Fractional Data for Nonce-Misuse Resistant Mode for Kiasu, Joltik and Deoxys

Jérémy Jean, Ivica Nikolić, Thomas Peyrin
Nanyang Technological University, Singapore. \{JJean, INikolic, Thomas.Peyrin\}@ntu.edu.sg
http://www1.spms.ntu.edu.sg/~syllab/CAESAR

April 2, 2014

As mentioned in the original submission documents, KIASU, Joltik and Deoxys support fractional messages, which have not necessarily a length multiple of the block size n. As in the COPA [1] article, they make use of two different techniques: first, tag splitting [2] in the case where the size $|M|$ of the message M is strictly smaller than n, and second, the XLS technique [3] in the case where $|M|$ is strictly greater than n, while not being a multiple of n. This was not described in details in the original submission documents and we give in this add-on a full specification of the COPA mode for KIASU, Joltik and Deoxys. We emphasize that empty messages should be treated as partial block, and therefore need 10^{*} padding.

Notations. In the sequel, we denote $\lceil X\rceil_{n}$ the value X truncated to its first n bits, and $\lfloor X\rfloor_{n}$ the value X truncated to its last n bits. Moreover, $X \lll a$ will denote the word X rotated by a positions to the left. We recall that $E_{K}(T, M)$ refers to the encryption of message block M using tweak T and key K, while $D_{K}(T, M)$ denotes the decryption operation on the same inputs.

Figure 1: Handling the associated data A of length $|A|$. We distinguish two cases, whether $|A|$ is a multiple of the block size n or not.

Figure 2: Handling the message M of length $|M|$. We distinguish three cases depending on the value of $|M|$ in comparison to the block size n.
Algorithm 1: The encryption algorithm $\mathcal{E}_{\overline{\bar{K}}}(N, A, M)$. The value N is encoded on $\log _{2}\left(\max _{m}\right)$

```
bits, while the integer values \(i, l\) and \(l_{a}\) are encoded on \(\log _{2}\left(\max _{l}\right)\) bits.
```

/* Associated data */

```
/* Associated data */
\(A_{1} \| \ldots| | A_{l_{a}}| | A_{*} \leftarrow A\) where each \(\left|A_{i}\right|=n\) and \(\left|A_{*}\right|<n\)
\(A_{1} \| \ldots| | A_{l_{a}}| | A_{*} \leftarrow A\) where each \(\left|A_{i}\right|=n\) and \(\left|A_{*}\right|<n\)
Auth \(\leftarrow 0^{n}\)
Auth \(\leftarrow 0^{n}\)
for \(i=1\) to \(l_{a}-1\) do
for \(i=1\) to \(l_{a}-1\) do
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0010\|N\| i, A_{i}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0010\|N\| i, A_{i}\right)\)
end
end
if \(A_{*} \neq \epsilon\) then
if \(A_{*} \neq \epsilon\) then
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0010| | N| | l_{a}, A_{l_{a}}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0010| | N| | l_{a}, A_{l_{a}}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus \operatorname{pad10} 0^{*}\left(A_{*}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus \operatorname{pad10} 0^{*}\left(A_{*}\right)\)
    Auth \(\leftarrow E_{K}\left(0111| | N| | l_{a}\right.\), Auth \()\)
    Auth \(\leftarrow E_{K}\left(0111| | N| | l_{a}\right.\), Auth \()\)
else
else
    Auth \(\leftarrow\) Auth \(\oplus A_{l_{a}}\)
    Auth \(\leftarrow\) Auth \(\oplus A_{l_{a}}\)
    Auth \(\leftarrow E_{K}\left(0110\|N\| \mid l_{a}\right.\), Auth \()\)
    Auth \(\leftarrow E_{K}\left(0110\|N\| \mid l_{a}\right.\), Auth \()\)
end
end
/* Message */
/* Message */
if \(|M|<n\) then
if \(|M|<n\) then
    \(M_{*} \leftarrow \operatorname{pad} 10^{*}(M)\)
    \(M_{*} \leftarrow \operatorname{pad} 10^{*}(M)\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0000\|\mid N\| 0, M_{*}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0000\|\mid N\| 0, M_{*}\right)\)
    \(C^{\prime} \leftarrow E_{K}(0100| | N| | 0\), Auth \()\)
    \(C^{\prime} \leftarrow E_{K}(0100| | N| | 0\), Auth \()\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0001\|N\| 0, M_{*}\right)\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0001\|N\| 0, M_{*}\right)\)
    Final \(^{\prime} \leftarrow E_{K}(0101\|N\| 0\), Auth \()\)
    Final \(^{\prime} \leftarrow E_{K}(0101\|N\| 0\), Auth \()\)
    \(C \leftarrow\left\lceil C^{\prime}\right\rceil_{|M|}\)
    \(C \leftarrow\left\lceil C^{\prime}\right\rceil_{|M|}\)
    tag \(\leftarrow\left\lfloor C^{\prime}\right\rfloor_{n-|M|} \|\) FFinal \(\left.^{\prime}\right\rceil_{|M|}\)
    tag \(\leftarrow\left\lfloor C^{\prime}\right\rfloor_{n-|M|} \|\) FFinal \(\left.^{\prime}\right\rceil_{|M|}\)
    return ( \(C\), tag)
    return ( \(C\), tag)
end
end
\(M_{1}| | \ldots| | M_{l}| | M_{*} \leftarrow M\) where each \(\left|M_{i}\right|=n\) and \(\left|M_{*}\right|<n\)
Checksum \(\leftarrow 0^{n}\)
for \(i=1\) to \(l\) do
    Checksum \(\leftarrow\) Checksum \(\oplus M_{i}\)
    Auth \(\leftarrow\) Auth \(\oplus E_{K}\left(0000\|N\| i, M_{i}\right)\)
    \(C_{i} \leftarrow E_{K}(0100\|N\| i\), Auth \()\)
end
\(C_{*} \leftarrow \epsilon\)
Auth \(\leftarrow\) Auth \(\oplus E_{K}(0001| | N| | l\), Checksum \()\)
Final \(\leftarrow E_{K}(0101| | N| | l\), Auth \()\)
if \(M_{*} \neq \epsilon\) then
    \(C_{*} \|\) Final \(\leftarrow \operatorname{XLS}\left(M_{*}| |\right.\) Final, \(\left.l\right)\), with \(\left|C_{*}\right|=\left|M_{*}\right|\)
    end
tag \(\leftarrow\) Final
return \(\left(C_{1}\|\ldots\| C_{l} \| C_{*}\right.\), tag \()\)
```

```
Algorithm 2: The verification/decryption algorithm \(\mathcal{D}_{\bar{K}}^{\overline{\bar{K}}}(N, A, C\), tag \()\). The value \(N\) is encoded
on \(\log _{2}\left(\max _{m}\right)\) bits, while the integer values \(i, l\) and \(l_{a}\) are encoded on \(\log _{2}\left(\max x_{l}\right)\) bits.
```

```
/* Associated data */
```

/* Associated data */
$A_{1}\|\ldots\| A_{l_{a}} \| A_{*} \leftarrow A$ where each $\left|A_{i}\right|=n$ and $\left|A_{*}\right|<n$
$A_{1}\|\ldots\| A_{l_{a}} \| A_{*} \leftarrow A$ where each $\left|A_{i}\right|=n$ and $\left|A_{*}\right|<n$
Auth $\leftarrow 0^{n}$
Auth $\leftarrow 0^{n}$
for $i=1$ to $l_{a}-1$ do
for $i=1$ to $l_{a}-1$ do
Auth \leftarrow Auth $\oplus E_{K}\left(0010\|N\| i, A_{i}\right)$
Auth \leftarrow Auth $\oplus E_{K}\left(0010\|N\| i, A_{i}\right)$
end
end
if $A_{*} \neq \epsilon$ then
if $A_{*} \neq \epsilon$ then
Auth \leftarrow Auth $\oplus E_{K}\left(0010\|N\| l_{a}, A_{l_{a}}\right)$
Auth \leftarrow Auth $\oplus E_{K}\left(0010\|N\| l_{a}, A_{l_{a}}\right)$
Auth \leftarrow Auth $\oplus \operatorname{pad10*}\left(A_{*}\right)$
Auth \leftarrow Auth $\oplus \operatorname{pad10*}\left(A_{*}\right)$
Auth $\leftarrow E_{K}\left(0111\|N\| l_{a}\right.$, Auth $)$
Auth $\leftarrow E_{K}\left(0111\|N\| l_{a}\right.$, Auth $)$
else
else
Auth \leftarrow Auth $\oplus A_{l_{a}}$
Auth \leftarrow Auth $\oplus A_{l_{a}}$
Auth $\leftarrow E_{K}\left(0110\|N\| l_{a}\right.$, Auth $)$
Auth $\leftarrow E_{K}\left(0110\|N\| l_{a}\right.$, Auth $)$
end

```
end
```

/* Ciphertext */
if $|C|<n$ then
$C^{\prime} \leftarrow C_{*} \|\lceil\mathrm{tag}\rceil_{n-s}$
$X \leftarrow D_{K}\left(0100\|N\| 0, C^{\prime}\right)$
$M^{\prime} \leftarrow D_{K}(0000\|N\| 0$, Auth $\oplus X)$
$M_{*} \leftarrow \operatorname{unpad01*}\left(M^{\prime}\right)$
Checksum \leftarrow Checksum $\oplus M^{\prime}$
Auth $\leftarrow X \oplus E_{K}(0001\|N\| 0$, Checksum $)$
Final' $\leftarrow E_{K}(0101\|N\| 0$, Auth $)$
if $\left|M_{*}\right|=\left|C_{*}\right|$ and $\left\lceil\text { Final }{ }^{\prime}\right\rceil_{s}=\lfloor\mathrm{tag}\rfloor_{s}$ then return M_{*}
else return \perp
end
$C_{1}\|\ldots\| C_{l} \| C_{*} \leftarrow C$ where each $\left|C_{i}\right|=n$ and $\left|C_{*}\right|<n$
Checksum $\leftarrow 0^{n}$
for $i=1$ to l do
$X_{i} \leftarrow D_{K}\left(0100\|N\| i, C_{i}\right)$
$M_{i} \leftarrow D_{K}\left(0100\|N\| i, X_{i} \oplus\right.$ Auth $)$
Checksum \leftarrow Checksum $\oplus M_{i}$
Auth $\leftarrow X_{i}$
end
$M_{*} \leftarrow \epsilon$
Auth \leftarrow Auth $\oplus E_{K}(0001\|N\| l$, Checksum $)$
Final $\leftarrow E_{K}(0101\|N\| l$, Auth $)$
if $C_{*} \neq \epsilon$ then
$M_{*}| |$ Final' $\leftarrow \mathrm{XLS}^{-1}\left(C_{*} \| \mathrm{tag}\right)$, with $\left|M_{*}\right|=\left|C_{*}\right|$
if Final \neq Final' then return \perp
else
if Final \neq tag then return \perp
end
return $M_{1}\|\ldots\| M_{l} \| M_{*}$

Algorithm 3: XLS algorithm: extending an n bit cipher to an $(n+s)$-bit cipher $(s<n)$.
Input: An $(n+s)$-bit value M, a counter l
Output: An $(n+s)$-bit value C

$$
\begin{aligned}
& \left(M_{1}, M_{2}\right) \leftarrow\left(\lceil M\rceil_{n},\lfloor M\rfloor_{s}\right) \\
& X_{1} \leftarrow E_{K}\left(1000\|N\| l, M_{1}\right) \\
& \left(X_{1, n-s}, X_{1, s}\right) \leftarrow\left(\left\lceil X_{1}\right\rceil_{n-s},\left\lfloor X_{1}\right\rfloor_{s}\right) \\
& X_{1, n-s}^{\prime} \leftarrow X_{1, n-s} \oplus 1 \\
& \left(X_{1, s}^{\prime}, X_{2}\right) \leftarrow \operatorname{mix}\left(X_{1, s}, M_{2}\right) \\
& X_{1}^{\prime} \leftarrow X_{1, n-s}^{\prime} \| X_{1, s}^{\prime} \\
& Y_{1} \leftarrow E_{K}\left(1001\|N\| l, X_{1}^{\prime}\right) \\
& \left(Y_{1, n-s}, Y_{1, s}\right) \leftarrow\left(\left\lceil Y_{1}\right\rceil_{n-s},\left\lfloor Y_{1}\right\rfloor_{s}\right) \\
& Y_{1, n-s}^{\prime} \leftarrow Y_{1, n-s} \oplus 1 \\
& \left(Y_{1, s}^{1}, C_{2}\right) \leftarrow \operatorname{mix}\left(Y_{1, s}, X_{2}\right) \\
& Y_{1}^{\prime} \leftarrow Y_{1, n-s}^{\prime} \| Y_{1, s}^{\prime} \\
& C_{1} \leftarrow E_{K}\left(1000\|N\| l, Y_{1}^{\prime}\right) \\
& C \leftarrow C_{1} \| C_{2} \\
& \text { return } C
\end{aligned}
$$

Algorithm 4: XLS ${ }^{-1}$ algorithm: inverting the XLS algorithm 3.

Input: An $(n+s)$-bit value C, a counter l
Output: An $(n+s)$-bit value M

$$
\begin{aligned}
& \left(C_{1}, C_{2}\right) \leftarrow\left(\lceil C\rceil_{n},\lfloor C\rfloor_{s}\right) \\
& Y_{1}^{\prime} \leftarrow E_{K}^{-1}\left(1000\|N\| l, C_{1}\right) \\
& \left(Y_{1, n-s}^{\prime}, Y_{1, s}^{\prime}\right) \leftarrow\left(\left\lceil Y_{1}^{\prime}\right\rceil_{n-s},\left\lfloor Y_{1}^{\prime}\right\rfloor_{s}\right) \\
& Y_{1, n-s} \leftarrow Y_{1, n-s}^{\prime} \oplus 1 \\
& \left(Y_{1, s}, X_{2}\right) \leftarrow \operatorname{mix}\left(Y_{1, s}^{\prime}, C_{2}\right) \\
& Y_{1} \leftarrow Y_{1, n-s} \| Y_{1, s} \\
& X_{1}^{\prime} \leftarrow E_{K}^{-1}\left(1001\|N\| l, Y_{1}\right) \\
& \left(X_{1, n-s}^{\prime}, X_{1, s}^{\prime}\right) \leftarrow\left(\left\lceil X_{1}^{\prime}\right\rceil_{n-s},\left\lfloor X_{1}^{\prime}\right\rfloor_{s}\right) \\
& X_{1, n-s} \leftarrow X_{1, n-s}^{\prime} \oplus 1 \\
& \left(X_{1, s}, M_{2}\right) \leftarrow \operatorname{mix}\left(X_{1, s}^{\prime}, X_{2}\right) \\
& X_{1} \leftarrow X_{1, n-s} \| X_{1, s} \\
& M_{1} \leftarrow E_{K}^{-1}\left(1000\|N\| l, X_{1}\right) \\
& M \leftarrow M_{1} \| M_{2} \\
& \text { return } M
\end{aligned}
$$

```
Algorithm 5: The mix function used in XLS. Note that \(\mathbf{m i x}^{-1}=\mathbf{m i x}\).
    Input: A \(2 s\)-bit value \(X\)
    Output: A \(2 s\)-bit value \(Y\)
    \((A, B) \leftarrow\left(\lceil X\rceil_{s},\lfloor X\rfloor_{s}\right)\)
    \(S \leftarrow(A \oplus B) \lll 1\)
    \(Y \leftarrow(A \oplus S) \|(B \oplus S)\)
    return \(Y\)
```


References

[1] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and Authenticated Online Ciphers. In Sako, K., Sarkar, P., eds.: ASIACRYPT (1). Volume 8269 of Lecture Notes in Computer Science., Springer (2013) 424-443
[2] Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line Authenticated Encryption Schemes. In Canteaut, A., ed.: FSE 2012. Volume 7549 of LNCS., Springer (March 2012) 196-215
[3] Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In Biryukov, A., ed.: FSE 2007. Volume 4593 of LNCS., Springer (March 2007) 101-118

