj+2}

336. if |Ai
ai | < n then SumBi =

⊕ai−1
j=1 Bi

j ⊕Pad(Ai
ai)⊕ Z1

337. else SumBi =
⊕ai−1

j=1 Bi
j ⊕Ai

ai ⊕ Z2

338. if SumBi ∈ CDom ∪NDom ∪ADom ∪ PDom then Bad[4] = True

339. else if ∃i′ < i s.t. ADi′ ̸=ADi and SumBi′ = SumBi then Bad[5] = True

340. else T i
A = F (SumBi), SDom = SDom ∪ {SumBi}

For line 333, Ai
j ⊕ Zj+2 = Ai

j ⊕ Z0 · 2j+2 with j = 1, 2, · · · , ai − 1, so

Pr[Ai
j ⊕ Zj+2 ∈ CDom ∪NDom] ≤ (1 + i)/2n. Notice that every element in

SDom is related to either Z1 = Z0 · 2 or Z2 = Z0 · 22, so Pr[Ai
j ⊕ Zj+2 ∈

SDom] ≤ (i − 1)/2n. While in PDom, every element is related to U j (for
some j ∈ [1, i − 1]), all of which are independent of Z0, so Pr[Ai

j ⊕ Zj+2 ∈
PDom] ≤

∑i−1
j=1(L

j
PT + 1)/2n. In a short summary, we have Pr[Bad[2] =

True] ≤
∑ai−1

w=1 (
i+1
2n + i−1

2n +
∑i−1

j=1(L
j
PT+1)

2n).

For line 334, Ai′
j′ ⊕Zj′+2 = Ai

j ⊕Zj+2 implies Ai′
j′ ⊕Z0 · 2j

′+2 = Ai
j ⊕Z0 ·

2j+2. Since j ̸= j′, this equation has a probability of 1/2n to hold. Then,
Pr[Bad[3] = True] ≤

∑ai−1
j=1 (

∑i−1
i′=1(L

i′
AD − 2) + j − 1)/2n.

For line 338, it is easy to get Pr[SumBi ∈ CDom ∪NDom] ≤ (1 + i)/2n,
Pr[SumBi ∈ ADom] ≤

∑i
j=1(L

j
AD − 1)/2n, and Pr[SumBi ∈ PDom] ≤∑i−1

j=1(L
j
PT + 1)/2n, by similar reasons given in analysis for line 333. In a

short summary, we have Pr[Bad[4] = True] ≤ ((1 + i) +
∑i

j=1(L
j
AD − 1) +∑i−1

j=1(L
j
PT + 1))/2n.

For line 339, we consider the following cases,

1. |Ai′
ai′
| = n and |Ai

ai | < n, then SumBi′ = SumBi implies an equation

related to the random value Z0, so Pr[SumBi′ = SumBi|Case 1] ≤
1/2n.

2. |Ai′
ai′
| < n and |Ai

ai | = n, then the same analysis as in Case 1.

3. |Ai′
ai′
| = n and |Ai

ai | = n, then consider

(a) ai′ = ai and Ai
j = Ai′

j for j = 1, 2, · · · , ai − 1. Then by ADi′ ̸=
ADi we know A

ai
′
i′
̸= Aaii

, and Pr[SumBi′ = SumBi|Case 3(a)] =

0.

14

(b) ai′ = ai and ∃j ∈ [1, ai − 1], s.t. Ai
j ̸= Ai′

j . Then, Pr[SumBi′ =

SumBi|Case 3(b)] ≤ 1/2n, because the equation depends on the
randomness of Bi

j and Bi′
j , which are two independently random

values.

(c) ai′ ̸= ai. Then Pr[SumBi′ = SumBi|Case 3(c)] ≤ 1/2n, for the
same reason in Case 3(b).

4. |Ai′
ai′
| < n and |Ai

ai | < n, the same as in Case 3.

Then we have Pr[Bad[5] = True] ≤
∑i−1

i′=1 1/2
n = (i− 1)/2n.

After line 339, we know when ADi ̸=ADi′ for i′ = 1, 2, · · · i − 1, SumBi

is a new input to F , so T i
A is a random value.

351. P i
1P

i
2 · · ·P i

li
= Partition(PTi), P i

0 = 0n

352. for j = 1 to li − 1 do
353. if P i

j−1 ⊕ U i ⊕ Zj+2 ∈ CDom ∪NDom ∪ADom ∪ SDom ∪ PDom

354. then Bad[6] = True

355. else if ∃j′ ̸= j s.t. P i
j′−1 ⊕ Zj′+2 = P i

j−1 ⊕ Zj+2 then Bad[7] = True

356. else Ci
j = F (P i

j−1 ⊕ U i ⊕ Zj+2)⊕ P i
j ⊕ U ′ ⊕ Zj+3

357. PDom = PDom ∪ {P i
j−1 ⊕ U i ⊕ Zj+2}

358. if P i
li−1 ⊕ U i ⊕ Zli+2 ∈ CDom ∪NDom ∪ADom ∪ SDom ∪ PDom

359. then Bad[8] = True

360. else Ci
li
= F (P i

li−1 ⊕ U i ⊕ Zli+2)⊕Pad(P i
li
)

361. PDom = PDom ∪ {P i
li−1 ⊕ U i ⊕ Zli+2}

For line 354, notice P i
j−1⊕U i⊕Zj+2 is related to random value U i, and

all the elements in CDom, NDom, ADom, SDom and PDom are not, we
have Pr[Bad[6] = True] ≤

∑li−1
j=1 (#CDom+#NDom#+ADom+#SDom+

#PDom)/2n ≤
∑li−1

j=1 (1 + i+
∑i

i′=1(L
i′
AD − 1) + i+

∑i−1
i′=1(L

i′
PT + 1))/2n.

For line 355, P i
j′−1⊕Zj′+2 = P i

j−1⊕Zj+2 with j′ ̸= j implies an equation

depending on the randomness of Z0, so Pr[Bad[7] = True] ≤
(Li

PT−1
2

)
/2n.

For line 359, the analysis is similar as in lines 354 and 355, and by
the randomness of U i and Z0 we get Pr[Bad[8] = True] ≤ (#CDom +
#NDom#+ADom+#SDom+#PDom)/2n ≤ (1 + i+

∑i
i′=1(L

i′
AD − 1) +

i+
∑i−1

i′=1(L
i′
PT + 1) + Li

PT − 1)/2n.
After line 359, we have Ci

1, C
i
2, · · ·Ci

li
are all random values, if the flags

Bad[j] = False with j = 1, 2, · · · , 8.

15

371. if |P i
li
| < n then Ci

li
Ri = Cut(Ci

li
, |P i

li
|), Last = (P i

li
||Ri)⊕ U i ⊕ Z1

372. else Last = P i
li
⊕ U i ⊕ Z2

373. if Last ∈ CDom ∪NDom ∪ADom ∪ SDom ∪ PDom
374. then Bad[9] = True

375. else Ci
li+1 = F (Last), PDom = PDom ∪ {Last}

376. return CTi = Ci
1C

i
2 · · ·Ci

li
, T i = T i

A ⊕ Ci
li+1

For line 374, the analysis is similar as in lines 354 and 355. The prob-
ability is Pr[Bad[9] = True] ≤ (1 + i +

∑i
i′=1(L

i′
AD − 1) + i +

∑i−1
i′=1(L

i′
PT +

1) + Li
PT)/2

n.
After line 374, if flags Bad[j] = False (j = 1, 2, · · · , 9), we know both

CTi and T i are random values, and iFeed[F].AEnc successfully cheat A. Its
probability to fail to do this is upper bounded by,

Pr[iFeed[F].AEnc fails in the i−th time]

≤
9∑

j=1

Pr[Bad[j] = True]

≤
∑i−1

j=1(L
j
AD + Lj

PT)W
i + (W i)2/2 + 2iW i

2n
,

with W i = Li
AD + Li

PT + 2. Finally we get

AdvPriv
iFeed[F](A) = |Pr[AiFeed[F].AEnc(·) = 1]− Pr[A$(·) = 1]|

≤
q∑

i=1

Pr[iFeed[F].AEnc fails in the i−th time]

≤ (σ + 2q)2 + 4(σ + 2q)

2n+1
,

with σ =
∑q

i=1(L
i
AD + Li

PT). This finishes the proof for iFeed[F].AEnc
privacy.

Proof for Authenticity A nonce-respecting adversary A has access to
an encryption oracle iFeed[F].AEnc and a decryption oracle iFeed[F].ADec.
A can make forward queries (PMNi, ADi, PTi) to iFeed[F].AEnc, and
get (CTi, T i)=iFeed[F].AEnc(PMNi, ADi, PTi). A can also make back-
ward queries (PMNi′ , ADi′ , CTi′ , T i′) to iFeed[F].ADec and get either
PTi′ =iFeed[F].ADec(PMNi′ , ADi′ , CTi′ , T i′) or a failure symbol ⊥. With-
out loss of generality, we assume A makes exactly q forward queries and q′

backward queries.
In the following, we check the process details of both oracles on A’s

queries, and show that in most cases iFeed[F].AEnc outputs random bits
and iFeed[F].ADec returns a failure symbol ⊥, and their probability to fail
is sufficiently small.

16

As in the previous proof for privacy, before A makes its first query we
define a flag Bad whose value being True means iFeed[F].ADec returns a
plaintext other than ⊥. Let sets CDom, NDom, ADom, SDom and PDom,
and values LADmax and LPTmax be defined as before. Denote L′

ADmax and
L′
CTmax as the maximum block length of AD′ and CT′ in backward queries

to iFeed[F].ADec. At the beginning, we have

401. Bad = False

402. CDom = {0n}; ADom, SDom, NDom, PDom =EmptySet
403. Z0 = F (0n)
404. for j = 1 to max{LADmax, LPTmax, L

′
ADmax, L

′
CTmax}+ 2 do

405. Zj = Zj−1 · 2

Proof. Suppose now A has made i − 1 forward queries (PMNj , ADj , PTj)
for j = 1, 2, · · · , i − 1, in response to which iFeed[F].AEnc has successfully
output i−1 random strings (CTj , T j) of length |CTj | = |PTj | and |T j | = τ ,
and A has made i′ − 1 backward queries (PMNj , ADj , CTj , T j) for j =
1, 2, · · · , i′ − 1, in response to which iFeed[F].ADec has successfully output
i′ − 1 ⊥.

Then, let A make its next query. If this is the i-th forward query (PMNi,
ADi, PTi), then by the previous analysis iFeed[F].AEnc has a probability
at least 1− (

∑i−1
j=1(L

j
AD+Lj

PT)W +W 2/2+2iW)/2n to still output random

bits. If this is the i′-th backward query (PMNi′ , ADi′ , CTi′ , T i′), we check
the details of how iFeed[F].ADec deals with it.

iFeed[F].ADec(PMNi′ ,ADi′ ,CTi′ , T i′)

411. if |ADi′ | = 0 then T i′
A = 0n

412. else if ∃j ∈ [1, i− 1] s.t. ADi′ = ADj then T i′
A = T j

A

413. else T i′
A = Mac[F](ADi′)

414. if N i′ ∈ NDom

415. then U i′ = F (N i′), run Subroutine OldNonceinDec[F](Z,U i′ ,CTi′)

416. else if N i′ ∈ ADom ∪ SDom ∪ PDom then Bad[10] = True

417. else N i′ = F (N i′), run Subroutine NewNonceinDec[F](Z,U i′ ,CTi′)

418. if T i′ ̸= Truncate(T i′
A ⊕ Ci′

li′+1, τ) then return ⊥
419. else Bad[14] = True, return CTi′ = P i′

1 P
i′
2 · · ·P i′

li′

For line 413, see details in lines from 331 to 340, and we know if ADi′ is
new then T i′

A would be a random value with a high probability 1− ε1, with

ε1 ≤
∑5

j=2 Pr[Bad[j] = True], where we replace ai by ai′ = |ADi′ |n
For line 416, Pr[Bad[10] = True] ≤ (#ADom+#SDom+#PDom)/2n ≤

(
∑i−1

j (Lj
AD +Lj

PT +1))/2n, because all the elements in these three sets are
related to a random value Z0.

17

Subroutine NewNonceinDec[F](Z,U i′ ,CTi′)

421. Ci′
1 C

i′
2 · · ·Ci′

li′
= Partition(CTi′)

422. P i′
0 = 0n

423. for j = 1 to li′ − 1 do

424. if P i′
j−1 ⊕ Zj+2 ⊕ U i′ ∈ CNASP then Bad[11] = True

425. else P i′
j = F (P i′

j−1 ⊕ Zj+2 ⊕ U i′)⊕ Ci′
j ⊕ Zj+3 ⊕ U i′

426. if P i′

l
i′−1
⊕ Zli′+2 ⊕ U i′ ∈ CNASP then Bad[12] = True

427. else P i′
li′

= F (P i′

l
i′−1
⊕ Zli′+2 ⊕ U i′)⊕Pad(Ci′

li′
)

428. if |Ci′
li′
| < n then P i′

li′
Ri′ = Cut(P i′

li′
, |Ci′

li′
|)

429. Last = (P i′
i′ ||Ri′)⊕ Z1 ⊕ U i′

430. else Last = P i′
i′ ⊕ Z2 ⊕ U i′

431. if Last ∈ CNASP then Bad[13] = True

432. else Ci′
li′+1 = F (Last)

433. return P i′
1 P

i′
2 · · ·P i′

li′
, Ci′

li′+1

For line 417, see details in lines from 421 to 433. From here we Denote
CNASP as CDom ∪ NDom ∪ ADom ∪ SDom ∪ PDom for short. Since N i′

is a newly produced random value, we get Pr[Bad[11] = True] ≤
∑Li′

CT′−1

w=1

#CNASP/2n with #CNASP =
∑i−1

j (Lj
AD + Lj

PT) + 2i − 1 for line 424.
Similarly, Pr[Bad[12] = True] = Pr[Bad[13] = True] ≤ #CNASP/2n for line
426 and 431.

Subroutine OldNonceinDec[F](Z,U i′ ,CTi′)

441. Ci′
1 C

i′
2 · · ·Ci′

li′
= Partition(CTi′)

442. P i′
0 = 0n

443. for j = 1 to w + 1 do

444. P i′
j = F (P i′

j−1 ⊕ Zj+2 ⊕ U i′)⊕ Ci′
j ⊕ Zj+3 ⊕ U i′

445. for j = w + 2 to li′ − 1 do
446. followed by lines from 424 to 433

For line 415, see details in lines from 441 to 446. Suppose U i′ = U c for
some c ∈ [1, i− 1], then we denote w as the block length of common prefix
in CTi′ and CTc. After decrypting their common prefix, we consider the
probability of P i′

j−1⊕Zj+2⊕U i′ ∈ CNASP for j ∈ [w+2, li′ − 1] in line 424.

Note that P i′
w+1 = P c

w+1 ⊕ Cc
w+1 ⊕ Ci′

w+1, and adversary A tries to select a

proper Ci′
w+1 to induce P

i′
w+1⊕Zw+4⊕U i′ ∈ CNASP. This is unlikely happen

because Pr[P i′
w+1⊕Zw+4⊕U i′ ∈ CDom∪NDom] ≤ i/2n by the randomness

of Z0, and Pr[P i′
w+1 ⊕Zw+4 ⊕U i′ ∈ ADom∪ SDom] ≤

∑i−1
j=1 LAD/2

n by the

randomness of U c, and Pr[P i′
w+1 ⊕ Zw+4 ⊕ U i′ ∈ PDom] ≤

∑i−1
j=1,j ̸=c(LPT +

1)/2n+(LPT+1−w)/2n by the randomness of Z0. Specially note that in the
last probability the first term is over the randomness of U c and the second
term is over the randomness of Z0. Once P i′

w+1 ⊕Zw+4 ⊕U i′ is new, all the

18

subsequent invocations on F can seldom collide with previous inputs, and
their colliding probability is upper bounded by

∑13
j=11 Pr[Bad[j] = True]. If

all these three flags are False, then Ci′
li′+1 is a random value.

Denote X � $ as the event that variable X is not an independently ran-
dom value. Now let us upper bound the probability for iFeed[F].ADec(PMNi′ ,
ADi′ , CTi′ , T i′) to not output ⊥ by the following cases.

1. N i′ /∈ NDom. Then, by the analysis for line 416 and 417, the probabil-
ity for Pr[Ci′

li′+1 � $] ≤
∑13

j=10 Pr[Bad[j] = True]. If all Bad[j] = False

(j ∈ [10, 13]), the probability for iFeed[F].ADec to not output ⊥ in line
419 is upper bounded by Pr[Bad[14] = True] ≤ 1/2τ .

2. ∃j ∈ [1, i − 1] s.t. N i′ = N j but CTi′ ̸= CTj . By the analysis
for line 415, we have Pr[Ci′

li′+1 � $] ≤
∑13

j=11 Pr[Bad[j] = True] and

Pr[Bad[14] = True] ≤ 1/2τ .

3. ∃j ∈ [1, i− 1] s.t. N i′ = N j and CTi′ = CTj , |ADi′ | ̸= 0 and ADi′ /∈ {
AD1, AD2, · · · , ADi−1}. By the analysis for line 413, we have Pr[T i′

A �
$] ≤

∑5
j=2 Pr[Bad[j] = True] and Pr[Bad[14] = True] ≤ 1/2τ .

4. ∃j ∈ [1, i − 1] s.t. N i′ = N j and CTi′ = CTj , |ADi′ | = 0, and
|ADj | ≠ 0. This leads to the adversary A guess the random value
Cj
lj+1, which is hidden in T j = Cj

lj+1 ⊕ T j
A, and its probability to win

is Pr[Bad[14] = True] ≤ 1/2τ .

5. ∃j1, j2 ∈ [1, i − 1] s.t. j1 ̸= j2, N i′ = N j1, CTi′ = CTj1 and ADi′ =
ADj2. This implies T i′ = T j2

A ⊕ Cj1
lj1+1, and A has to guess both T j2

A

and Cj1
lj1+1. Its probability to win is Pr[Bad[14] = True] ≤ 1/2τ .

These five cases cover all the different forms that A may use to forge
against iFeed[F].ADec. Based on the condition that iFeed[F].AEnc has
output i − 1 random strings in response to A’s i − 1 forward queries, and
iFeed[F].ADec has output i′−1 ⊥ in response to A’s i′−1 backward queries,
by the above analysis we know

Pr[iFeed[F].ADec doesn′t output⊥ in the i′−th time]

≤
∑

j=2,3,4,5,10,11,12,13,14

Pr[Bad[j] = True]

≤
∑i−1

j=1(L
j
AD + Lj

PT)W
i′ + (2i− 1)W i′ + (Li′

AD′)2/2 + Li′

AD′/2

2n
+

1

2τ

≤
∑q

j=1(L
j
AD + Lj

PT)W
i′ + 2qW i′ + (Li′

AD′)2/2 + Li′

AD′/2

2n
+

1

2τ
,

with W i′ = Li′

AD′ + Li′

CT′ + 2.

19

Then supposeAmade exactly q forward queries and qv backward queries,
the probability for A to forge is upper bounded by

AdvAuth
iFeed[F](A)

≤ AdvPriv
iFeed[F].AEnc(A) +

qv∑
i′=1

Pr[iFeed[F].ADec doesn′t output⊥ in the i′−th time]

≤ (σ + σv + 2q + 2qv)
2 + 8q

2n+1
+

qv
2τ

,

with σ =
∑q

i=1(L
i
AD +Li

PT) and σv =
∑qv

i=1(L
i
AD′ +Li

CT′). The finishes the
proof for iFeed[F] authenticity.

The Results for iFeed[P] For the privacy of iFeed[P], note that after A
has made q forward queries, iFeed[P].AEnc calls E for no more that 1+2q+σ
times, by the PRP/PRF switching lemma [5], we add a term

(
1+2q+σ

2

)
/2n

to the privacy bound of iFeed[F], and get

AdvPriv
iFeed[P](A) = AdvPriv

iFeed[F](A) +
(
1 + 2q + σ

2

)
/2n

≤ (σ + 2q)2 + 2.5(σ + 2q)

2n
,

with σ =
∑q

i=1(L
i
AD + Li

PT).
Similarly, to give the authenticity bound for iFeed[P], we add a term(

1+2q+σ+σv+2qv
2

)
/2n to the authenticity bound of iFeed[F], as follows

AdvAuth
iFeed[P](A) = AdvAuth

iFeed[F](A) +
(
1 + 2q + σ + σv + 2qv

2

)
/2n

≤ (σ + σv + 2q + 2qv + 1)2

2n
+

qv
2τ

,

with σ =
∑q

i=1(L
i
AD + Li

PT) and σv =
∑qv

i=1(L
i
AD′ + Li

CT′).

20

Chapter 5

Features

One-Pass Only one pass through plaintext is required to provide both
integrity and confidentiality protections for it. This provides an easy and
convenient way to protect plaintext.

Rate-1 Only one AES invocation is required in processing associated data
and plaintext for their each block. This saves computation loads compared
with those of higher rate.

Parallel Authenticated Encryption iFeed[AES] can fully parallelize
AES invocations in authenticated encryption. Specially, the tag is gener-
ated by only the last plaintext block, and this makes it parallel with other
plaintext block encryptions.

Serial Authenticated Decryption iFeed[AES] has to decrypt serially,
but this enables intermediate tags for early detection on wrong ciphertext
blocks, as mentioned below.

Intermediate Tag Supporting We can append an all zero redundancy
block 0128 to the end of each w-block plaintext, and use iFeed[AES] to get
the ciphertext blocks as C1x1C2x2 · · ·Cl−1xl−1Cl, where Ci here is a w-block
ciphertext and xi is its next ciphertext block. For the last Cl, we append
no 0128 and thus there is no xl.

Then, in decryption we have at least the following advantages:

1. in serial decryption, we can check the validity of each Cixi by seeing
whether its last plaintext block is 0128 or not. If 0128, output the
corresponding w-block plaintext, otherwise stop the whole decryption.

xi is called intermediate tag, discussed in another design by Datta and
Nandi [6]. It helps to avoid caching too long plaintext blocks before
finally confirming the ciphertext validity by the tag.

21

2. parallelize in decrypting each Cixi, by knowing its previous plaintext
block is 0128.

iFeed[AES] is proved to be secure against any nonce-respecting attackers
with any plaintext. This ensures us to inject redundancy into plaintext,
conditioned on the total number of queried associated data, plaintext, and
redundancy is still within 264 − 4 blocks limit.

The disadvantage of injecting redundancy is ciphertext length extension
by about |PT|n/w blocks.

The width w should be carefully selected because it is a tradeoff between
ciphertext length extension and decryption efficiency, and it should also be
strictly fixed to prevent sliding attacks.

Inverse-Free on AES No inverse queries on AES is required in all the
processions of iFeed[AES]. This reduces iFeed[AES] security to PRP (not
SPRP) assumption on AES, and thus making it a strong authenticated en-
cryption scheme in theory. Furthermore, this provides a possibility to reduce
areas on hardware implementation or to speed up in some platforms with
slower AES decryption, as discussed in [7].

This also provides a possibility to turn iFeed into an authenticated en-
cryption scheme using compression functions in hash functions.

One-Key Only a single key is required to initialize AES-128, for all the
processions of plaintext and associated data, reaching the minimum key size.

On-Line iFeed[AES] can start authenticated encryption procedures with-
out knowing the length information of plaintext and associated data. This
allows encryption on-the-fly.

Ciphertext Length Preserving The length of ciphertext (excluding the
tag) obtained from iFeed[AES] is the same with the length of plaintext. This
facilitates ciphertext storage.

Endian-Less All the inputs, outputs, and internal states of iFeed[AES]
are byte strings, no numeral representation for them is required. Thus
iFeed[AES] has no endian preference for platforms.

Incremental without Changing Tags When an iFeed[AES] user wants
to modify his i-th plaintext block Pi after having finished the authenticated
encryption procedures, he can just use the original public message number to
recall the corresponding one AES invocation (the one with input Pi⊕Zi+3⊕
U) and modify both Ci−1 and Ci consequently. Specially, this update has
no influence over other ciphertext blocks and the original tag.

22

Simple Structure with Mature Techniques The overall structure of
iFeed[AES] is quite simple, and its supporting techniques such like PRP as-
sumption on AES, generating secret masks by AES(K, 0128) and “·2” over
GF(2128) have been used in many other modes of operation for security
reduction, fast implementation and easy-to-understand proof [8, 9]. Fur-
thermore, the adopted EMAC structure (in iFeed[AES].ADec) and PMAC
structure (in Mac[AES]) have been thoroughly studied and their security
analysis has been commonly accepted [5, 3, 10, 11, 8, 12, 4, 9, 13, 14, 15].

Next we draw a table to carefully compare iFeed[AES] with GCM[AES-
128], as below. The first row shows iFeed[AES] advantages over GCM[AES-
128], and the second row shows iFeed[AES] disadvantages over GCM[AES-
128], and the third row shows their common features.

iFeed[AES] GCM[AES-128]

#pass One Two
endian-less yes no
multiplication “·H” 0 Many♯

intermediate tag supporting yes hardly
plaintext size [0, |PT|max]

§ [0, 239 − 256]
associated data size [0, |AD|max]

§ [0, 264 − 1]

AES calls |PT|128 + |AD|128 + q + 1 |PT|128 + q + 1 †

multiplication “·2” max{|PT|128, |AD|128}+ 2 0
public message number size [1,127] [1, 264 − 1]
parallel decryption no yes

key size 128
secret message number size 0
tag size [32, 128]‡

ciphertext length preserving yes
on-line yes
inverse-free on AES yes
parallel encryption yes
nonce-reuse settings forgeable
nonce-reuse settings ciphertext leaks plaintext differentials

♯ Many= |AD|128 + |PMN|128 + |PT|128 + c. where c = 2 if |PMN| ̸= 96 else c = 1.
§ |PT|max + |AD|max ≤ 271 − 512.
† q is the total number of encryption queries.
‡ All numbers for parameter size stand for length in bits.

Compared with GCM[AES-128], iFeed[AES] realizes authenticated en-
cryption in a one-pass way, removing multiplications “·H” and adopting in-
termediate tag supporting easily. It can encrypt even longer plaintexts, and
its overall structure is quite simple. In many applications using GCM[AES-
128], e.g. encrypting Internet packets, iFeed[AES] may do even better, ex-
cept in those with extreme requirements on fully parallel decryption.

23

Chapter 6

Design Rationale

iFeed Basic Construction The authenticated encryption part for plain-
text in iFeed[AES] is designed from a simple construction iFeed Basic, as
illustrated in Fig. 6.1. This simple construction is used to avoid inverse
queries on underlying blockciphers in both authenticated encryption and
authenticated decryption, by an observation that any ciphertext block itself
provides authenticity protection for its corresponding plaintext block, and
furthermore this ciphertext block is a random string that can be used to
mask other plaintext blocks for their privacy protections.

X1

C1

X2

C2

V

C3 X2

C1

X1

C2

C
’

3=?=C3

P P P

V

P PP

Figure 6.1: Illustration of iFeed Basic. On the left is authenticated encryp-
tion part, and on the right is authenticated decryption part.

By this observation, iFeed Basic feeds backward every blockcipher in-
put to its previous blockcipher output in authenticated encryption, and the
invocations on blockciphers can be fully parallelized.

In decryption, the overall procedures are serial, and plaintext blocks have
to be decrypted one by one in the cipher-block-chaining (CBC) manner. The
ciphertext validity would be checked in the end of CBC structure.

We should note that iFeed Basic construction itself is not a secure au-
thenticated encryption scheme, because its inputs to blockciphers should be
pariwise distinct and kept secret. This can be reached by using nonces and
multiplication “·2” over GF(2128).

24

We can also feed forward every blockcipher input to its next blockcipher
output, see Fig. 6.2. This construction keeps ciphertext length preserv-
ing naturally, but in decryption its ciphertext blocks have to be inputted
inversely, making it inconvenient.

X1

C1

X2

C2

V

C3 X1

C3

X2

C2

C
’

1=?=C1

P P P

V

P PP

Figure 6.2: Illustration of Mirrored iFeed Basic. On the left is authenticated
encryption part, and on the right is authenticated decryption part.

Ciphertext Stealing iFeed Basic only applies to plaintexts of full blocks.
We can of course append all plaintexts in iFeed Basic, but this would result
in ciphertext length extension. To overcome this, we use the ciphertext
stealing technique [16, 17, 18, 19, 20].

Pl-1 Pl ||R

Z’l+2

 Cl||R

Z’1

Z’2

Pad(Pl)

EK EK

Cl+1

Pad(Cl)

Pl ||R

Z’1

Z’2

EK EK

C’l+1

Figure 6.3: Illustration of Ciphertext Stealing in iFeed[AES]. On the left
is the part in authenticated encryption, and on the right is the part in
authenticated decryption.

If the last plaintext block Pl is not full block long, we cut its previous
ciphertext block (the previous blockcipher output XORed by Pad(Pl)) into
two parts, where the left part is of length |Pl|, denoted as Cl, and the
right part is of length n − |Pl|, denoted as R. The stolen R is further
appended to the right of Pl, and they together (XORed by Z ′

1 or Z ′
2) consist

an input of full block long to the last blockcipher. The final ciphertext is
C1C2 · · ·Cl, Cl+1, where R is not included and should be kept secret. The

25

decryption procedures should be adjusted accordingly.
If the last plaintext block Pl is already full block long, we just use the

original iFeed Basic construction. To differ these two cases, two secret masks
Z ′
1 and Z ′

2 are used respectively.
Notice that ciphertext stealing technique makes iFeed[AES] less fully

parallelizable in the last two blockcipher invocations.

Multiplication “·2” over GF(2128) To ensure security, the inputs to
blockciphers in iFeed Basic construction need to be pairwise distinct and
kept secret. We introduce the commonly used multiplication “·2” over
GF(2n) to solve this [8, 9]. By selecting a primitive polynomial pn(x) over
GF(2), we get an extension field GF(2n) of x, where x is the primitive that
can be used to generate all the none-zero elements in GF(2n).

For iFeed[AES] we use p128(x) = x128 + x7 + x2 + x + 1, then x = 2 is
the primitive, and any none-zero value X can represent all the elements in
GF(2128) by X · 2i for i ∈ [1, 2128 − 1]. Further notice that X multiplied by
2 can be calculated fairly fast and easily. That is,

X · 2 =

{
X << 1, if the leftmost bit of X is 0
X << 1⊕ (0120||10000111), if the leftmost bit of X is 1

By selecting X
$←{0, 1}n and keeping it secret, we have Pr[M1 ⊕ X ·

2i = M2 ⊕ X · 2j] ≤ 1/2n for any M1, M2 with i ̸= j. In this way, we
make the inputs to iFeed[AES] pairwise distinct and secret with a close-to-1
probability.

Independent MAC for Associated Data Mac[AES] is a PMAC-like
message authentication mode independent of iFeed construction. This in-
dependence allows parallelly processing associated data and plaintext, and
thus it provides a possibility to speed up the whole efficiency.

Also due to this independence, Mac[AES] can be easily replaced by some
other MAC if required, but the overall security of iFeed[AES] needs recon-
sideration.

If the speedup is not necessary, we can use Mac[AES] to authenticate
both associated data and public message number, and treat their tag as the
secret value Z0 in iFeed[AES]. Then, Cl+1 itself serves as the tag. By this
adjustment we extend the length of public message number to be as long as
nearly 264 blocks.

The designers have not hidden any weaknesses in this cipher.

26

Chapter 7

Intellectual Property

Mac[AES] is inspired by PMAC, which has been patented by Phillip Rog-
away [21]. We claim no patent for either iFeed construction or Mac[AES]. As
far as we know the iFeed construction is not in known patents, patent appli-
cations, or planned patent applications, and it has no intellectual-property
constraints relevant to use.

If any of this information changes, the submitters will promptly (and
within at most one month) announce these changes on the crypto-competitions
mailing list.

27

Chapter 8

Consent

The submitters hereby consent to all decisions of the CAESAR selection
committee regarding the selection or non-selection of this submission as a
second-round candidate, a third-round candidate, a finalist, a member of
the final portfolio, or any other designation provided by the committee.
The submitters understand that the committee will not comment on the al-
gorithms, except that for each selected algorithm the committee will simply
cite the previously published analysis that led to the selection of the algo-
rithm. The submitters understand that the selection of some algorithms is
not a negative comment regarding other algorithms, and that an excellent
algorithm might fail to be selected simply because not enough analysis was
available at the time of the committee decision. The submitters acknowledge
that the committee decisions reflect the collective expert judgments of the
committee members and are not subject to appeal. The submitters under-
stand that if they disagree with published analysis then they are expected to
promptly and publicly respond to those analysis, not to wait for subsequent
committee decisions. The submitters understand that this statement is re-
quired as a condition of consideration of this submission by the CAESAR
selection committee.

28

Chapter 9

Acknowledgements

The designers would like to thank Lei Wang and the anonymous reviewers
at FSE 2014 for their fruitful comments. Thanks Jian Zou for helping to
produce test vectors.

29

Bibliography

[1] Rogaway, P.: Nonce-based symmetric encryption. [22] 348–359

[2] Bellare, M., Rogaway, P., Wagner, D.: The eax mode of operation. [22]
389–407

[3] Petrank, E., Rackoff, C.: Cbc mac for real-time data sources. J. Cryp-
tology 13(3) (2000) 315–338

[4] Black, J., Rogaway, P.: A block-cipher mode of operation for paralleliz-
able message authentication. In Knudsen, L.R., ed.: EUROCRYPT.
Volume 2332 of Lecture Notes in Computer Science., Springer (2002)
384–397

[5] Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci. 61(3)
(2000) 362–399

[6] Datta, N., Nandi, M.: Misuse resistant parallel authenticated en-
cryptions. Cryptology ePrint Archive, Report 2013/767 (2013) http:
//eprint.iacr.org/.

[7] Minematsu, K.: Parallelizable authenticated encryption from functions.
Cryptology ePrint Archive, Report 2013/628 (2013) http://eprint.

iacr.org/.

[8] Iwata, T., Kurosawa, K.: Omac: One-key cbc mac. [23] 129–153

[9] Rogaway, P.: Efficient instantiations of tweakable blockciphers and
refinements to modes ocb and pmac. In Lee, P.J., ed.: ASIACRYPT.
Volume 3329 of Lecture Notes in Computer Science., Springer (2004)
16–31

[10] Black, J., Rogaway, P.: Cbc macs for arbitrary-length messages: The
three-key constructions. In Bellare, M., ed.: CRYPTO. Volume 1880
of Lecture Notes in Computer Science., Springer (2000) 197–215

30

[11] Kurosawa, K., Iwata, T.: Tmac: Two-key cbc mac. In Joye, M., ed.:
CT-RSA. Volume 2612 of Lecture Notes in Computer Science., Springer
(2003) 33–49

[12] Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for
cbc macs. In Shoup, V., ed.: CRYPTO. Volume 3621 of Lecture Notes
in Computer Science., Springer (2005) 527–545

[13] Knudsen, L.R., Kohno, T.: Analysis of rmac. [23] 182–191

[14] Yasuda, K.: The sum of cbc macs is a secure prf. In Pieprzyk, J., ed.:
CT-RSA. Volume 5985 of Lecture Notes in Computer Science., Springer
(2010) 366–381

[15] Yasuda, K.: Pmac with parity: Minimizing the query-length influence.
In Dunkelman, O., ed.: CT-RSA. Volume 7178 of Lecture Notes in
Computer Science., Springer (2012) 203–214

[16] Meyer, C.H., Matyas, S.M.: Cryptography: a new dimension in data
security. John Wiley and Sons, New York, 1982

[17] Schneier, B.: Applied Cryptography, Second Edition: Protocols, Algo-
rithms, and Source Code in C. New York, Wiley, 1996.

[18] Dworkin, M.: Recommendation for block cipher modes of operation:
three variants of ciphertext stealing for CBC mode. Addendum to NIST
Special Publication 800-38A. October 2010.

[19] Daemen, J.: Hash Function and Cipher Design: Strategies Based on
Linear and Differential Cryptanalysis. Ph.D. thesis, Katholieke Univer-
siteit Leuven, Leuven, Belgium (1995)

[20] Rogaway, P., Wooding, M., Zhang, H.: The security of ciphertext
stealing. In Canteaut, A., ed.: FSE. Volume 7549 of Lecture Notes in
Computer Science., Springer (2012) 180–195

[21] Rogaway, P.: Method and apparatus for realizing a parallelizable
variable-input-length pseudorandom function. Available at: http:

//patents.justia.com/patent/20020051537.

[22] Roy, B.K., Meier, W., eds.: Fast Software Encryption, 11th Interna-
tional Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised
Papers. In Roy, B.K., Meier, W., eds.: FSE. Volume 3017 of Lecture
Notes in Computer Science., Springer (2004)

[23] Johansson, T., ed.: Fast Software Encryption, 10th International Work-
shop, FSE 2003, Lund, Sweden, February 24-26, 2003, Revised Papers.
In Johansson, T., ed.: FSE. Volume 2887 of Lecture Notes in Computer
Science., Springer (2003)

31

