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K is a set of two authenticated encryption functions with support for message
associated data. They are aimed at memory-constrained devices and strongly rely on
nonce uniqueness for security. In the architecture of our proposal we adopt a layered
approach, with K specified as instantiations of a mode built on top of a construction
that calls a permutation as cryptographic primitive.

K builds on round-reduced versions of K - f [400] and K - f [200] [4]. The
construction calling these permutations is M D , a variant of the duplex con-
struction [3]. Its most important new feature is that it supports different types of calls that
invoke the permutation with a different number of rounds. The performance of the re-
sulting scheme can be optimized by reducing the number of rounds quite aggressively, at
the cost of requiring nonce uniqueness for its security against key retrieval. This restricts
M D to use cases where nonce uniqueness can be guaranteed. This includes
scenarios where replay a acks are a concern.

Themode that runs on top ofM D is calledM W , similar and func-
tionally equivalent to S W [3]. The main differences with the la er are that it is
built on top of M D instead of duplex and that it uses two bits per block for
domain separation instead of a single one.

K ’s rate is set to only 8 % of the permutation width in order to achieve state-of-
the-art security strength despite the relatively small state size of 200 (and 400) bits. This
is compensated by performing only a single round of K - f in the majority of calls.
In this respect, K is somewhat similar to R G [1].

A er introducing some notation, basic definitions and the K -p permutations in
Sections 1 and 2, we introduce the M D construction in Section 3, followed by
the specification of the M W mode in Section 4. We specify K in Section 5
and finally explain how K addresses the CAESAR call for proposals in Section 6.

1 Definitions

1.1 Notation

A bit is an element of Z2. A n-bit string is a sequence of bits represented as an element
of Zn

2 . By convention the first bit in the sequence is wri en on the le side, i.e., the first
element in the string (b0, b1, . . . , bn−1) is b0. The set of bit strings of all lengths is denoted
Z∗2 and is defined as

Z∗2 = ∪∞
i=0Zi

2.

Similarly, the set of all binary strings of length 0 up to n is denoted by Z≤n
2 , i.e.,

Z≤n
2 = ∪n

i=0Zi
2.

The length in bits of a string s is denoted |s|. The concatenation of two strings a and
b is denoted a||b. In some cases, where it is clear from the context, the concatenation is
simply denoted ab.

1.2 Of bits and bytes

A byte is a string of 8 bits, i.e., an element of Z8
2. The byte (b0, b1, . . . , b7) can also be repre-

sented by the integer value ∑i 2ibi wri en in hexadecimal. E.g., the byte (0, 1, 1, 0, 0, 1, 0, 1)
can be equivalently wri en as 0xA6. The function enc8(x) encodes the integer x, with
0 ≤ x ≤ 255, as a byte with value x. When the length of a bit string is a multiple of
8, it can also be represented as a sequence of bytes, and vice-versa. E.g., the bit string
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(0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1) can also be wri en as the sequence (0, 1, 1, 0, 0, 1, 0, 1)
(0, 0, 1, 1, 1, 1, 1, 1) or 0xA6 0xFC.

1.3 Padding rules

We use two different padding rules:

• The simple padding, denoted pad10∗[r](|M|), returns a bit string 10q with q =
(−|M| − 1) mod r. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗[r](|M|) returns the byte string 0x01 0x00(q−7)/8.

• The multi-rate padding, denoted pad10∗1[r](|M|), returns a bitstring 10q1 with q =
(−|M| − 2) mod r [3]. When r is divisible by 8 and M is a sequence of bytes, then
pad10∗1[r](|M|) returns the byte string 0x01 0x00(q−14)/8 0x80.

1.4 Key pack

For a key K, we define a key pack of l bits as

keypack(K, l) = enc8(l/8)||K||pad10∗[l − 8](|K|),

where the key K is at most (l − 9)-bit long and where l is a multiple of 8 not greater than
255× 8. That is, the key pack consists of

• a first byte indicating its whole length in bytes, followed by

• the key itself, followed by

• simple padding.

For instance, the 64-bit key K = 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF yields

keypack(K, 144) = 0x12 0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF 0x01 0x008.

The purpose of the key pack is to have a uniformway of encoding a secret key as prefix
of a string input.

2 The K -p permutations

The K -p permutations are derived from the K - f permutations [4] and have a
tunable number of rounds. A K -p permutation is defined by its width b = 25× 2ℓ,
with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds nr. In a nutshell,
K -p[b, nr] consists in the application of the last nr rounds of K - f [b]. When
nr = 12 + 2ℓ, K -p[b, nr] = K - f [b].

The permutation K -p[b, nr] is described as a sequence of operations on a state
a that is a three-dimensional array of elements of GF(2), namely a[5, 5, w], with w = 2ℓ.
The expression a[x, y, z] with x, y ∈ Z5 and z ∈ Zw, denotes the bit at position (x, y, z).
It follows that indexing starts from zero. The mapping between the bits of s and those of
a is s[w(5y + x) + z] = a[x, y, z]. Expressions in the x and y coordinates should be taken
modulo 5 and expressions in the z coordinate modulo w. We may sometimes omit the [z]
index, both the [y, z] indices or all three indices, implying that the statement is valid for
all values of the omi ed indices.

4



K -p[b, nr] is an iterated permutation, consisting of a sequence of nr rounds R,
indexed with ir from 12+ 2ℓ− nr to 12+ 2ℓ− 1. Note that ir, the round number, does not
necessarily start from 0. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a[x, y, z] ← a[x, y, z] +
4

∑
y′=0

a[x− 1, y′, z] +
4

∑
y′=0

a[x + 1, y′, z− 1],

ρ : a[x, y, z] ← a[x, y, z− (t + 1)(t + 2)/2],

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a[x, y] ← a[x′, y′], with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a[x] ← a[x] + (a[x + 1] + 1)a[x + 2],
ι : a ← a + RC[ir].

The additions and multiplications between the terms are in GF(2). With the exception of
the value of the round constants RC[ir], these rounds are identical. The round constants
are given by (with the first index denoting the round number)

RC[ir][0, 0, 2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,

and all other values of RC[ir][x, y, z] are zero. The values rc[t] ∈ GF(2) are defined as the
output of a binary linear feedback shi register (LFSR):

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].

Note that the round index ir can be consideredmodulo 255, the period of the LFSR above.

3 The M D construction

The M D construction is a toolbox aimed at building stream ciphers and au-
thenticated encryption schemes. It uses a permutation f with a tunable number of rounds.
We denote the instance of f with nr rounds f [nr]. The M D construction takes
four parameters that determine its efficiency and security strength.

Similar to the duplex construction [3], the M D is stateful and accepts calls
taking a string as input and returning a string as output. This output string depends on
all inputs received so far. Unlike duplex, M D supports two types of calls that
are different in the number of rounds of f executed between input and output.

We call an instance of the M D construction a M D object and
denote it as D in our descriptions. We prefix the calls made to a specific M D
object D by its name D and a dot.

The M D [ f , r, nstart, nstep, nstride] construction works as follows:

• AM D instance D has a state of b bits, where b is the width of the under-
lying permutation. A M D instance can be started with a call D.start(I),
where the string I can be almost full width. This initializes the state by se ing it
to the input string I, extended to b bits with multi-rate padding. Subsequently, it
applies f [nstart] to it.
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• With calls to D.step(σ, ℓ) and D.stride(σ, ℓ) one can inject a bit string σ of up to r− 2
bits. A er the bits are injected, either f [nstep] or f [nstride] is applied to the state and
the first ℓ bits of the state are extracted, with ℓ ≤ r. These interfaces are similar but
serve different purposes. Both aim at providing resistance against state retrieval,
but in addition, D.stride() also aims at providing resistance against output forgery.
Hence this requires that nstep < nstride. Typically we also have nstride < nstart.

The M D construction is illustrated in Figure 1.

Figure 1: The M D construction

We originally proposed the concept of the M D construction in [5]. We
slightly modified the definition since then due to new insights.

3.1 Specification

In this section we formally specify M D with pseudo-code in Algorithm 1.

3.2 Rationale

M D ismeant to be used in a keyedmode. During its start-up it shall be loaded
with I containing a secret key and a nonce and during operation an a acker shall not have
access to the inner state.

The values of r, nstart, nstep and nstride are meant to be tuned to target some given
security strength s, possibly assuming the data complexity is below some (large) value.
We relate the security strength s to the complexity of state reconstruction, to the highest
differential probability (DP) of differentials over the permutation f [nstart], and the highest
DP of differentials between M D input and output across stride calls. We now
list three informal security claims that express the criteria underlying the choice of r, nstart,
nstep and nstride.

Claim 1 (Solitary state retrieval hardness). For an a acker that can adaptively make D.step()
and D.stride() calls to a single M D instance with unknown inner state, there shall be
no algorithm that succeeds in reconstructing its inner state with success probability above N2−s.
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Algorithm 1 The M D [ f , r, nstart, nstep, nstride] construction
Require: 2 < r < b, nstep < nstride
Require: s ∈ Zb

2 (maintained across calls)

Interface: D.start(I) with I ∈ Z≤b−2
2

s = I||pad10∗1[b](|I|)
s = f [nstart](s)

Interface: Z = D.step(σ, ℓ) with ℓ ≤ r, σ ∈ Z≤r−2
2 and Z ∈ Zℓ

2
P = σ||pad10∗1[r](|σ|)
s = s⊕ (P||0b−r)
s = f [nstep](s)
return ⌊s⌋ℓ

Interface: Z = D.stride(σ, ℓ) with ℓ ≤ r, σ ∈ Z≤r−2
2 and Z ∈ Zℓ

2
P = σ||pad10∗1[r](|σ|)
s = s⊕ (P||0b−r)
s = f [nstride](s)
return ⌊s⌋ℓ

Here N is the computational complexity of the a ack, where a computational effort equal to that of
a single call to f [nstep] is the unit and where the computation of the calls to the M D
instance under a ack is included.

This claim simply expresses that it shall be hard to retrieve the state for an a acker
who is limited to a single instance. By single-instance we understand that the a acker
does not have access to multiple M D instances started with the same input I.
The single-instance limitation practically excludes the use of differential cryptanalysis for
solitary state retrieval.

The requirement of solitary state retrieval hardness affects the choice of r and nstep.
Two classical approaches to reconstruct the inner state are:

• State guessing: we take a M D object, assume a value for the inner state,
apply the known input sequence and check whether the simulated output sequence
corresponds with that of the instance under a ack. We repeat this procedure un-
til we have success. The success probability depends on a feature of the available
input-output sequence called the multiplicity m [2] that is limited by the data com-
plexity of the a ack. The success probability is slightly above mN2r−b = mN2−c.
This implies we have to take s < c− log2 m. Note that this is a generic method.

• Equation solving: we express the round function as a set of round equations. We
use these to form a set of equations in the inner state with known inputs and out-
puts covering a number of M D calls. The known outputs and inputs
should be large enough to give a unique solution for the inner state. Then we try to
solve this set of equations. The success probability of this a ack as a function of its
computational complexity is hard to estimate and strongly depends on the method
used and the nature of the round function of the cipher. However, it is clear that the
number of equations and unknowns is proportional to the total number of rounds
covered and the capacity c. This is a non-generic method.
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In general, for a given round function f with width b, the designer has some freedom
in the selection of the parameters r and nstep. Increasing the rate r reduces the resistance
with respect to both a acks. In state guessing, it decreases the number b− r of unknown
state bits to be guessed. In equation solving, for equal nstep value, it reduces the total
number of round equations and unknowns. Similarly, decreasing nstep also reduces the
total number of equations and unknowns. In this context we can derive from nstep, the
width b and the rate r a quantity that characterizes the difficulty of equation solving: the
unicity number.

Definition 1. In a mode calling an iterative primitive f , the unicity number nunicity is the number
of rounds of f that separate the first and last bits of a sequence of output bits long enough to fully
determine its internal state.

The unicity number of M D is given by:

nunicity =

⌈
b− r

r

⌉
nstep .

This formula can be explained as follows. The size of the state is b bits sowe need b output
bits. A er seeing r bits of output from a call to D.step() or D.stride(), we need b− r more
bits of output. This takes

⌈
b−r

r

⌉
additional calls to D.step(), each one taking nstep rounds

(note that nstep < nstride) .
The security grows and efficiency decreaseswith increasing nunicity. Informally, nunicity

is the number of rounds covered by any system of equations that can be used to recover
the state. The idea is for a given round function to estimate a safe value of nunicity, and use
that to determine nstep and the rate r. We give an evaluation of nunicity for our submission
in Section 5.3.

Our second claim concerns resistance against output forgery. A typical call sequence
in that case is D.start(I), D.step(), . . . , D.step(), followed by D.stride(), D.step(), . . . We
will bound the resistance against an a acker trying to manipulate the output a er the call
to D.stride(). In our description, we index this call with 0, previous calls with negative
numbers and further calls with positive numbers. We implicitly exclude the case where
the a acker could extract the state before this call, since otherwise she would succeed
with probability 1.

Claim 2 (Solitary output forgery hardness). Consider an a acker that is given the inputs σi
and outputs Zi with −m < i < n of any sequence of calls D.step() and D.stride() of a single
M D instance with unknown inner state and let the call with index i = 0 be a call
to D.stride(). For such an a acker the success probability per a empt of any algorithm that
succeeds in constructing another input sequence σ′i and a corresponding partial output sequence
Z′j for 0 ≤ j < n that would be consistent with the given instance shall be below max(2−rn, 2−s).

This claim expresses thatmodifying the input to a single instance impacts its output in
a way that makes it hard to predict. In fact, the success probability of correctly predicting
from a difference applied at the input what is the difference at the output a er a call to
D.stride() should not be be er than pure chance, and this up to a length that matches the
security strength s. Output forgery hardness affects the choice of r and nstride. It induces
a cost whenever protection against output forgery is a requirement. This is the case for
tags in authenticated encryption.

An approach to make a forgery would be to find a differential of type (σ′−m, . . . , σ′0)
to (Z′0, . . . , Z′n−1) with DP above max(2−rn, 2−s). Subsequently, the a acker just modifies
the observed input sequence by the adding σ′i and assumes that the forged output is the
observed output sequence with Z′j added to it.
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Claim 3 (Strong instance separation). An a acker that can start multiple M D
instances, with the only restriction that no two objects may have the same value I in D.start(I),
but possibly the same key, must not have an advantage in performing state retrieval or output
forgery over the cases of solitary state retrieval or solitary output forgery.

Strong instance separation affects the choice of nstart. Applying f [nstart] to I shall de-
stroy all structures an a acker can apply in choosing I that would allow her to a ack
multiple instances be er than single ones. The value of nstart basically determines the
fixed set-up cost for starting a newM D object and as such strongly affects key
agility.

Note that no security claims are made against an a acker that can start multiple M -
D instances with the same input I. As a ma er of fact, this may allow an a acker

to retrieve the inner state, fully breaking it. Hence it is essential that I is unique for each
use of M D . Or, stated otherwise, the uniqueness of I is as important as its
secrecy.

In short, an a acker that can start multiple M D instances with the same
input I can inject differences in the input to calls to D.step(−, r) and observe differences
in its response. There are only nstep rounds between input and output and this typically is
a very small number. The combination of input and output differences impose restrictions
on bits of the inner part of the state in the form of simple equations and an a acker may
collect enough of such equations to reconstruct the full state.

3.3 Applications

The M D construction can be used in several use cases, typically implemented
as amode on top of theM D construction. Herewe give an informal discussion
on the three most important use cases we have in mind.

The first and simplest use case is that of a synchronous stream cipher. The key and
nonce are concatenated to form I and a new instance can be started by D.start(I). From
then on, key stream can be generated ad libitum by making D.step(−, r) calls. Output
forgery does not apply and hence no D.stride(−, r) is needed.

The second use case is that of a reseedable pseudorandom bit sequence generator [2].
Initial seed material is concatenated with a nonce to form I and a new instance can be
started by D.start(I). From then on pseudorandom bits can be generated ad libitum by
making D.step(σ, r) calls, where σ may contain fresh seed material. Also here, typical
use cases do not require protection against output forgery and hence no D.stride(−, r) is
needed.

The third use case, and the most relevant one in this document, is that of authenti-
cated encryption. The key and nonce are concatenated to form I and a new instance can
be started by D.start(I). From then on, messages with associated data can be wrapped
or cryptograms with associated data and tags can be unwrapped. Encryption is done by
bitwise addition with the output of D.step() calls. The inner state depends on all the mes-
sages and associated data presented to the M D instance since it was started
and so will any output of a call to D.step() or D.stride(). The (first part of the) tag is the
output of a D.stride() call, providing protection against tag forgery. Actually, this tag
forgery concern is the reason we introduced the D.stride() call in M D , com-
pared to the our dra proposal of M D in [5].
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4 The authenticated encryption mode M W

We consider authenticated encryption as a process that takes as input a header A and a
data body B and that returns a cryptogram C and a tag T. We denote this operation by
the term wrapping and the reverse operation of taking a header A, a cryptogram C and a
tag T and returning the data body B if the tag T is correct by the term unwrapping.

We further consider the process of authenticating and encrypting a sequence of
header-body pairs (A, B) = (A(1), B(1), A(2), . . . , A(n), B(n)) in such a way that the authen-
ticity is guaranteed not only on each (A, B) pair but also on the sequence received so far.
This is further formalized in [3, Section 2.1].

The authenticated encryption process is initialized by loading a key K and a nonce N.
We propose an authenticated encryption mode M W that is very similar to

S W [3]. The differences with S W are the following:

1. M W is built on M D rather than on duplex.

2. M W has a simpler way to load the key and a nonce in the initialization.
It relies on uniqueness of the combination key and nonce for resistance against key
retrieval.

3. M W makes different calls to M D when transitioning to tag
generation than in other cases.

Similar to S W , M W supports sessions, allowing the processing of
several messages (each with associated data), where the tag for each message authen-
ticates the full sequence of messages rather than only the message to which it was ap-
pended. The requirement of nonce uniqueness plays at the level of the session. Within
a session, different messages have no explicit message number or nonce. However, they
must be processed in order for the tags to verify. An alternative way to see this concept
of session is that the mode supports intermediate tags.

The maximum key length of M W is only limited by the width of the under-
lying permutation and the coding of the key pack. Note that using a key of length |K|
does necessarily imply that the security strength of the instance is |K|.

4.1 Specification

M W is defined in Algorithm 2 and illustrated in Figure 2. For simplifying no-
tation, we restrict the length of the key K to multiples of 8. In the algorithms we denote
by Ai the block consisting of bits ρi to ρ(i + 1)− 1 of A. The quantity ρ can be seen as the
block length of the mode. The blocks of length up to ρ bits map to blocks of r = ρ + 4
inside M D by the addition of two domain separation bits and subsequent ap-
plication of multi-rate padding.

The number of blocks in A is denoted by ∥A∥. All blocks of A have ρ bits except the
last one, A∥A∥−1. This one may have less bits but must be non-empty if A is not the empty
string. If A is the empty string, it has a single block A0 that is also the empty string. The
same holds for B, C and T.

4.2 Rationale

A er initialization, M W appends two frame bits to each input block providing
domain separation resulting in protection against generic a acks. Its generic security is
similar to the one of S W [3].
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Algorithm 2 The M W ( f , ρ, nstart, nstep, nstride) construction.
Require: 0 < ρ ≤ b− 4
Require: D = M D [ f , ρ + 4, nstart, nstep, nstride]

Interface: W.initialize(K, N) with K ∈ Z≤b−18
2 , |K| mod 8 = 0 and N ∈ Z

≤b−|K|−18
2 ,

D.start(keypack(K, |K|+ 16)||N)

Interface: (C, T) = W.wrap(A, B, ℓ) with A, B, C ∈ Z∗2 , ℓ ≥ 0, and T ∈ Zℓ
2

for i = 0 to ∥A∥ − 2 do
D.step(Ai||00, 0)

Z = D.step(A∥A∥−1||01, |B0|)
C0 = B0 ⊕ Z
for i = 0 to ∥B∥ − 2 do

Z = D.step(Bi||11, |Bi+1|)
Ci+1 = Bi+1 ⊕ Z

T = D.stride(B∥B∥−1||10, ρ)
while |T| < ℓ do

T = T||D.step(0, ρ)
T = ⌊T⌋ℓ
return (C, T)

Interface: B = W.unwrap(A, C, T) with A, B, C, T ∈ Z∗2
for i = 0 to ∥A∥ − 2 do

D.step(Ai||00, 0)
Z = D.step(A∥A∥−1||01, |B0|)
B0 = C0 ⊕ Z
for i = 0 to ∥C∥ − 2 do

Z = D.step(Bi||11, |Ci+1|)
Bi+1 = Ci+1 ⊕ Z

T′ = D.stride(B∥C∥−1||10, ρ)
while |T′| < |T| do

T′ = T′||D.step(0, ρ)
T′ = ⌊T⌋|T|
if T = T′ then
return B

else
return error
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Figure 2: Wrapping a header and a body with M W
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K J K S
plaintext confidentiality min(96, |K|) min(128, |K|)
plaintext integrity min(96, |K|, |T|) min(128, |K|, |T|)
associated data integrity min(96, |K|, |T|) min(128, |K|, |T|)
public message number integrity min(96, |K|, |T|) min(128, |K|, |T|)

Table 1: Security claims for K . For K J we assume a maximum data complexity
below 287 bytes. The key length |K| assumes the keys follow a uniform distribution. If
not, |K| shall be interpreted as the min-entropy of the key.

5 K

In this section we specify K , our submission to CAESAR and give a rationale for the
choice of parameters.

5.1 Specification

We propose two concrete instances of M W calling K -p. Our primary rec-
ommendation is called K S :

K S = M W (K -p[400], ρ = 32, nstart = 12, nstep = 1, nstride = 6)

K S supports keys K of variable length up to 382 bits and a nonce of length up to
382 − |K|. For the targeted security strength we recommend a key length of 128 bits.
Higher key lengths can be adopted as a possible countermeasure against multi-target
a acks.

Our secondary recommendation is called K J :

K J = M W (K -p[200], ρ = 16, nstart = 12, nstep = 1, nstride = 6)

K J supports keys K of length up to 182 bits and a nonce of length up to 182− |K|. For
the targeted security strength we recommend a key length of 96 bits. Higher key lengths
can be adopted as a possible countermeasure against multi-target a acks.

For both proposals we remind the requirement of uniqueness of the combination of
key and nonce. In case of maximum-length keys the nonce has length 0 and the key alone
shall be unique.

In general, a K object supports multiple calls to wrap or unwrap per initialization
and the length of the tag can simply be adapted to the required tag forgery level of the
target application.

5.2 Security goals

Table 1 specifies the security goals for K . The security strength is indicated with the
logarithm base 2 of the a ack cost, where the unit is a single K -p round. For K
J we assume the total data complexity is below 287 bytes.

Users are required to use the public message number N as a nonce, i.e., the cipher
may lose all integrity and confidentiality if the legitimate key holder uses the same public
message number N to encrypt two different (plaintext, associated data) pairs under the
same key K. The uniqueness of the nonce N is as critical for security as the secrecy of K.
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In multi-target a acks against K the resistance against exhaustive keys may erode
from |K| to |K| − log2 n with n the number of targets. This is the case if n K instances
are loaded with different keys but the same nonce |N|, and an a acker has access to their
outputwhen processing the same input. Note that if an upper limit to n is known, one can
have a security strength of 128 (or 96) bits by taking sufficiently long keys: |K| ≥ 128 +
log2 nmax (or |K| ≥ 96 + log2 nmax). An option that avoids erosion without increasing
the length of keys is to impose universal nonce uniqueness. By this we mean that not
only the combination (K, N) must be unique, but the nonce N for each K instance
must be unique. Many use cases actually allow this. For example, one can take as nonce
the combination of the universally unique IDs of the two communicating devices and a
strictly incrementing session counter.

5.3 Rationale

First of all, we chose K -p as the underlying permutations as we consider this a test
case for K .

The basic philosophy behind the two K proposals is to maximize the capacity by
taking a small rate and compensate the loss of performance by reducing the number of
K -p rounds in the step calls to a single one, i.e., nstep = 1. This has the advantage
that the success probability of solitary state retrieval by state guessing is minimized. The
expected workload of this generic a ack is lower bounded by 2c−1/M with M the total
amount of data treated by the keyed K instance(s) under a ack [2].

We chose the concrete value of the rate by assuming a reasonable value for nunicity.
As a ma er of fact, basing ourselves on third-party analysis of K and our own, we
estimate that nunicity = 12 gives a comfortable safetymargin against solitary state retrieval
with equation solving. This leads to r ≤ b/12, matching nicely with the size of two lanes.
So we took ρ = 32 in K S and ρ = 16 in K J .

We chose the number of rounds in a stride call, nstride, equal to 6. In this decision we
took into account the small rate. For an adversary that does not know the value of the
inner state we think it will be infeasible to come up with an input difference pa ern that
will lead to an output difference a er 6 K -p rounds with a differential probability
(DP) that will break the solitary output forgery hardness.

We chose the number of rounds in a start call, nstart, equal to 12. Based on third-party
cryptanalysis of K and our own, we believe this provides a comfortable safety mar-
gin against a acks applying differences or other structures at its input to have exploitable
relations at its output.

Finally, we chose the security strength of K S to be 128 bits as this is a widespread
standard and future-proof. In K J the width of the permutation is only 200 bits and
aiming for a security strength of 128 bits would impose too much limitations on the on-
line data complexity and limit the length of the nonce too much to our taste. So we re-
duced the security strength to 96 bits. Despite the fact that this is significantly below
128 bits, we believe a acks with computational complexity equivalent to 296 calls to the
K -p[200, nr] round function will remain overly expensive to deploy in practice for
several decades to come.

6 Using K in the context of CAESAR

In this section we explain how to use K in the context of the CAESAR competition.

14



6.1 Specification and security goals

In the context of CAESAR, performing an authenticated encryption with K on a mes-
sage M, associated data AD using a public message number N and a key K is done as fol-
lows. Create a K object W and initialize it with the key and public message number.
Subsequently wrap the associated data andmessage, asking for a tag with length equal to
the target security strength s. This is W.initialize(K, N) followed by W.wrap(AD, M, s).
The secret message number has length 0.

The security goals of K are specified in Section 5.2.

6.2 Security analysis and design rationale

For the security analysis and design rationale of K and its building blocks we refer to
the sections that explain the rationale behind them: Section 5.3 for K , Section 4.2 for
M W , and Section 3.2 for M D .

As a generic property of sponge-based schemes, note that in a block cipher based
scheme, the block length n puts a limit of about 2n/2 before collisions occur in the input
blocks. In contrast, in sponge-based schemes, the capacity c takes the place of the block
length in this limit. In K J and K S the capacity is c = 180 and c = 364, respec-
tively.

K has the following security assurance features:

• Generic security of the mode M W .

• Security assurance from cryptanalysis of K . Note that thanks to theMatryosh-
ka property, most analysis performed on versions of K - f transfers to those
with smaller widths.

The designers have not hidden anyweaknesses in this cipher or any of its components.
We believe this to be impossible:

• K - f and its round-reduced versions: all design choices are documented and
explained in [4]

• M D : a rationale is given in Section 3.2.

• M W : a rationale is given in Section 4.2.

• K : a rationale is given in Section 5.3.

6.3 Features

We would like to highlight the following features of K , for which our proposal com-
pares favorably to AES-GCM.

• K is lightweight in the sense that it has a small code and working memory foot-
print and requires a relatively small amount of computation, as illustrated in Table 2.

• The implementation of the round function can be re-used for other symmetric cryp-
tographic primitives, such as hashing, which further reduces the footprint com-
pared to a solution with distinct primitives.

• K lends itself well to protections against side channel a acks, both in hardware
and so ware. This is of particular importance in the context of constrained devices
and smart cards.
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• As a functional feature not present in most authenticated ciphers, K supports
sessions. In a session, sequences of messages can be authenticated rather than a
single message. The session is initialized by loading the key and nonce and the
tag for each message authenticates the complete sequence of messages preceding it.
During the session, the communicating entities have to keep state.

A typical application of K would be the so-called secure messaging with secure
chips such as smart cards [6]. The session feature offers an easy and agile way to send
sequences of commands as scripts, interactively or by batch, while preventing an a acker
to insert, remove or swap commands in the script.

6.4 Intellectual property

We did not submit any patents on K and do not intend to do so. If any of this infor-
mation changes, the submi ers will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

6.5 Consent

The submi ers hereby consent to all decisions of the CAESAR selection commi ee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the commi ee. The submi ers understand that the commi ee will
not comment on the algorithms, except that for each selected algorithm the commi ee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submi ers understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the commi ee
decision. The submi ers acknowledge that the commi ee decisions reflect the collective
expert judgments of the commi ee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent commi ee
decisions. The submi ers understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection commi ee.

feature K J K S
round function K -p[200, nr] K -p[400, nr]
state size 25 bytes 50 bytes
block size 2 bytes 4 bytes

processing unit computational cost
initialization per session 12 rounds 12 rounds
wrapping per block 1 round 1 round
8-byte tag computation per message 6 + 3× 1 = 9 rounds 6 + 1× 1 = 7 rounds

Table 2: K lightweight implementation features

16



References

[1] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, R G , a belt-and-mill
hash function, Second Cryptographic Hash Workshop, Santa Barbara, August 2006,
http://radiogatun.noekeon.org/.

[2] , Sponge-based pseudo-random number generators, CHES (S. Mangard and F.-
X. Standaert, eds.), Lecture Notes in Computer Science, vol. 6225, Springer, 2010,
pp. 33–47.

[3] , Duplexing the sponge: single-pass authenticated encryption and other applications,
Selected Areas in Cryptography (SAC), 2011.

[4] , The K reference, January 2011, http://keccak.noekeon.org/.

[5] , Permutation-based encryption, authentication and authenticated encryption, Direc-
tions in Authenticated Ciphers, July 2012.

[6] ISO/IEC, Identification cards – integrated circuit cards – part 4: Organization, security and
commands for interchange, 2005.

A Change log

A.1 From 1.0 to 1.1

Only Section 6.3 (“Features”) changed to include a brief comparison with AES-GCM.
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