
Julius: Secure Mode of Operation for
Authenticated Encryption Based on ECB and

Finite Field Multiplications

Lear Bahack∗

Submission to the CAESAR competition, version 1.0, March 2014

Gaius Julius Caesar, 100 BC – 44 BC. Source: Mcleclat, GNU, Creative
Commons via Wikimedia Commons.

∗Weizmann Institute of Science, Rehovot, Israel. E-mail: lear.bahack@gmail.com

1

Abstract

We present two new blockcipher modes of operation for authenti-
cated encryption with associated data, designed to achieve the maxi-
mal possible security in case of misused IV, while being efficient as the
Galois/Counter Mode (GCM). Both of the modes are provably secure
up to the birthday bound, are suitable for both software and hard-
ware, and are based on GF(2128) multiplications by a secret element
of the field.

The Julius-CTR mode can be viewed as a certain variation combin-
ing the GCM, SIV and Unbalanced Feistel Network, while the Julius-
ECB mode can be viewed as a certain variation of the Naor-Reingold
mode. We specify two versions for each mode: a regular version and
a compact version, having different ciphertexts redundancies. Sev-
eral variants aimed to achieve increased security, parallelization, and
efficiency are briefly explored.

Based on the two Julius modes of operation and the AES-128 block-
cipher, we propose a family of four specific algorithms for authenti-
cated encryption with associated data to the CAESAR competition.

1 Introduction

Symmetric key authenticated encryption (AE) is in a sense the most basic
and fundamental usage of cryptography. Although today’s cryptography
is far broader and contains complicated algorithms aiming to achieve other
(more complicated) goals, the vast majority of applications use "compli-
cated" cryptographic algorithms only in addition to a "basic" symmetric
key AE algorithm.

Years of research and development made modern symmetric cryptog-
raphy converged to the following heuristic: symmetric key algorithm /
cryptosystem / protocol should be composed of a well-studied subalgo-
rithm called a "cryptographic primitive", and of a certain manner / scheme
in which the primitive is to be used. Common cryptographic primitives
are Block Ciphers; Pseudo Random Number Generators (PRNG); and com-
pression hash functions. They all achieve different basic cryptographic
goals. Apart from enabling simple and robust designs of cryptosystems,
a major benefit of the mentioned heuristic is the possibility to assure the
cryptographic security of the complete algorithm by separately analyzing
the security of the primitive and of the scheme.

During the last two decades, symmetric primitives have been designed
and thoroughly researched by great cryptographers. We point the AES
competition for block-cipher primitive; the eSTREAM competition for PRNG

2

primitives; and the SHA-3 competition for hash function as significant events
which have led to the formation of trustable primitives.

On the other hand cryptographic schemes, such as mode of operation
for blockcipher encryption and authentication, have received significantly
less attention and were often regarded as "trivial" or "not interesting". Per-
haps the reason for the reduced attention is the combination of fairly secure
modes on the one hand and on the other hand the fact that a weakness of an
encryption scheme is less fatal than a weakness of a block cipher primitive,
which might enable a key recovery attack.

A known proverb says that a chain is only as secure as its weakest link.
In the case of blockcipher based AE algorithms, today’s leading blockcipher
algorithms such as the famous AES are definitely not the weakest link. The
recent revelations of Edward Snowden indicate that the NSA, considered
by many to be the most powerful intelligence agency in the world, has
not been able to break any of the standard symmetric primitives, the most
important of which being the AES.

We believe that the weakest link of AE algorithms is the end user, which
in reality may use the cryptographic scheme wrongly. The second weakest
link, which is less severe in AE algorithms than in encryption only algo-
rithms, is the mode being vulnerable to chosen ciphertext attacks (CCA).
Since the underling block ciphers of AE algorithms are secure, the efforts
of improving AE algorithms should be given to the design and research of
new modes that are efficient and yet preserve the maximal possible security
in case of a wrong usage. Being CCA secure is a desirable (but not crucial)
property too.

We hope that the CAESAR competition will drive attention to the field
of AE algorithms and modes of operation, and that five years from now we
shall have trusted secure and efficient modes of operation that are better
than the widely used Galois/Counter Mode (GCM) [12].

Our contribution is two new efficient and parallelizable modes of oper-
ation called Julius-ECB and Julius-CTR that achieve maximal security in the
sense of indistinguishability between the real AE algorithm and an ideal
AE algorithm, where the distinguisher is allowed to adaptively choose the
message, including the IV. Thus, our suggested AE algorithms preserve se-
curity in case of a nonce misuse, which we consider to be the weakest link
in the chain.

3

2 Specification

We specify first the two blockcipher modes Julius-ECB and Julius-CTR,
each having a regular and a compact version. The specification is based
on a pseudo random permutation over 16 byte strings primitive, which is
not part of the modes and thus is not specified. Next we specify a set of 8
concrete and parameterized algorithms for authenticated encryption with
associated data. The pseudo random permutation primitive used in all the
proposed algorithms is the standard AES-128 blockcipher, whose specifica-
tion is given in [6].

We start by defining the notations in used, and highlighting four simple
mathematical facts and properties that are essential for this document.

Notations

1. Bytes are integers in {0, 1, . . . , 255}, and are used as our atomic data
unit. Messages, plaintexts, associated data, ciphertexts, initialization
vectors (IV), and binary representations of certain lengths are all re-
garded as strings of bytes. We denote the string of k consecutive zero
bytes by ZEROES(k).

2. The concatenation str1‖str2 of two (byte) strings is defined as the
string whose length is len1+ len2, where len1 and len2 are the lengths
of str1 and str2 correspondingly, such that its first len1 bytes are the
same as of str1 and its last len2 bytes are the same as of str2. The con-
catenation operation is associative and thus we don’t use parentheses
in case of a multiple concatenation.

3. The XOR A ⊕ B of the two bytes A = ∑7
i=0 2iai and B = ∑7

i=0 2ibi
where a0, .., a7, b0, .., b7 ∈ {0, 1} , is the byte A = ∑7

i=0 2i(ai ⊕ bi),
where we define 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. The
XOR str1⊕ str2 of two byte strings str1, str2 of the same length len is
defined as the string: str1[0]⊕ str[0]‖. . . ‖str[len− 1]⊕ str[len− 1].

4. A block is defined as a string of exactly 16 bytes. We denote the two
blocks: 0‖0‖. . . ‖0 and 0‖0‖. . . ‖0‖1 by ZERO_BLK and ONE_BLK
correspondingly. E(blk) and E−1(blk) stands for the blockcipher en-
cryption and decryption of the block blk.

5. For a block blk = b[0]‖b[1]‖. . . ‖b[15], and an integer len ∈ {0, 1, . . . , 16}
we denote the string b[0]‖. . . ‖b[i− 1] of the first/leftmost bytes of blk

4

by le f t(blk, len) and the string b[16–i]‖. . . ‖b[15]of the last/rightmost
bytes of blk by right(blk, len).

6. We represent GF(2128), the finite field with 2128 elements, by the set
of all polynomials over GF(2) of degree 127 or less, in the following
way: the field addition of two such polynomials is the same as their
sum over GF(2) and their field multiplication is obtained by their
Z2[x] multiplication modulus the irreducible polynomial x128 + x7 +
x2 + x + 1.

7. We regard blocks as elements of GF(2128) in the following way: the
corresponding element of the block blk = b[0]‖..‖b[15] is

15

∑
j=0

(
x8j ·

7

∑
i=0

xi · b15−j,i

)
where for all j ∈ {0, ..., 15}we have blk[j] = ∑7

i=0 2ibj,i and bj,0, ..., bj,7 ∈
{0, 1} .

8. We regard a byte string of length which is an integer multiplication of
16 as a polynomial over GF(2128) in the following way: let β0, . . . βlen−1
be the GF(2128) field elements corresponding to the blocks blk[0], . . . , blk[len−
1], then the polynomial corresponding to the string blk[0]‖...‖blk[len–1]
is ∑len−1

d=0 xd · βlen−1−d. Moreover, we define the evaluation of this
string over the field element α as the corresponding block of ∑len−1

d=0 αd ·
βlen−1−d.

9. The inputs for the two Julius modes are:

• IV string of length IV_LEN: IV = IV[0]‖. . . ‖IV[IV_LEN]. The
non-negative integer IV_LEN is a (constant) parameter of the mode.

• Length of the plaintext, which is an integer between 0 and 264 −
1, inclusive.1 The given length plen is represented by the 8 bytes
string plen[0]‖. . . ‖plen[7] so that plen = ∑7

i=0 28i plen[7− i].

• Length of the associated data, which is an integer between 0 and
264 − 1, inclusive. The given length adlen is represented by the 8
bytes string adlen[0]‖. . . ‖adlen[7] so that adlen = ∑7

i=0 28iadlen[7−
i].

• Plaintext byte string: plain = plain[0]‖. . . ‖plain[plen–1].

1264 − 1 = 18, 446, 744, 073, 709, 551, 615

5

• Associated data byte string: ad = ad[0]‖. . . .‖ad[adlen–1].

• A pseudo random permutation E over 16 bytes strings.

Mathematical properties and facts

1. The finite field of cardinality pn, for any prime number p and positive
integer n, is unique. We shall use this fact in the two Julius variants
that have different representations of GF(2128) described in section 5.

2. For any α, µ ∈ GF(2128) and non negative integer k, the evaluations
of the strings µ‖µ · α‖µ · α2‖....‖µ · α2k−1 and µ‖µ · (α + 1)‖µ · α‖µ ·
α2‖....‖µ · α2k over α are both zero.

3. The evaluation of the string str1⊕ str2 over a certain element is the
same as the field addition of the evaluations of str1 and str2 over the
same certain element.

4. Replacing the last block blk[len–1] in the blocks concatenation

blk[0]‖. . . ‖blk[len− 1]

by the evaluation of the concatenation string over a certain field ele-
ment, is an involution.

2.1 The Julius Modes

2.1.1 Julius-ECB Regular Version

Padding

Let pres and adres be the smallest non-negative integers so that plen + pres
and adlen + adres + IV_LEN are both multiplications of 16. We pad the
message as follows:

padded message = ONE_BLK‖IV‖adlen‖plen‖associsteddata‖
‖ZEROES(adres + pres + 16)‖plain

The substring of the last/rightmost pres+ 16+ plen bytes is denoted by
reg = blk[0]‖. . . ‖blk[blen–1] where blen = 1+ d plen

16 e and blk[0], . . . , blk[blen−
1] are blocks.

6

The Julius Involution

We derive a secret element of GF(2128) from the pseudo random permuta-
tion E, by taking the corresponding element of E(ZERO_BLK). We denote
this element by δ and call it the derived key. Using the (rest of the) padded
message and the derived key we define an involution over the string reg.

Let seed be the evaluation of the padded message over the field element
δ. We compute µ = E(seed) and use it to form a pres + 16 + plen bytes
mask as follows: if blen is even, the mask is:

µ‖µ · δ‖µ · δ2‖....‖µ · δblen

else, the mask is

µ‖µ · (δ + 1)‖µ · δ‖µ · δ2‖....‖µ · δblen

The mask is then XORed into the string reg.

ECB

The output (i.e. ciphertext) is the ECB encryption of the string reg: let reg
= reg = blk[0]‖. . . ‖blk[blen–1] (note that the blocks blk[0], . . . , blk[blen− 1]
have been updated by the Julius Involution). The ciphertext string is then:

E(blk[0])‖. . . ‖E(blk[blen− 1])

2.1.2 Julius-ECB Compact Version

Padding

Let res be the smallest non-negative integer so that res + 8 + IV_LEN +
adlen + plen is a multiplication of 16. We pad the message as follows:

padded message = ONE_BLK‖IV‖adlen‖plen‖associsteddata‖
‖ZEROES(res + 8)‖plain

The substring of the last/rightmost 8 + plen bytes is denoted by

reg = b[0]‖. . . ‖b[j− 1]‖blk[0]‖. . . ‖blk[blen–1]

where blen = b 8+plen
16 c, j = plen + 8− 16 · blen, b[0], . . . , b[j− 1] are bytes

and blk[0], . . . , blk[blen− 1] are blocks.

7

Figure 2.1: Partial diagram of Julius-ECB regular version. blen is even.

The Julius Involution

We derive a secret element of GF(2128) from the pseudo random permuta-
tion E, by taking the corresponding element of E(ZERO_BLK). We denote
this element by δ and call it the derived key. Using the (rest of the) padded
message and the derived key we define an involution over the string reg.

Let seed be the evaluation of the padded message over the field element
δ. We compute µ = E(E(seed)) and

ω = ZEROES(16− j)‖right(E(E(seed)⊕ONE_BLK), j)

and use them to form a 8 + plen bytes mask as follows: if blen is even, the
mask is:

right(ω, j)‖µ + ω · δ‖µ · δ‖µ · δ2‖....‖µ · δblen

else, the mask is

right(ω, j)‖µ + ω · δ‖µ · (δ + 1)‖µ · δ‖µ · δ2‖....‖µ · δblen

The mask is then XORed into the string reg.

8

Modifyed ECB

The output (i.e. ciphertext) is the following modifyed ECB encryption of
the string reg: let reg = reg = blk[0]‖. . . ‖blk[blen–1] (note that the blocks
blk[0], . . . , blk[blen − 1] have been updated by the Julius Involution), A =
b[0]‖. . . ‖b[j− 1]‖le f t(blk[0], 16− j), and B = right(E(A), 16− j) ‖ right(blk[0], j).

The ciphertext string is then:

le f t(E(A), j)‖E(B)‖E(blk[1])‖. . . ‖E(blk[blen− 1])

2.1.3 Julius-CTR Regular Version

Padding

Let pres and adres be the smallest non-negative integers so that plen + pres
and adlen + adres + IV_LEN are both multiplications of 16. We pad the
message as follows:

padded message = ONE_BLK‖IV‖adlen‖plen‖associsteddata‖
‖ZEROES(adres)‖plain‖ZEROES(pres + 16)

The substring of the last/rightmost pres+ 16+ plen bytes is denoted by
reg = blk[0]‖. . . ‖blk[blen–1] where blen = 1+ d plen

16 e and blk[0], . . . , blk[blen−
1] are blocks.

CTR

We derive a secret element of GF(2128) from the pseudo random permuta-
tion E, by taking the corresponding element of E(ZERO_BLK). We denote
this element by δ and call it the derived key. Let seed be the evaluation of
the padded message over the field element δ. We replace the last block
blk[blen− 1] by µ = E(seed) and use this value to generate a strong pseudo
random stream that will be then XORed into the rest of reg.

For each i ∈ {0, ..., blen − 2} we denote by brep(i) the block-width
binary representation of i, meaning i = ∑15

j=0 28jb[15 − j] for brep(i) =

b[0]‖...‖b[15].
The output (ciphertext) is:

blk[0]⊕E(µ⊕ brep(0))‖blk[1]⊕E(µ⊕ brep(1))‖...‖blk[blen− 2]⊕E(µ⊕ brep(blen− 2))‖µ

9

2.1.4 Julius-CTR Compact Version

Padding

Let res be the smallest non-negative integer so that res + 8 + IV_LEN +
adlen + plen is a multiplication of 16. We pad the message as follows:

padded message = ONE_BLK‖IV‖adlen‖plen‖associsteddata‖
‖ZEROES(res)‖plain‖ZEROES(8)

The substring of the last/rightmost 8 + plen bytes is denoted by

reg = b[0]‖. . . ‖b[j− 1]‖blk[0]‖. . . ‖blk[blen–1]

where blen = b 8+plen
16 c, j = plen + 8− 16 · blen, b[0], . . . , b[j− 1] are bytes

and blk[0], . . . , blk[blen− 1] are blocks.

Modifyed CTR

We derive a secret element of GF(2128) from the pseudo random permuta-
tion E, by taking the corresponding element of E(ZERO_BLK). We denote
this element by δ and call it the derived key. Let seed be the evaluation of
the padded message over the field element δ. We replace the last block
blk[blen− 1] by seed and use µ = E(seed) to generate a strong pseudo ran-
dom stream that will be then XORed into the rest of reg.

For each i ∈ {0, ..., blen− 2} let brep(i) be the same as in the specifica-
tion of the regular version. Let

A =
(

b[0]‖...‖b[j− 1]
)
⊕ right(E(µ), j)

and
B = blk[blen− 2]⊕ E(µ⊕ brep(blen− 1))

The output (ciphertext) is:

blk[0]⊕ E(µ⊕ brep(1))‖blk[1]⊕ E(µ⊕ brep(2))‖...
...‖blk[blen− 3]⊕ E(µ⊕ brep(blen− 2))‖B‖µ⊕ E(B)

2.2 Our Suggested Set of Algorithms

We suggest using the AES-128 standard blockcipher in any of the four
modes: Julius-ECB regular version; Julius-ECB compact version; Julius-CTR

10

regular version; and Julius-CTR compact version, with the constant2 pa-
rameter IV_LEN being 8 or 16 bytes. In terms of the CAESAR competition
call for submissions [1], we have constant key length of 16 bytes; constant
secrete message number length of 0 bytes; constant public message number
(IV) length of 8 or 16 bytes only; plaintext maximal length of 264 − 1 bytes;
and associated data maximal length of 264 − 1 bytes.

The four algorithms whose IV_LEN is 8 bytes should only be used in
case the IV mechanism is based on a counter. Stateless IV mechanism that
randomly chooses the IV should use 16 bytes IV only. Assuming there is
no repetition of the IV, the 8 and 16 bytes IV versions of each of the four
modes are equally secure.

The two algorithms Julius-ECB regular version and Julius-CTR regular
version should always be preferred over the Julius-ECB compact version
and Julius-CTR compact version. The latter might be preferred for band-
width restricted applications. The security of Julius-ECB regular version
and Julius-ECB compact version is the same as of Julius-CTR regular ver-
sion and Julius-CTR compact version correspondingly, except for a negli-
gible advantage of the Julius-ECB versions in the unlikely case of partial
key recovery (see subsection 3.3). Thus choosing between Julius-ECB and
Julius-CTR should be based on difficulty of implementation or even per-
sonal taste. We note that Julius-CTR is inverse-free and hence might easier
to implement, yet on the other hand we think that Julius-ECB is more ele-
gant and we like it best.

3 Security

3.1 Security Goals

Security of plaintext confidentiality and message integrity is measured by
the advantage of a limited resources adversary in distinguishing between
the real AE algorithm and an ideal AE algorithm, which is formalized as
follows: for each triple of IV; associated data; and plaintext length plen,
the ideal algorithm uniformly and randomly select an injection function
{0, 1}8·plen → {0, 1}8·plen+8·IV_len and use it to encrypt all messages with the
certain IV; associated data and plaintext length plen. As for deciphering,
the ideal algorithm outputs the single preimage of the given ciphertext in

2This parameter is a constant in the sense that it must not be changes between differ-
ent messages processed by the same key, unlike the plaintext and associated data lengths
arguments.

11

whenever a preimage exists, and returns ⊥ otherwise.
Let A be an adversary capable of calculating p AES encryptions or de-

cryptions (of any 128 bit key, which might be altered between different en-
cryptions and decryptions) that is given adaptive chosen (including chosen
IV) enciphering and deciphering queries so that the total length of queries’
messages is q blocks at most. Let B be an adversary with the same computa-
tional abilities of A that is given adaptive chosen enciphering only queries,
so that the total length of their messages is q blocks at most. Our security
goals are then:

1. The advantage of A with respect to Julius-ECB regular version or
Julius-CTR regular version is about p

2128 +
q2

2128 .

2. The advantage of A with respect to Julius-ECB compact version or
Julius-CTR compact version is about p

2128 +
q

264 +
q2

2128 .

3. The advantage of B with respect to Julius-ECB compact version or
Julius-CTR compact version is about p

2128 +
q2

2128 .

Using the terms of the CAESAR competition call for submissions, as long
as the total length of processed messages (of the same key) is much smaller
than 264 blocks, the claimed security is specified in the following table:

Security of
Julius-ECB
regular ver.

Julius-ECB
compact

ver.

Julius-CTR
regular ver.

Julius-CTR
compact

ver.
Plaintext Con-

fidentiality
2128 2128 2128 2128

Message
Integrity

2128 264 2128 264

Table 1: Security goals

We explicitly note that our security goal for IV reuse is maximal, and
that security goals are the same for 8 and 16 bytes IV lengths.

3.2 Security Proofs

The Julius modes of operation are provably secure in the conservative infor-
mational theoretic settings. The proof of Julius-ECB is similar to the proof
of the Naor-Reingold mode [14], while the proof of Julius-CTR is similar

12

to the proofs of SIV [17] and Unbalanced Fiestel [19], and both proofs are
based on the classic security proof of the GCM mode. Yet there are subtle
details that are unique to the Julius modes and should be carefully ana-
lyzed. We shall soon publish the described security proofs in a separate
document.

3.3 Further Security Analysis

3.3.1 Partial Security in Case of Partial Key Recovery

We consider the not very likely case where the derived key has been com-
promised while the AES key hasn’t. Two possible scenarios causing the
partial key recovery are side channels attacks (discussed next) and a chosen
ciphertext attack based on a surprising ability to receive decipherments of
forged ciphertexts that have failed authentication. Such a non-trivial abil-
ity might be achieved in case of an implementation bug or a by a malware
having access to the (unremoved) failed decipherments.

Message Integrity

Knowing the derived key, an adversary can alter any Julius-CTR cipher-
text in such a way that the decipherment has the same seed as the original
plaintext, and hence passes authentication. Alternation is done simply by
XORing a delta message whose corresponding polynomial is zero at the
derived key, thus the adversary can choose arbitrarily all the message’s
blocks except for a single block that will be (very efficiently) determined by
the others. The original plaintext is not required to be known.

Forging a message in the Julius-ECB mode is a bit more difficult: an
adversary knowing the derived key and a set of AES encryption values,
may compose a ciphertext containing only blocks whose AES decryptions
are known to the attacker, so that the polynomial evaluation of the corre-
sponding AES block decryptions yields a seed whose AES encryption is
known and fits to the first block’s corresponding AES decryption. This can
be done relatively efficiently, yet not all arbitrary messages (up to a single
derived block) can be successfully forged.

Message Confidentiality

While a partial key recovery almost abolishes message integrity, message
confidentiality is surprisingly preserved both in Julius-ECB and Julius-CTR.
In a sense this confidentiality is even stronger than confidentiality of modes

13

like GCM, EAX [3], and OCB, as a misused IV does not affect much the con-
fidentiality.

The explanation is simple: new messages will most probably have new
seeds that have not been obtained before, and all invocations of the AES
will most probably be new too. That is true up to the birthday bound, as-
suming the legitimate plaintexts are not related to the derived key, which
is a reasonable assumption as end users practically don’t know the crypto-
graphic keys they are using.

This partial security notion is formalized by the following two-stage
game: an oracle randomly and uniformly chooses a block-size permuta-
tion, and uses it in the Julius-ECB mode (for example). In the first stage the
adversary may ask the oracle to encrypt messages of her (adaptive) choice
(the IV is chosen too) whose total length is no more than q blocks. In the
second stage, the adversary commits to a set of new messages of her choice
whose total length is q blocks at most, and afterward the oracle reveals the
secrete derived key. Later on, the oracle flips a coin and with probability
1
2 encrypts correctly all the set’s messages, and with probability 1

2 gives a
set of random strings of the corresponding lengths. The mode is said to
preserve confidentiality in case of partial key recovery if the advantage of
the adversary guessing the right situation in the game is small.

Due to the partial preserved security in case of a partial key recovery, a
reasonable heuristic is to refresh the derived key more frequently than the
general AES key. A possible way to do so is variant 5.3, and there are many
other more. We note that doing so might require protocol adjustments such
as anti-replay mechanism or additional key agreement protocol.

3.3.2 Vulnerability to Side Channels Attacks

The algorithms Julius_ECB and Julius_CTR are not vulnerable to side chan-
nels attacks (SCA), as abstract algorithms are never vulnerable to SCA: this
kind of attack is based on certain information the adversary gets in addition
to the output of the abstract algorithm. Examples of such possible informa-
tion are: the time taken to execute invocation of the algorithm, the rate of
electricity consumption used by the implementing device, electromagnetic
radiation of the device, and even the sound the device produce. Thus an
abstract algorithm can never be vulnerable to SCA by itself, yet its possible
implementations might certainly be.

The field of SCA cryptanalysis is relatively new, and in the near future
we expect that fundamental researches will be published, and things will
get clearer. Most recently a surprising and practical cryptanalysis of the

14

fundamental RSA algorithms has been obtained [7], and we feel that there
are yet more results to come.

The logical security proofs given here can only indicate that as long as
the implementation of AES and of multiplication by a secret element of
GF(2128) are not vulnerable to SCA, the Julius algorithms are not vulnera-
ble either. Although we have no specific knowledge in this field, we think
it is reasonable to assume that there are certain implementations which are
vulnerable and nevertheless it is possible to design certain efficient imple-
mentations that will not be vulnerable to SCA.

We would like to note that we consider neither Julius-ECB nor Julius-CTR
as potentially more vulnerable than the widely used GCM. Another impor-
tant note it that a side channel attacker usually needs to be physically close
to the attacked device, hence for many simple applications a reasonable
security is achieved even in the case of vulnerable implementation.

3.3.3 Are There Weak Keys?

Not really. An AES key so that the resulting authentication key is zero3

causes:

1. The authentication of both Julius-ECB and Julius-CTR to be depen-
dent on the last message’s block only.

2. The Julius-CTR encryption to become a stream cipher which is inde-
pendent of the IV, and thus is breakable by a single pair of known
plaintext and ciphertext, or alternatively by just two known cipher-
texts.

3. The Julius-EBC encryption to become equivalent to ECB (the only dif-
ference being additional whitening key which is independent of the
IV).

Such a key can most naturally be considered a weak key. However, the ar-
bitrary AES key 04GA7BB208D7E99CE271BAF6FE3ABAB2 (written in Hexadec-
imal) can be similarly shown to be even weaker: an adversary that encrypt
and decrypt using this specific key will be able to forge and decrypt any
message, even without knowing a single pair of plaintext and ciphertext,
in case this specific key has been used. The same argument can be used to

3It is unclear whether such a key exists: assuming AES-128 is a sequence of 2128 ran-
domly and independently selected permutations in S2128 , the probability that there is a key
so that E(0) = 0 is about 1–1/e.

15

shown that any possible key is a weak key, and the obvious conclusion is
that the Julius algorithms are disastrous.

More seriously, a single key by itself can never be considered a weak
key. On the other hand, a cryptosystem can be considered as having weak
keys, in case there is a significant probability that the random key is in a
certain subset of keys all having the same undesirable property. One might
most naturally suspect that the Julius algorithms have weak keys for which
the sequence δ, δ2, δ3, ... has a short cycle, much the same way that the GCM
and GMAC algorithms have already been suspected [18].

Fortunately, it follows from the security proofs that the probability of
having such "weak" keys is insignificant. Nevertheless we would like to
provide an intuitive explanation for that: there are exactly 264−1

17 possible
derived keys δ such that the resulting sequence {δi}∞

i=0 has a (not neces-
sarily minimal) cycle of 264−1

17 . Since the maximal message length is of 260

blocks, which is more than 264−1
17 , the set of those 264−1

17 possible derived
keys causes an undesirable phenomenon. On the other hand, for any set of
264−1

17 distinct derived keys {δk}
264−1

17
k=1 there is a message of 264−1

17 blocks such
that all those derived keys are roots of the corresponding polynomial over

GF(2128). If the authenticated key is in the set {δk}
264−1

17
k=1 , then any two 264−1

17
blocks messages whose XOR the specified message will be encrypted sim-
ilarly, which is obviously undesirable. So the suspected set of keys is not
weaker than any other set of authenticated keys with the same cardinality,
meaning there aren’t really weak keys.

3.3.4 Is Julius a Trapdoor?

No. Apart from providing a rigorous security analysis and discussing the
design rationale of the submitted AE algorithms, and apart from the de-
signer’s required statements, submissions to the CAESAR competition are
expected to discuss the possible ways in which a weakness could be hidden
in the cipher. Since the proposed algorithms use the widely trusted AES
blockcipher in a certain scheme for which a conservative informational the-
oretic security proof is given, and uses no other keys or peculiar constants,
the only possible ways we could have hidden a weakness are the following:

Secretly Knowing How to Break the AES

Since all currently published state of the art cryptanalyses of AES are not
feasible, and that there seems to be no promising direction where a feasible

16

cryptanalysis might be found, having a secret method to break the AES is
would be a very unlikely breakthrough. Moreover, there is an indication
that even the NSA has not such ability, as we stated in the introduction.

Important note: since the security proof is based on the assumption that
AES cannot be efficiently distinguished from a truly random permutation
of 16 bytes, it is theoretically possible that an efficient distinguishing algo-
rithm of the AES is enough for breaking Julius, despite having no efficient
key recovery attack on the AES. However, when it comes to blockciphers,
a distinguishing algorithm can be used in most cases to recover the key:
by exhaustive search over a small part of the whitening key (a single byte
for example), the distinguishing algorithm might be improved (when the
guessed key is right) or get worse (when the guess is wrong), thus revealing
what this part of the key is.

The Security Proof Being False Yet Seems to be True

Informational theoretic indistinguishability proofs tend to be confusing,
and it is not unreasonable that a certain fault in such a proof will not be
detected by the authors of a paper and the paper’s reviewers too. However
we believe it is extremely unlikely that a fault will not be detected by many
readers, during the five years of the competition.

Mathematical proofs, unlike mathematical conjectures, can be relatively
easily verified (it only takes polynomial time!). This is especially true for
birthday-security proofs that are essentially based on the inexistence of cer-
tain value repetitions, and not on high level mathematics. We encourage
the reader to take the time to carefully validate each of the proofs’ steps by
herself or himself. Being able to exploit side channels of common imple-
mentations

Since the Julius algorithms are based on the same operations as of the
GCM - meaning AES encryption and decryption, and multiplication by a
secret element of the GF(2128) field – any method exploiting side channels
of Julius implementations should be also applicable to the GCM widely
used standard. To the best of our knowledge there are no such known
attacks.

As the central goal of CAESAR competition is to replace the GCM by
other algorithms, a reasonable entity that is able to exploits the widely used
GCM would not participate in such a competition, and would definitely
not encourage the cryptographic community to research the side channels
aspects of modes of operation. However, we do.

In conclusion, Julius is not a trapdoor.

17

4 Features

Maximal Security

The most notable feature of Julius is that all versions achieve the maximal
possible security of a AE algorithm, meaning indistinguishability between
the algorithm and a series of independent and uniformly random permu-
tations, indexed by the IV and the messages’ lengths. Thus a nonce misuse,
meaning the use of the same nonce more than once, is bearable. In fact, ap-
plications whose messages are not likely to repeat (e.g. messages are long
and have enough entropy) may not use IV at all and yet be secure! Note
that we do not recommend zero-length IV, though.

The main advantage of Julius over GCM is in the case of nonce misuse:
while Julius achieves the maximal possibly security for both confidentiality
and integrity, the confidentiality of GCM completely disappears in case of
a nonce repetition.

Security in Case of Partial Key Recovery

In the not very likely case where the derived key has been recovered by a
side channels attack or an implementation bug, plaintext confidentiality is
preserved in the sense described in section 3.

Provable Security

Security of both Julius-ECB and Julius-CTR is guaranteed by informational
theoretic indistinguishability proofs. Meaning, breaking the cipher or forg-
ing a message can only be done by breaking AES, or exploiting side chan-
nels and implementation weaknesses (if there are any).4

Efficiency

Julius uses about a single AES encryption per a single message’s block,
which by essence is the minimal number of blockcipher calls any (infor-
mational theoretic secure) mode of operation is required to make [2]. The
non-blockcipher operation of Julius, meaning the field multiplication by
the derived key, should be relatively fast compared to AES encryptions
when correctly implemented on modern devices.

4That is, unless the adversary is very very lucky or that astronomical amount of data
have been processed using the same key.

18

We note however that a fast implementation of Julius is not trivial:
naively implemented finite field multiplication may take even longer than
AES encryption. Implementation for a relatively old CPU which does not
support carry less multiplications should not be based on implementing
general GF(2128) multiplications. Rather, multiplication by the derived key
is a certain linear transformation that should be implemented using prepro-
cessed tables (general GF(2128) multiplications are unneeded). Hardware
devices might use a different representation of GF(2128) (and of the derived
key), as described in section 5.

On the other hand, implementation for a newer CPU which support
carry less multiplication is relatively easy, and does not require different
field representation or preprocessing tables [8]. We expect that in the near
future CPUs will not only support built-in carry less multiplications but
also be able to calculate binary polynomials modulus x128 + x7 + x2 + x+ 1,
and thus to calculate GF(2128) multiplications extremely efficiently.

Parallelizability

Since most of the blockcipher operations in Julius are independent, mean-
ing the input of one call to the blockcipher does not depends on the out-
put of another call for the blockcipher, and since consecutive field mul-
tiplications by the derived key have nice algebraic properties, the Julius
algorithms are highly parallelizable. While the blockcipher encryptions in
Julius are naturally parallelizable, the field operations can be computed in
parallel using (easily) preprocessed exponentiation of the derived key.

Replaceability

The Julius algorithms are in fact general blockcipher modes of operation,
and in our proposal we just suggest using them with the standard AES-
128 blockcipher. If for some reason one wishes to use a different blockci-
pher, for example a wider blockcipher or one that is dedicated for a certain
platform and thus is more efficient, the Julius modes of operation can still
be used. Moreover, we believe that the widely used AES will one day be
replaced by a newer standard, while a good mode of operation can last
forever. Julius-CTR is inverse-free

The Julius-CTR version is inverse-free, meaning that both enciphering
and deciphering make use of blockcipher encryptions only, and thus imple-
mentation of the blockcipher decryption is unneeded. This property might
be beneficial for certain restricted platforms.

19

Simplicity

The Julius modes of operation both have simple and elegant designs. We
believe that simplicity is an important feature of a cryptographic algorithm,
since it allows an easier implementation and reduces the probability of hav-
ing bugs, which might make the algorithm breakable. Moreover, hiding a
backdoor in software that implements a simply cryptographic algorithm
is more difficult than doing so in software that implements a cumbersome
algorithm.

5 Variants

5.1 Different representations of GF
(
2128)

The core Julius-ECB and Julius-CTR modes of operation are independent
of the representation of GF

(
2128) . The regular Julius-ECB and Julius-CTR

versions do not use concatenation or any other non-field operations, except
for calling the permutation E or its inverse E−1 for deciphering (in Julius-
ECB only).5 Thus, replacing the specified field addition and multiplica-
tion of two blocks X and Y by zan−1(zan(X) + zan(Y)) and zan−1(zan(X) ·
zan(Y)) correspondingly for an arbitrary bijection

zan : {0, 1}128 → Z2[x]/(x128 + x7 + x2 + x + 1)

does not affect much the mode, since the outcome is equivalent to applying
the original mode with the permutation zan−1 ◦ E ◦ zan over the modified
message obtained by block-wise applying zan−1 over the original message.

Since zan−1 ◦ E ◦ zan is a uniformly random permutation if and only
if E is a uniformly random permutation, we can say that the core Julius
modes are in a sense independent of the field representation. However,
since AES with a random 128 bit key is not equivalent to zan−1 ◦AES ◦ zan
for an arbitrary zan, altering the field representation should be considered
a variant of the original algorithm.

We consider two such variants, which might turn out to be much more
efficient for certain platforms. There are sure many more possible varieties
and tradeoffs that should be explored in order to optimize performance –
those are just two techniques that can be reparameterize or even used in
conjunction.

5And except for padding the message, which we shall ignore.

20

Representation by an Irreducible Polynomial Over GF
(
2128) Subfield

Let poly(x) by an irreducible monic polynomial of degree 16 over the field
GF

(
28). GF(2128) ∼= GF(28)/(poly(x)), and thus a 16 bytes block can represent

an element of GF
(
2128) by using its 16 bytes as the coefficients of a (less

than 16 degree) polynomial in GF(28)[x]. This alternative representation
might enable more efficient GF

(
2128) multiplication for a CPU which does

not support carry less multiplication, provided that GF
(
28) multiplications

can be implemented by tables. GF
(
2128) addition is still equivalent to XOR,

assuming that GF
(
28) addition of two bytes is equivalent to their XOR.

We note that preprocessing key-dependent tables for GF
(
2128) multi-

plication by the derived key in the original representation
yields a better performance than this alternative representation. On the

other hand, doing so significantly increases the running time of the key
setup.

Key Dependent Secret Representation

We consider the variant where GF(2128) is represented by GF(28)/(irr(x)) and
irr(x) is a secret key-dependent irreducible binary polynomial of degree
128. In this variant irr(x) is derived from the blockcipher key instead of
the secret field element δ, which is replaced by the secret field element x128.
The idea of achieving universal hashing through secret finite field repre-
sentation is in fact not new, however to the best of our knowledge it has
never been formalized from this point of view.

Since evaluation in GF(28)/(irr(x)) usingδ = x128 is equivalent to calcu-
lating the message’s corresponding polynomial modulus irr(x), this kind
of universal hashing has been named "division hashing" and was treated
differently than the more common "evaluation hashing" [10, 20, 15]. In-
deed, those two hashes are not completely equivalent as the division hash
has a smaller key space (i.e. only irreducible polynomials of degree 128).
However, each of the division hash keys is equivalent to a certain different
evaluation key. From this point of view, we can say that division hashing
is in a sense a variant of evaluation hashing where the keys are randomly
selected from a subset that is approximately 128 time smaller (in our exam-
ple) than the evaluation hashing key space.

Division hashing can be most efficiently implemented in certain hard-
ware, and the reduced security caused by the smaller universal hashing
key space is insignificant as long as the same key is not used to process as-
tronomical amount of data (note the blockcipher key space isn’t reduced).

21

The main difficulty of this variant is the need to generate an irreducible bi-
nary polynomial. There are relatively efficient algorithms for this propose
(e.g. taking an element of GF(2128) and checking whether its minimal poly-
nomial is irreducible) however they are not well implemented in hardware
platforms.

5.2 Encryption Only Mode / Chosen Ciphertext Secure Mode

One may wish to use the core Julius modes as encryption–only modes of
operation, or just have the AE modes be secure to chosen ciphertexts at-
tacks where improper forged messages are decrypted despite failing au-
thentication (see subsection 3.3 for the motivation). For this propose we
suggest to use the Naor-Reingold scheme, meaning to change Julius-ECB
so that the Julius involution will be applied also to the original Julius-ECB
ciphertexts.

5.3 Changing the Derived Key Rapidly

Since certain implementations of Julius might be vulnerable to side chan-
nels attacks which might recover the derived key δ, it is reasonable to re-
fresh or replace the derived key faster than the blockcipher key (provided
that the key setup of the derived key is not too time consuming). One pos-
sible way to do so is by having additional 128 bits key m, and for each new
message computing δ = m⊕ E(IV ⊕m). We note that an additional key is
essential, since we already assume that an adversary might recover δ and
thus receive arbitrary values of the blockcipher. On the other hand, this
simple Even-Mansour like construction is secure enough.

We note that an anti-replay mechanism might be needed in order to
reject decipherment messages having a repeated IV.

5.4 Increased Parallelization

The Julius modes’ non-field operations, i.e. blockcipher calls, are natu-
rally and fully parallelizable. The field operations on the other hand, can
only be parallelized by precomputing powers ofδ. If one wishes to in-
crease parallelization without having a longer key setup, a simple vari-
ant might be used.6 We suggest to modify the Julius involution by parti-

6We note that replacing the masks µ‖µ · δ‖µ · δ2‖....‖µ · δblen or µ‖µ · (δ + 1)‖µ · δ‖µ ·
δ2‖....‖µ · δblen of the Julius involution by OCB-like alternative masks is not enough in order
to make Julius-ECB more parallelizable, since evaluation of the padded message is still a

22

tioning the padded message into k chunks of not too many blocks, so that
each chunk will be evaluated separately. Than we take the concatenation
E(seed1)‖...‖E(seedk) of the encrypted chunk’s evaluations, evaluate and
encrypt it, and use the obtained value to create a series {µi}k

i=1 of k differ-
ent mu values, each used to mask a different chunk is the same manner as
in the original Julius involution.

6 Design Rationale

6.1 Origin of the Idea

The origin of Julius is one of the impossibility results presented in our
recent paper [2] which develops the theory of simple linear blockcipher
modes of operation. A simple linear mode is any blockcipher mode of op-
eration which is based solely on non-secret linear (or affine) binary trans-
formations and invocations of the underlying blockcipher. Many famous
encryption and authentication schemes such as ECB, OCB, CBC, CMAC,
CMC and SIV are simple linear modes, since block XORing, truncations,
and multiplication by a constant element of a finite fields are all non-secret
affine transformations. On the other hand, GCM poly1305-AES [4] and the
Julius modes of operations are not simple linear, since field multiplication
is not linear and a multiplication by a (constant) secret element is linear but
not non-secret.

Our mentioned impossibility result states that a simple linear mode of
operation for blockcipher decipherment cannot be chosen-plaintext secure
unless a k-blocks long message requires at least 2k − 1 invocations of the
underlying blockcipher. In our notion of security the adversary is allowed
to choose the plaintext as well as the IV. To the best of our knowledge
all known informational theoretic chosen plaintext and ciphertext secure
modes of operation, such as EME, CMC [9] and the Luby-Rackoff scheme
[11], are simple linear modes that require at least 2k invocation of the block-
cipher for enciphering a k-blocks long message . 7

A natural rising question is whether adaptive chosen plaintext and ci-
phertext security can be achieved by a mode of operation based on a pseudo
random permutation and additional secret key, such that the mode’s oper-
ations are limited to invocation of the permutation and affine transforma-

problem.
7That is except for our new mode Symmetric CBC (SCBC) presented in the same paper,

which requires exactly 2k–1 invocations for such a message.

23

tions derived from the secret key, and the mode uses a single invocation of
the permutation for each single message block. We answered the question
in the affirmative by construction two such modes of operations, based on
which we designed the Julius-ECB and Julius-CTR modes.

Since the CAESAR competition is more practically than theoretically
oriented, and since real-world efficiency of a mode is not measured just by
the total number of blockcipher invocations per a certain message length,
we have made couple of changes to the original constructions: first, we
have followed the GCM by replacing the additional key with the derived
key E(0). Second, we have traded the chosen-ciphertext security, which is
not essential in AE algorithms, for an increased efficiency.

We have not traded the chosen-IV security, which we view as an es-
sential part of chosen plaintext security, and that’s the major advantage of
Julius. We have chosen to submit two different algorithms instead of our
favorite Julius-ECB only. This diversity is beneficial, as there might be ap-
plications for which Julius-CTR suits better, possibly due to its inverse-free
property.

6.2 General Philosophy

Our theoretically-oriented philosophy is that the ideal mode of operation
should use only a single blockcipher invocation per a message’s block (asymp-
totically), and the inputs for the blockcipher should not be dependent on
outputs of other blockcipher invocations. This ECB-like permutation, which
is at the heart of the ideal mode, is highly parallelizable and hence makes it
ideal in a sense. The other non-blockcipher operations, are supposed to be
much faster, and thus can almost be ignored.

Moreover, we believe that CPU and hardware architectures should be
adjusted to cryptography (so that those non-blockcipher operations could
truly be ignored) at least as much as cryptography should be adjusted to
CPU and hardware architectures. Sophisticated and impressive crypto-
graphic algorithms such as poly1305-AES [4] have been designed in order
to overcome limited architectures, while this is obviously unneeded. For
example, supporting polynomial multiplications over GF(2), which is very
beneficial for software implementations of binary fields’ multiplications, is
not more difficult than supporting binary integer multiplication, which is
provided in any CPU.

Fortunately, today’s hardware manufacturers are much more cryptographic-
aware, and carry-less 64bit multiplication is provided by many new CPUs
since Intel’s 2010 Westmere processor [8]. We believe this trend should and

24

will continue within the next few years, and hope the decisions of the CAE-
SAR committee will take this into considerations.

6.3 Justifying Some Choices

The Underlying Blockcipher

We chose AES as our underlying blockcipher since it is widely believed to
be absolutely secure, and has efficient software and hardware implementa-
tions. The AES standard specifies three algorithms: AES-128, AES-192 and
AES-256, having 128, 192 and 256 bit keys, and 10, 12 and 14 rounds, corre-
spondingly. While one might psychologically feel that AES-192 and AES-
256 are more secure than AES-128, there is no evidence for that. On the
contrary: the key schedule of both AES-192 and AES-128 has been shown
to be vulnerable to related key attacks [7] while the AES-128 hasn’t. Due to
that, and to the fact that AES-128 is a bit faster, we have chosen AES-128.

The Regular and Compact Versions

Two versions are provided for each of the two Julius-ECB and Julius-CTR
modes. The regular versions have an overhead of 16 bytes or more (de-
pends on the exact lengths of the plaintext and the associated data), while
the compact versions have always exactly 8 bytes overhead. In order to
achieve that, the compact versions use truncations of blocks and thus are a
slightly more complicated.

The probability of a forged message to pass authentication is no less
than 1

2 to the power of the overhead length measured in bits, however the
more known plaintexts and ciphertexts the adversary knows the higher is
the probability of finding a certain collision which enables the recovery of
the derived key and thus the ability to forge messages. In a theoretical
sense, authentication with an overhead of 16 bytes is not stronger than 8
bytes overhead authentication, since the expected number of enciphering
or deciphering queries the adversary is going to make before being able
to forge a message is the same. In a practical sense, both 16 and 8 bytes
overhead authentication are fine.

We provide the two versions so that a more conservative user may use
the regular versions, and a user who is more concerned with the overhead’s
costs may use the compact versions.

25

Paddings

The intermediate paddings of Julius-ECB and Julius-CTR are different, as
the 8 or more zero bytes are placed between the associated data and the
plaintext in the Julius-ECB padding and right after the message in the Julius-CTR
padding. This enables the Julius-CTR regular version to be slightly less
complicated as the compact version, since there is no need to decrypt the
last ciphertext block. As for Julius-ECB, placing the zeroes before the plain-
text enables a faster authentication verification: there is no need to com-
plete the calculations of the Julius involution when the message fails au-
thentication.

We note that both padding of Julius-ECB and Julius-CTR place the as-
sociated data right after the IV and lengths, and before the plaintext. This
enables to start the authentication verification while the decipherment of
the ciphertext has not been completed.

Plaintext and Associated Data Length Limitation

The formal maximal length of plaintext or associated data is of 264–1 bytes,
and since messages are not expected to grow so long in the near future,
practically there is no length limitation at all. There are two reasons for this
unachievable limitation: first, security is no longer guaranteed in case a
single key is being used for authenticating and encrypting more than 264–1
bytes, not even when all those bytes are within a single message. Second,
the lengths of a certain message’s plaintext and associated data are being
authenticated by being included in the message’s padding. We use 8 bytes
for each of the two lengths, and therefore the limit is of 264–1 bytes.

The IV Lengths.

While all the described modes of operation may receive IV of any (reason-
able) length, officially we suggest only two possible lengths, 8 bytes and 16
bytes, intended for different IV mechanisms:

• Counter based IV mechanism don’t need more than 8 bytes of IV
since a single AES key is not likely to be used in more than 264 dif-
ferent messages encryptions (and if it is, security is no longer guaran-
teed).

• Randomly selected IV of less than 16 bytes will be repeated within
less than 264 messages, which is undesirable. On the other hand, there

26

is no point having a longer IV since repetition of the seed will occur
within 264 messages anyway.

We have decided not to recommend widely used IV lengths such as 12
bytes, since we are afraid that a developer who lacks basic cryptographic
understanding might believe that a certain intermediate IV value is secure
for random IV mechanism, while it isn’t. Anyone who do have sufficient
cryptographic background and wishes to have a different IV length or any
other modification will easily be able to do so securely.

Acknowledgments

The designer would like to thank Orr Dunkleman, Adi Shamir, Stefano
Tessaro and Boaz Tsaban for discussing the algorithms. Yet another con-
tribution of Boaz was to brilliantly suggest the name Julius. Moreover, the
designer would like to thank the international team of cryptographers who
founded the CAESAR competition for encouraging the research of AE al-
gorithms and modes of operation.

References

[1] Caesar: Competition for authenticated encryption: Se-
curity, applicability, and robustness, 2013. URL:
http://competitions.cr.yp.to/caesar-call.html.

[2] Lear Bahack. On simple linear modes of operation for blockcipher
encryption and authentication. To be published soon, 2014.

[3] Mihir Bellare, Phillip Rogaway, and David Wagner. The eax mode of
operation. In FSE, pages 389–407, 2004.

[4] Daniel J. Bernstein. The poly1305-aes message-authentication code. In
FSE, pages 32–49, 2005.

[5] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich,
and Adi Shamir. Key recovery attacks of practical complexity on aes-
256 variants with up to 10 rounds. In EUROCRYPT, pages 299–319,
2010.

[6] Joan Daemen and Vincent Rijmen. Rijndael for aes. In AES Candidate
Conference, pages 343–348, 2000.

27

[7] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via
low-bandwidth acoustic cryptanalysis. IACR Cryptology ePrint Archive,
2013:857, 2013.

[8] Shay Gueron and Michael E. Kounavis. Efficient implementation of
the galois counter mode using a carry-less multiplier and a fast reduc-
tion algorithm. Inf. Process. Lett., 110(14-15):549–553, 2010.

[9] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In
CRYPTO, pages 482–499, 2003.

[10] Hugo Krawczyk. Lfsr-based hashing and authentication. In CRYPTO,
pages 129–139, 1994.

[11] Michael Luby and Charles Rackoff. How to construct pseudoran-
dom permutations from pseudorandom functions. SIAM J. Comput.,
17(2):373–386, 1988.

[12] David A. McGrew and John Viega. The security and performance of
the galois/counter mode (gcm) of operation. In INDOCRYPT, pages
343–355, 2004.

[13] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic sim-
ulations of prams by parallel machines with restricted granularity of
parallel memories. Acta Inf., 21:339–374, 1984.

[14] Moni Naor and Omer Reingold. The nr mode of opera-
tion. URL: http://www.wisdom.weizmann.ac.il/ naor/PAPERS/nr-
mode.ps, 1997.

[15] Wim Nevelsteen and Bart Preneel. Software performance of universal
hash functions. In EUROCRYPT, pages 24–41, 1999.

[16] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. Ocb: a
block-cipher mode of operation for efficient authenticated encryption.
In ACM Conference on Computer and Communications Security, pages
196–205, 2001.

[17] Phillip Rogaway and Thomas Shrimpton. A provable-security treat-
ment of the key-wrap problem. In EUROCRYPT, pages 373–390, 2006.

[18] Markku-Juhani Olavi Saarinen. Cycling attacks on gcm, ghash and
other polynomial macs and hashes. In FSE, pages 216–225, 2012.

28

[19] Bruce Schneier and John Kelsey. Unbalanced feistel networks and
block cipher design. In FSE, pages 121–144, 1996.

[20] Victor Shoup. On fast and provably secure message authentication
based on universal hashing. In CRYPTO, pages 313–328, 1996.

Appendix: Required and Additional Statements

The designer has not hidden any weaknesses in this cipher.
The Julius mode of operation, or any of its many variants described

in this document, is not and will not be subject to patents. If any of this
information changes, the submitter will promptly (and within at most one
month) announce these changes on the crypto-competitions mailing list.
The designer will not be responsible for the usage of Julius or any of its
variants. One should have no claims to the designer regarding the usage of
Julius.

The submitter hereby consents to all decisions of the CAESAR selec-
tion committee regarding the selection or non-selection of this submission
as a second-round candidate, a third-round candidate, a finalist, a member
of the final portfolio, or any other designation provided by the commit-
tee . The submitter understands that the committee will not comment on
the algorithms, except that for each selected algorithm the committee will
simply cite the previously published analyses that led to the selection of
the algorithm. The submitter understands that the selection of some al-
gorithms is not a negative comment regarding other algorithms, and that
an excellent algorithm might fail to be selected simply because not enough
analysis was available at the time of the committee decision. The submit-
ter acknowledges that the committee decisions reflect the collective expert
judgments of the committee members and are not subject to appeal. The
submitter understands that if he disagrees with published analyses then he
is expected to promptly and publicly respond to those analyses, not to wait
for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by
the CAESAR selection committee.

The submitter consents to possible modification of the submitted algo-
rithms by the committee, as long as the core ideas of the algorithms are
preserved and the modified algorithms are provable birthday-secure.

Lear Bahack,
Designer and submitter.

29

