Julius: Secure Mode of Operation for
Authenticated Encryption Based on ECB and
finite field multiplications

Lear Bahack*
Submission to the CAESAR competition, version 1.0, March 2014

T e

Gaius Julius Caesar, 100 BC — 44 BC. Source: Mcleclat, GNU, Creative
Commons via Wikimedia Commons.

*Weizmann Institute of Science, Rehovot, Israel. E-mail: lear.bahack@gmail.com

1
2

We specify first the two block cipher modes Julius-ECB and Julius-CTR, each
having a regular and a compact version. The specification is based on a pseudo
random permutation over 16 byte strings primitive, which is not part of the
modes and thus is not specified. Next we specify a set of 8 concrete and pa-
rameterized algorithms for authenticated encryption with associated data. The
pseudo random permutation primitive used in all the proposed algorithms is the

Abstract

We present two new block cipher modes of operation for authenticated
encryption with associated data, designed to achieve the maximal possible
security in case of misused IV, while being efficient as the Galois/Counter
Mode (GCM). Both of the modes are provably secure up to the birthday
bound, are suitable for both software and hardware, and are based on
GF(2*?®) multiplications by a secret element of the field.

The Julius-CTR mode can be viewed as a certain variation combining
the GCM, SIV and Unbalanced Feistel Network, while the Julius-ECB is a
completely new scheme. We specify two versions for each mode: a regular
version and a compact version, having deferent ciphertexts redundancies.
Several variants aimed to achieve increased parallelization, security be-
yond the birthday bound, and security to chosen ciphertext attacks, are
briefly explored.

Based on the two Julius modes of operation and the AES-128 block
cipher, we propose a family of four specific algorithms for authenticated
encryption with associated data to the CAESAR competition.

Introduction

Specification

standard AES-128 block cipher, whose specification is given in [9].

We start by defining the notations in used, and highlighting four simple

mathematical facts and properties that are essential for this document.

Notations

1. Bytes are integers in {0, 1,...,256}, and are used as our atomic data unit.
Messages, plaintexts, associated data, ciphertexts, initialization vectors
(IV), and binary representations of certain lengths are all regarded as
strings of bytes. We denote the string of k consecutive zero bytes by

ZEROES(k).

. The concatenation strl||str2 of two (byte) strings is defined as the string
whose length is lenl + len2, where lenl and len2 are the lengths of strl
and str2 correspondingly, such that its first lenl bytes are the same as of
strl and its last len2 bytes are the same as of str2. The concatenation
operation is associative and thus we don’t use parentheses in case of a

multiple concatenation.

. The XOR A @ B of the two bytes A = 21'7:0 2iq; and B = ZZ:O 2ib;
where ag, .., a7, by, ..,b7 € {0,1} , is the byte A = Z::O 2¢(a; ® b;), where
we define 00 =101 =0and 001 =1d0 = 1. The XOR strl @ str2 of
two byte strings strl, str2 of the same length len is defined as the string:
strl]0] @ str(0]||. .. ||strllen — 1] @ str[len — 1].

. A Dblock is defined as a string of exactly 16 bytes. We denote the two
blocks: 0]|0]|...]|0 and 0]|0]...]|0||1 by ZERO BLK and ONE BLK
correspondingly. E(blk) and E~1(blk) stands for the block cipher encryp-
tion and decryption of the block blk.

. For a block blk = b[0]||b[1]]|-..||b[15], and an integer len € {0,1,...,16}
we denote the string b[0]]|. .. ||b[i — 1] of the first/leftmost bytes of blk by
left(blk,len) and the string b[16—i]||. .. ||[b[15]of the last/rightmost bytes
of blk by right(blk,len).

. We represent GF(21?8), the finite field with 2!2® elements, by the set of
all polynomials over GF(2) of degree 127 or less, in the following way:
the field addition of two such polynomials is the same as their sum over
GF(2) and their field multiplication is obtained by their Z;[z] multiplica-
tion modulus the irreducible polynomial 2?8 4+ 27 + 22 + z + 1.

. We regard blocks as elements of GF(21%%) in the following way: the cor-
responding element of the block blk = b[0]]|..||b[15] is

15 7
85 ip
™ T 0154,
=0 i=0

where for all j € {0, ..., 15}we have blk[j] = S7_, 2°b;; and bj, ..., bj7 €
{o.1}.

. We regard a byte string of length which is an integer multiplication of 16 as
a polynomial over GF(2'2%) in the following way: let Bo, ... Bien_1 be the
GF(2'?8) field elements corresponding to the blocks blk[0], . . ., blk[len—1],
then the polynomial corresponding to the string bik[0]||...||blk[len—1] is

len—1 . N
im0 2% Bren—1—q. Moreover, we define the evaluation of this string over

the field element « as the corresponding block of Zlde:”(;l a - Bren—1—q.

. The inputs for the two Julius modes are:

IV string of length IV _LEN: IV = IV[0]||...||IV[IV_LEN]. The non-
negative integer IV _LEN is a (constant) parameter of the mode.

Length of the plaintext, which is an integer between 0 and 2% — 1 =
18,446,744,073,709,551,615. The given length plen is represented by
the 8 bytes string plen[0]|. . . |plen[7] so that plen = S1_, 28plen[7 — 4.

Length of the associated data, which is an integer between 0 and 264 —1 =
18,446, 744,073,709,551,615. The given length adlen is represented by

the 8 bytes string adlen[0]]|. . . [|adlen[7] so that adlen = 3_1_, 28adlen[7—
e Plaintext byte string: plain = plain[0]|. .. ||plain[plen—1].
e Associated data byte string: ad = ad[0]]|. .. .||ad[adlen—1].

A pseudo random permutation E over 16 bytes strings.

Mathematical properties and facts

1. The finite field of cardinality p™, for any prime number p and positive
integer n, is unique. We shall use this fact in two Julius variants having
different representations of GF(212%).

2. For any a, 1 € GF(2'?®) and non negative integer k, the evaluations of the
strings ullpe- ol |- @[l |p-o®*~tand pllp- (@ 1)l af |- 0.l - o
over « are both zero.

3. The evaluation of the string strl @ str2 over a certain element is the same
as the field addition of the evaluations of strl and str2 over the same
certain element.

4. Replacing the last block blk[len—1] in the blocks concatenation
blE[0]]. . . ||blk]len — 1]

by the evaluation of the concatenation string over a certain field element,
is an involution.

2.1 The Julius Modes
2.1.1 Julius-ECB Regular Version
Padding

Let pres and adres be the smallest non-negative integers so that plen+pres and
adlen + adres +1V _LEN are both multiplications of 16. We pad the message
as follows:

padded message = ONE_BLK]|IV|adlen|plen|associsteddatal|
|ZEROES (adres + pres + 16)||plain

The substring of the last/rightmost pres + 16 4+ plen bytes is denoted by
reg = blk[0]]|. .. ||blk[blen—1] where blen = 1+ f”i%} and blk[0], ..., blk[blen—1]
are blocks.

The Julius Involution

We derive a secret element of GF(2'28) from the pseudo random permutation
E, by taking the corresponding element of E(ZERO _BLK). We denote this
element by 0 and call it the derived key. Using the (rest of the) padded message
and the derived key we define an involution over the string reg.

Let seed be the evaluation of the padded message over the field element §.
We compute p = E(seed) and use it to form a pres + 16 + plen bytes mask as
follows: if blen is even, the mask is:

pllpe - 6l - 62l - 8%

else, the mask is

pll- 0+ D)0l 6.l - 6%
The mask is then XORed into the string reg.

ECB

The output (i.e. ciphertext) is the ECB encryption of the string reg: let reg =
reg = blk[0]||. .. ||blk[blen—1] (note that the blocks blk[0],. .., blk[blen — 1] have
been updated by the Julius Involution). The ciphertext string is then:

EIE[O])]]. .. | E(blk[blen — 1])

2.1.2 Julius-ECB Compact Version
Padding

Let res be the smallest non-negative integer so that res + 8 + IV _LEN +
adlen + plen is a multiplication of 16. We pad the message as follows:

padded message = ONE _BLK]|IV|adlen|plen|associsteddatal|
|ZEROES (res + 8)||plain

The substring of the last/rightmost 8 4+ plen bytes is denoted by

reg = b[0]|...]|b[7 — 1]||6I&[0]]]. . . ||blk[blen—1]

where blen = [8+1pée”j, j =plen+8—16 - blen, b[0],...,b[j — 1] are bytes and

blk[0], ..., blk[blen — 1] are blocks.

The Julius Involution

We derive a secret element of GF(2'28) from the pseudo random permutation
E, by taking the corresponding element of E(ZERO _BLK). We denote this
element by 0 and call it the derived key. Using the (rest of the) padded message
and the derived key we define an involution over the string reg.

Let seed be the evaluation of the padded message over the field element 4.
We compute p = E(E(seed)) and

w=ZFEROES(16 — j)||right(E(E(seed) ® ONE_BLK), j)

and use them to form a 8 4 plen bytes mask as follows: if blen is even, the mask

18:

right(w, j)llu+w - 8l - Ol - 62|l - %"

else, the mask is

right(w,)l +w - 3l 6+ D)= Ol 02 - 51"
The mask is then XORed into the string reg.

Modifyed ECB

The output (i.e. ciphertext) is the following modifyed ECB encryption of

the string reg: let reg = reg = blk[0]||. .. ||blk[blen—1] (note that the blocks

blk[0], ..., blk[blen — 1] have been updated by the Julius Involution), A =

b[O]]]. .. [|b[i—1]||left(blk[0],16—7), and B = right(E(A),16—3) || right(blk[0], 7).
The ciphertext string is then:

left(E(A),)| E(B)|EBIL[L)]. .. ||E(blk[blen — 1])

2.1.3 Julius-CTR Regular Version
Padding

Let pres and adres be the smallest non-negative integers so that plen+pres and
adlen 4+ adres + 1V _LEN are both multiplications of 16. We pad the message
as follows:

padded message = ONE _BLK]|IV|adlen|plen|associsteddatall
|ZEROES (adres)||plain||ZEROES(pres + 16)

The substring of the last/rightmost pres + 16 + plen bytes is denoted by
reg = blk[0]]|. .. ||blk[blen—1] where blen = 1+ fpll%ﬂ and blk[0], ..., blk[blen—1]
are blocks.

CTR

We derive a secret element of GF(2!?8) from the pseudo random permutation
E, by taking the corresponding element of E(ZERO _BLK). We denote this
element by ¢ and call it the derived key. Let seed be the evaluation of the
padded message over the field element §. We replace the last block blk[blen — 1]
by = E(seed) and use this value to generate a strong pseudo random stream
that will be then XORed into the rest of reg.

For each i € {0, ...,blen — 2} we denote by brep(i) the block-width binary
representation of 4, meaning ¢ = Z;io 287b[15 —] for brep(i) = b[0]]]...||b[15].
The output (ciphertext) is:

blk[0)BE(u®brep(0))||blk[1)BE(u®brep(1))||...||blk[blen—2]® E(udbrep(blen—2)) || 1

2.1.4 Julius-CTR Compact Version
Padding

Let res be the smallest non-negative integer so that res + 8 + IV _LEN +
adlen + plen is a multiplication of 16. We pad the message as follows:

padded message = ONE_BLK|IV |ladlen||plen||associsteddatal|
|ZEROES (res)||plain||ZEROES(8)

The substring of the last/rightmost 8 4+ plen bytes is denoted by
reg = b[0]|...||b[j — 1]||bIK[0]]|. . . ||blk[blen—1]

where blen = L%L j = plen +8 — 16 - blen, b[0],...,b[j — 1] are bytes and

blk[0], ..., blk[blen — 1] are blocks.

Modifyed CTR

We derive a secret element of GF(2'2%) from the pseudo random permutation
E, by taking the corresponding element of E(ZERO _BLK). We denote this
element by ¢ and call it the derived key. Let seed be the evaluation of the
padded message over the field element §. We replace the last block blk[blen — 1]
by seed and use p = E(seed) to generate a strong pseudo random stream that
will be then XORed into the rest of reg.

For each i € {0, ...,blen — 2} let brep(i) be the same as in the specification
of the regular version. Let

A= (o]l 6lj = 11) @ right(E(u), j)
and
B = blk[blen — 2] ® E(u @ brep(blen — 1))
The output (ciphertext) is:

blk[0] ® E(u @ brep(1))||blk[1] & E(u @ brep(2))]]...
...|[blk[blen — 3] @ E(u @ brep(blen — 2))||Bllu @ E(B)

2.2 Our Suggested Set of Algorithms

We propose and recommend 8 AE algorithms that are all the possible combina-
tions of (Block cipher, IV_LEN, mode of operation) € {AES-128} x {8 bytes, 16
bytes} x{Julius-ECB regular, Julius-ECB compact, Julius-CTR regular, Julius-
CTR compact}

3 Variants

4 Design Rationale

4.1 Origin of the Idea

The origin of Julius is one of the impossibility results presented in our recent
paper [3] which develops the theory of simple linear block cipher modes of op-
eration. A simple linear mode is any block cipher mode of operation which is
based solely on non-secret linear (or affine) binary transformations and invo-
cations of the underlying block cipher. Many famous encryption and authen-
tication schemes such as ECB, OCB, CBC, CMAC, CMC and SIV are simple
linear modes, since block XORing, truncations, and multiplication by a constant
element of a finite fields are all non-secret affine transformations. On the other
hand, GCM poly1305-AES [] and the Julius modes of operations are not simple
linear, since field multiplication is not linear and a multiplication by a (constant)
secret element is linear (concerning binary fields only) but not non-secret.

Our mentioned impossibility result states that a simple linear mode of op-
eration for block cipher decipherment cannot be chosen-plaintext secure unless
a k-blocks long message requires at least 2k — 1 invocations of the underlying
block cipher. In our notion of security the adversary is allowed to choose the
plaintext as well as the IV. To the best of our knowledge all known informa-
tional theoretic chosen plaintext and ciphertext secure modes of operation, such
as EME, CMC [] and the Luby-Rackoff scheme [], are simple linear modes that
require at least 2k invocation of the block cipher for enciphering a k-blocks long
message . !

A natural rising question is whether adaptive chosen plaintext and ciphertext
security can be achieved by a mode of operation based on a pseudo random
permutation and additional secret key, such that the mode’s operations are
limited to invocation of the permutation and affine transformations derived
from the secret key, and the mode uses a single invocation of the permutation
for each single message block. We answered the question in the affirmative by
construction two such modes of operations, based on which we designed the
Julius-ECB and Julius-CTR modes.

Since the CAESAR competition is more practically than theoretically ori-
ented, and since real-world efficiency of a mode is not measured just by the
total number of block cipher invocations per a certain message length, we have
made couple of changes to the original constructions: first, we have followed the
GCM by replacing the additional key with the derived key E(0). Second, we
have traded the chosen-ciphertext security, which is not essential in AE algo-
rithms, for an increased efficiency.

We have not traded the chosen-IV security, which we view as an essential part
of chosen plaintext security, and that’s the major advantage of Julius. We have

IThat is except for our new mode Symmetric CBC (SCBC) presented in the same paper,
which requires exactly 2k—1 invocations for such a message.

chosen to submit two different algorithms instead of our favorite Julius-ECB
only. This diversity is beneficial, as there might be applications for which Julius-
CTR suits better, possibly due to its block cipher encryptions-only property.

4.2 General Philosophy

Our theoretically-oriented philosophy is that the ideal mode of operation should
use only a single block cipher invocation per a message’s block (asymptotically),
and the inputs for the block cipher should not be dependent on outputs of other
block cipher invocations. This ECB-like permutation, which is at the heart of
the ideal mode, is highly parallelizable and hence makes it ideal in a sense. The
other non-block cipher operations, are supposed to be much faster, and thus
can almost be ignored.

Moreover, we believe that CPU and hardware architectures should be ad-
justed to cryptography (so that those non-block cipher operations could truly
be ignored) at least as much as cryptography should be adjusted to CPU and
hardware architectures. Sophisticated and impressive cryptographic algorithms
such as poly1305-AES [6] have been designed in order to overcome limited archi-
tectures, while this is obviously unneeded. For example, supporting polynomial
multiplications over GF(2), which is very beneficial for software implementa-
tions of binary fields’ multiplications, is not more difficult than supporting bi-
nary integer multiplication, which is provided in any CPU.

Fortunately, today’s hardware manufacturers are much more cryptographic-
aware, and carry-less 64bit multiplication is provided by many new CPUs since
Intel’s 2010 Westmere processor [11]. We believe this trend should and will
continue within the next few years, and hope the decisions of the CAESAR
committee will take this into considerations.

4.3 Justifying Some Choices
The Underlying Block Cipher.

We chose AES as our underlying block cipher since it is widely believed to
be absolutely secure, and has efficient software and hardware implementations.
The AES standard specifies three algorithms: AES-128, AES-192 and AES-256,
having 128, 192 and 256 bit keys, and 10, 12 and 14 rounds, correspondingly.
While one might psychologically feel that AES-192 and AES-256 are more secure
than AES-128, there is no evidence for that. On the contrary: the key schedule
of both AES-192 and AES-128 has been shown to be vulnerable to related key
attacks [10] while the AES-128 hasn’t. Due to that, and to the fact that AES-128
is a bit faster, we have chosen AES-128.

The Regular and Compact Versions

Two versions are provided for each of the two Julius-ECB and Julius-CTR
modes. The regular versions have an overhead of 16 bytes or more (depends

on the exact lengths of the plaintext and the associated data), while the com-
pact versions have always exactly 8 bytes overhead. In order to achieve that,
the compact versions use truncations of blocks and thus are a slightly more
complicated.

The probability of a forged message to pass authentication is no less than %
to the power of the overhead length measured in bits, however the more known
plaintexts and ciphertexts the adversary knows the higher is the probability of
finding a certain collision which enables the recovery of the derived key and
thus the ability to forge messages. In a theoretical sense, authentication with
an overhead of 16 bytes is not stronger than 8 bytes overhead authentication,
since the expected number of enciphering or deciphering queries the adversary
is going to make before being able to forge a message is the same. In a practical
sense, both 16 and 8 bytes overhead authentication are fine.

We provide the two versions so that a more conservative user may use the
regular versions, and a user who is more concerned with the overhead’s costs
may use the compact versions.

Paddings

The intermediate paddings of Julius-ECB and Julius-CTR are different, as the
8 or more zero bytes are placed between the associated data and the plaintext in
the Julius-ECB padding and right after the message in the Julius-CTR padding.
This enables the Julius-CTR regular version to be slightly less complicated
as the compact version, since there is no need to decrypt the last ciphertext
block. As for Julius-ECB, placing the zeroes before the plaintext enables a
faster authentication verification: there is no need to complete the calculations
of the Julius involution when the message fails authentication.

We note that both padding of Julius-ECB and Julius-CTR place the associ-
ated data right after the IV and lengths, and before the plaintext. This enables
to start the authentication verification while the decipherment of the ciphertext
has not been completed.

Plaintext and Associated Data Length Limitation

The formal maximal length of plaintext or associated data is of 26-1 bytes, and
since messages are not expected to grow so long in the near future, practically
there is no length limitation at all. There are two reasons for this unachievable
limitation: first, security is no longer guaranteed in case a single key is being
used for authenticating and encrypting more than 264-1 bytes, not even when
all those bytes are within a single message. Second, the lengths of a certain
message’s plaintext and associated data are being authenticated by being in-
cluded in the message’s padding. We use 8 bytes for each of the two lengths,
and therefore the limit is of 2641 bytes.

10

The IV Lengths.

While all the described modes of operation may receive IV of any (reasonable)
length, officially we suggest only two possible lengths, 8 bytes and 16 bytes,
intended for different IV mechanisms:

e Counter based IV mechanism don’t need more than 8 bytes of IV since a
single AES key is not likely to be used in more than 26 different messages
encryptions (and if it is, security is no longer guaranteed).

e Random based IV of less than 16 bytes will cause IV repetition within less
than 2% messages, which is undesirable. On the other hand, there is no
point having a longer IV since repetition of the seed will occur within 264
messages anyway.

We have decided not to recommend widely used IV lengths such as 12 bytes,
since we are afraid that a developer who lacks basic cryptographic understand-
ing might believe that a certain intermediate IV value is secure for random IV
mechanism, while it isn’t. Anyone who do have sufficient cryptographic back-
ground and wishes to have a different IV length or any other modification will
easily be able to do so securely.

Acknowledgments

The designer would like to thank Orr Dunkleman, Adi Shamir, Stefano Tessaro
and Boaz Tsaban for discussing the algorithms. Yet another contribution of
Boaz was to brilliantly suggest the name Julius. Moreover, the designer would
like to thank the international team of cryptographers who founded the CAE-
SAR competition for encouraging the research of AE algorithms and modes of
operation.

References

1]

[2] Caesar: Competition for authenticated encryption: Security, applicability,
and robustness, 2013. URL: http://competitions.cr.yp.to/caesar-call.html.

[3] Lear Bahack. On simple linear blockcipher modes of operation. To be
published soon, 2014.

[4] Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In FEUROCRYPT, pages
409-426, 2006.

[5] Mihir Bellare, Phillip Rogaway, and David Wagner. The eax mode of
operation. In FSE, pages 389-407, 2004.

11

6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Daniel J. Bernstein. The polyl1305-aes message-authentication code. In
FSE, pages 32—49, 2005.

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and
Adi Shamir. Key recovery attacks of practical complexity on aes-256 vari-
ants with up to 10 rounds. In FUROCRYPT, pages 299-319, 2010.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557-594, 2004.

Joan Daemen and Vincent Rijmen. Rijndael for aes. In AES Candidate
Conference, pages 343—-348, 2000.

Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via
low-bandwidth acoustic cryptanalysis. TACR Cryptology ePrint Archive,
2013:857, 2013.

Shay Gueron and Michael E. Kounavis. Efficient implementation of the
galois counter mode using a carry-less multiplier and a fast reduction algo-
rithm. Inf. Process. Lett., 110(14-15):549-553, 2010.

Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In
CRYPTO, pages 482-499, 2003.

Hugo Krawczyk. Lfsr-based hashing and authentication. In CRYPTO,
pages 129-139, 1994.

Michael Luby and Charles Rackoff. How to construct pseudorandom permu-
tations from pseudorandom functions. SIAM J. Comput., 17(2):373-386,
1988.

Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguisha-
bility amplification. In CRYPTO, pages 130-149, 2007.

David A. McGrew and John Viega. The security and performance of the
galois/counter mode (gem) of operation. In INDOCRYPT, pages 343-355,
2004.

Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic simula-
tions of prams by parallel machines with restricted granularity of parallel
memories. Acta Inf., 21:339-374, 1984.

Chanathip Namprempre, Phillip Rogaway, and Tom Shrimpton. Ae5 se-
curity notions: Definitions implicit in the caesar call. TACR Cryptology
ePrint Archive, 2013:242, 2013.

Wim Nevelsteen and Bart Preneel. Software performance of universal hash
functions. In FEUROCRYPT, pages 24-41, 1999.

12

[20] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. Ocb: a
block-cipher mode of operation for efficient authenticated encryption. In
ACM Conference on Computer and Communications Security, pages 196—
205, 2001.

[21] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of
the key-wrap problem. In EUROCRYPT, pages 373—-390, 2006.

[22] Markku-Juhani Olavi Saarinen. Cycling attacks on gcm, ghash and other
polynomial macs and hashes. In FSE, pages 216-225, 2012.

[23] Bruce Schneier and John Kelsey. Unbalanced feistel networks and block
cipher design. In FSE, pages 121-144, 1996.

[24] Victor Shoup. On fast and provably secure message authentication based
on universal hashing. In CRYPTO, pages 313328, 1996.

Appendix: Required and Additional Statements

The designer has not hidden any weaknesses in this cipher.

The Julius mode of operation, or any of its many variants described in this
document, is not and will not be subject to patents. If any of this information
changes, the submitter will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list. The designer will not
be responsible for the usage of Julius or any of its variants. One should have no
claims to the designer regarding the usage of Julius.

The submitter hereby consents to all decisions of the CAESAR selection com-
mittee regarding the selection or non-selection of this submission as a second-
round candidate, a third-round candidate, a finalist, a member of the final
portfolio, or any other designation provided by the committee . The submitter
understands that the committee will not comment on the algorithms, except
that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter
understands that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the
committee decision. The submitter acknowledges that the committee decisions
reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitter understands that if he disagrees with pub-
lished analyses then he is expected to promptly and publicly respond to those
analyses, not to wait for subsequent committee decisions. The submitter un-
derstands that this statement is required as a condition of consideration of this
submission by the CAESAR selection committee.

The submitter consents to possible modification of the submitted algorithms
by the committee, as long as the core ideas of the algorithms are preserved and
the modified algorithms are provable birthday-secure.

Lear Bahack,

13

Designer and submitter.

14

