
LAC: A Lightweight Authenticated Encryption
Cipher

Version 1 — 15 March 2014

Designers and Submitters:

Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, Jian Zhang

{zhanglei, wwl, wangyanfeng, wushengbao, zhangjian}@tca.iscas.ac.cn

Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences

Contents

1 Introduction 1

2 Specification 2
2.1 Symbols and Notations . 2
2.2 Specification of LAC . 2
2.3 Description of LBlock-s . 4
2.4 Round-reduced LBlock-s . 5
2.5 Encryption/Authentication Procedure . 5
2.6 Decryption/Verification Procedure . 6

3 Security Goals 7

4 Security Analysis 8
4.1 Extinguishing Differentials Analysis . 8
4.2 State Recovery . 8
4.3 Key Recovery . 8
4.4 Forgery without State Recovery . 9
4.5 Distinguishing Attack . 9
4.6 Guess-and-Determine Attack . 9
4.7 Slide Attack . 9

5 Features 11
5.1 Main Features . 11
5.2 Hardware Performance Evaluation . 11
5.3 Software Performance Evaluation . 12
5.4 Potential Applications . 13
5.5 Security and Performance Comparison . 13

6 Design Rationale 14
6.1 Structure . 14
6.2 The Underlying Encryption Cipher LBlock-s . 14
6.3 Parameter Choices . 15

7 Intellectual Property 16

8 Consent 17

9 Test Vector 18

i

Chapter 1

Introduction

LAC is a lightweight authenticated encryption cipher based on a similar structure of ALE [2]
and a simplified version of the lightweight block cipher LBlock as underlying primitive.

The recommended parameter set for LAC is as follows.

Recommended Parameter (in bits)
Key 80

Public Message Number 64
Secret Message Number 0

Tag 64

Its encryption/authentication procedure accepts an 80-bit master key K, a 64-bit public
message number (PMN), a message m, an associated data α, and outputs the ciphertext c of
exactly the same length as message and a 64-bit authentication tag τ .

Its decryption/verification procedure accepts an 80-bit key K, a 64-bit public message
number (PMN), a ciphertext c, an associated data α, a 64-bit tag τ , and returns the decrypted
message m if tag is correct or ⊥ otherwise.

LAC is a nonce-respecting design, and the public message number is used as nonce. We
assume a public message number (PMN) is only used once with the same master key for
encryption. Moreover, we restrict that an equivalent of at most 240 bits are allowed to be
authenticated or both authenticated and encrypted with the same master key.

1

Chapter 2

Specification

2.1 Symbols and Notations

Notations Descriptions
K 80-bit master key
PMN 64-bit public message number
SMN 0-bit secret message number
m message
α associate data
c ciphertext
τ 64-bit authentication tag
⊥ a special symbol denotes the verification failure of LAC
0n the binary string of n-bit successive ”0”
|| concatenation of two binary strings
<<< left rotation operation
[i]2 binary form of an integer i
|X| the bit length of string X
LBlock-s the simplified version of lightweight block cipher LBlock
E the full 32-round LBlock-s
G the reduced 16-round LBlock-s
G/leak the reduced 16-round LBlock-s with data-leaked
KS round-reduced key schedule algorithm of LBlock-s
TruncHigh(X, l) truncate and output the higher l-bit of X
TruncLow(X, l) truncate and output the lower l-bit of X

2.2 Specification of LAC

LAC is a lightweight authenticated encryption cipher based on a similar structure of ALE [2]
and a simplified version of the lightweight block cipher LBlock. Its encryption/authentication
procedure accepts an 80-bit master key K, a 64-bit public message number (PMN), a mes-
sage m, and an associated data α. We do not support secret message number (SMN) here,
namely the length of SMN is 0. Then the encryption/authentication procedure outputs the
ciphertext c of exactly the same length as message and a 64-bit authentication tag τ . Its
decryption/verification procedure accepts an 80-bit key K, a 64-bit public message number
(PMN), a ciphertext c, an associated data α and a 64-bit tag τ . It returns the decrypted
message m if tag is correct or ⊥ otherwise. Meanwhile, we assume a public message number
(PMN) is only used once with the same master key for encryption, and an equivalent of at
most 240 bits are allowed to be authenticated or both authenticated and encrypted with the

2

same master key.

The encryption/authentication procedure is shown in Figure 2.1. E is the full 32-round
LBlock-s cipher, KS is the key schedule algorithm of 16-round LBlock-s and one more round
key state update with the fixed constant 0x15, G is 16-round LBlock-s, G/leak is 16-round
LBlock-s with 48 bits leaked from the data state. The detailed procedure can be described in
five steps:

0

KS

1
a

k

KS

G

leak

KS

ra
1
m

1
c

PMN

KS

tm

k

tag

E E

128-bit

E G G
G

leak
E

k

tc

Figure 2.1: The encryption/authentication operation of LAC

Padding: Assume that the length of message m is len bits. It first appends the small-
est number x (with (x + len + 40) mod 48 = 0, 0 ≤ x < 48) of zeros to the message, and
then appends the message length len coded on 40 bits such that the length of the result is a
multiple of 48-bit. Finally, the resulting padded message is split into t blocks of 48-bit each,
M = m1|| . . . ||mt. Note that for associated data α the same padding method is used and the
padded associated data is split into r blocks, A = a1|| . . . ||ar.

Initialization: The internal state consists of an 80-bit key state and a 64-bit data state.
Firstly, the PMN is encrypted with LBlock-s under the master key K and secondly the 64-bit
output is also encrypted under the master key K for full rounds. The 64 bits of the first
output and the 64 bits of the second output compose a new 128-bit key UKey. The lower 80
bits of UKey are used as the initialized key state. Meanwhile, the data state is initialized by
encrypting 064 with LBlock-s under the key obtained from the higher 80-bit of UKey. Up to
now, both states are initialized.

Processing associated data: Associated data A is processed block by block: The data
state is encrypted with 16-round LBlock-s (G function) using the key state as key. The final
round subkey is updated one more time using the LBlock-s round key schedule with round
constant 0x15. This value is stored in the key state. Finally, the current block of A is xored
to the lower 48-bit of the internal state.

Processing message: Message M is also processed block by block: The data state is
encrypted with data-leaked 16-round LBlock-s (G/leak function) using the key state as key.
At the same time, the higher 24 bits after the 8-round output and the higher 24 bits after
16-round output, 48 bits in all are leaked from the data state. The leaked bits are xored to
the current message block mi to produce the ciphertext block ci. The final round subkey is
updated one more time using the LBlock-s round key schedule with round constant 0x15. The
current message block mi is also xored to the lower 48-bit of the internal state. Finally, the
result data C = c1|| . . . ||ct is truncated to exactly the same length as message and output as
ciphertext c. The last few bits corresponding to padding data will be processed as above but
without outputting as the ciphertext.

3

Finalization: Finally, the data state is encrypted with LBlock-s using the master key
K. The output of this encryption is returned as the authentication tag for the message and
associated data.

The decryption/verification procedure of LAC can be defined correspondingly. The only
two differences are that one works with the ciphertext c = c1|| . . . ||ct instead of the message m
while xoring with the stream and that the supplied tag value is compared to the one computed
by the algorithm. Moreover, only if the tag is correct the decrypted message is returned.

2.3 Description of LBlock-s

LBlock-s is a simplified version of lightweight block cipher LBlock. To reduce the cost in
software and hardware implementation, 10 different 4-bit sboxes in LBlock are replaced with
a same 4-bit sbox. Besides, the modified key schedule algorithm proposed in [5] are used to
avoid the implementation restriction of ≪ 29 in 8-bit platform and to improve the diffusion
effect of key schedule algorithm. Moreover, since LAC does not need the decryption procedure
of LBlock-s, we can apply 32 identical rounds and do not have to omit the switch operation
in the last round. This can avoid additional control operation in hardware implementation.
Specifically, the round function of LBlock-s can be described as follows:

S

1i
X

 2i
X

1i
K

P

i
X

1i
X

8

Figure 2.2: The round function of block cipher LBlock-s

Encryption Algorithm. The general structure of LBlock-s is a variant of Feistel Network,
which is depicted in Figure 2.2. The number of iterative rounds is 32. The round function of
LBlock-s includes three basic functions: round subkey addition AK, confusion function S and
diffusion function P . The non-linear layer S consists of 8 identical 4-bit sbox (Table 2.1) in
parallel. The diffusion function P is defined as a permutation of eight 4-bit nibbles.

Table 2.1: Contents of the 4-bit sbox

i 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(i) E 9 F 0 D 4 A B 1 2 8 3 7 6 C 5

The 64-bit input is divided into two parts X1||X0. The same round function is iterated for
32 rounds and then obtains the 64-bit output X33||X32. The round function can be described
as follows:

Xi = P (S(Xi−1 ⊕Ki−1))⊕ (Xi−2 ≪ 8), i = 2, 3, ..., 33.

Key Schedule Algorithm. The 80-bit master key K is stored in a key register and denoted
as K = k79k78...k0. Output the leftmost 32 bits of register K as subkey K1. For i = 1, ..., 31,
update the key register K as follows:

1. K ≪ 24

2. [k55k54k53k52] = s[k79k78k77k76]⊕ [k55k54k53k52]
[k31k30k29k28] = s[k75k74k73k72]⊕ [k31k30k29k28]
[k67k66k65k64] = [k71k70k69k68]⊕ [k67k66k65k64]
[k51k50k49k48] = [k11k10k9k8]⊕ [k51k50k49k48]

4

3. [k54k53k52k51k50] = [k54k53k52k51k50]⊕ [i]2

4. Output the leftmost 32 bits of current content of register K as round subkey Ki+1.

2.4 Round-reduced LBlock-s

Besides the full 32-round LBlock-s, the LAC algorithm also needs round-reduced LBlock-s
including the 16-round LBlock-s named G function, 16-round LBlock-s with data-leaked named
G/leak and the round-reduced key schedule algorithm KS. The definitions are shown as :

G : For 64-bit input X1||X0 and subkeys K1,K2, . . . ,K16, process as follows:

Xi = P (S(Xi−1 ⊕Ki−1))⊕ (Xi−2 ≪ 8), i = 2, 3, ..., 17.

Finally, output the 64-bit X17||X16.

G/leak : For 64-bit input X1||X0 and subkeys K1,K2, . . . ,K16, process as follows:

Xi = P (S(Xi−1 ⊕Ki−1))⊕ (Xi−2 ≪ 8), i = 2, 3, ..., 9.

Output the higher 24 bits of X9, denoted as X∗
9 = X9[31, 30, ..., 8]. Next continue the

following operations:

Xi = P (S(Xi−1 ⊕Ki−1))⊕ (Xi−2 ≪ 8), i = 10, 11, ..., 17.

Output the higher 24 bits of X17, denoted as X∗
17 = X17[31, 30, ..., 8]. Finally output the

64-bit data state X17||X16, and concatenate X∗
9 ||X∗

17 as the 48-bit leaked output.

KS : For the 80-bit input state of the key register K = k79k78...k0, output the leftmost 32
bits as subkey K1. Then for i = 1, 2, ..., 15, update the key register as Step 1 to Step 4 of the
key schedule of LBlock-s and output the round subkeys K2,K3, . . . ,K16. Finally, update the
key register one more time as Step 1 to Step 3 of the key schedule of LBlock-s, with the round
constant i = 0x15.

2.5 Encryption/Authentication Procedure

The encryption/authentication procedure of LAC can be described with the pseudo-code as
follows:

Input: an 80-bit master key K, a len-bit message m, an alen-bit associated data α and a 64-bit
public message number (PMN).

Output: a len-bit ciphertext c and a 64-bit tag τ .

Begin Procedure
Step 1: M(m1|| . . . ||mt) = Padding(m, len)
Step 2: A(a1|| . . . ||ar) = Padding(α, alen)
Step 3: Initialize Procedure

Step 3.1: O1 = E(PMN,K)
Step 3.2: O2 = E(O1,K)
Step 3.3: UKey = O1||O2

Step 3.4: K1 = TruncHigh(UKey, 80), K2 = TruncLow(UKey, 80)
Step 3.5: DataRegister = E(064,K1)

Step 4: Associated Data Processing Procedure
KeyRegister = K2

For i = 1, 2, . . . , r, do the following:
Step 4.1: (K1,K2, . . . ,K16) = KS(KeyRegister),

5

DataRegister = G(DataRegister, (K1,K2, . . . ,K16))⊕ (016||ai)
Step 5: Message Processing Procedure

For i = 1, 2, . . . , t, do the following:
Step 5.1: (K1,K2, . . . ,K16) = KS(KeyRegister),

DataRegister = G/leak(DataRegister, (K1,K2, . . . ,K16))⊕ (016||mi),
ci = LeakMessage⊕mi

Step 6: Output Procedure
c = TruncHigh(c1|| . . . ||ct, len)
τ = E(DataRegister,K)

End Procedure

2.6 Decryption/Verification Procedure

Input: an 80-bit master key K, a len-bit ciphertext c, an alen-bit associated data α, a 64-bit
public message number(PMN) and a 64-bit tag τ .

Output: a len-bit message m or ⊥.

Begin Procedure
Step 1: Split c as 48-bit blocks (c1|| . . . ||ct) (note only 1 ≤ |ct| ≤ 48)
Step 2: A(a1|| . . . ||ar) = Padding(α, alen)
Step 3: Initialize Procedure

Step 3.1: O1 = E(PMN,K)
Step 3.2: O2 = E(O1,K)
Step 3.3: UKey = O1||O2

Step 3.4: K1 = TruncHigh(UKey, 80), K2 = TruncLow(UKey, 80)
Step 3.5: DataRegister = E(064,K1)

Step 4: Associated Data Processing Procedure
KeyRegister = K2

For i = 1, 2, . . . , r, do the following:
Step 4.1: (K1,K2, . . . ,K16) = KS(KeyRegister),

DataRegister = G(DataRegister, (K1,K2, . . . ,K16))⊕ (016||ai)
Step 5: Message Processing Procedure

Step 5.1: For i = 1, 2, . . . , t− 1, do the following:
(K1,K2, . . . ,K16) = KS(KeyRegister),
DataRegister = G/leak(DataRegister, (K1,K2, . . . ,K16)),
mi = LeakMessage⊕ ci,
DataRegister = DataRegister ⊕ (016||mi)

Step 5.2: (K1,K2, . . . ,K16) = KS(KeyRegister),
DataRegister = G/leak(DataRegister, (K1,K2, . . . ,K16)),
mt = TruncHigh(LeakMessage, |ct|)⊕ ct,
If(|mt| ≤ 8)

DataRegister = DataRegister ⊕ (016||mt||048−|mt|−|[len]2|||[len]2)
Else

DataRegister = DataRegister ⊕ (016||mt||048−|mt|),
(K1,K2, . . . ,K16) = KS(KeyRegister),
DataRegister = G/leak(DataRegister, (K1,K2, . . . ,K16)),
DataRegister = DataRegister ⊕ (016||048−|[len]2|||[len]2),

Step 6: Output Procedure
τ∗ = E(DataRegister,K).
If(τ∗ == τ) Output m = (m1|| . . . ||mt);
Else Output ⊥.

End Procedure

6

Chapter 3

Security Goals

First of all, we stress several assumptions of LAC, and then give the security claims for the
cipher.

LAC does not contain secret message number and the public message number is used as
a nonce. Like most of the nonce-based designs, a nonce value should be only used once with
the same master key for encryption. Therefore, we assume LAC is a nonce-respecting setting,
and users/adversaries are required to use the public message number as the non-reused nonce.
Note that if the public message number is reused by some careless operation, LAC will lose
all of its security claims. Moreover, we assume LAC will abort on verification failure. Namely,
in the decryption/verification procedure, if the verification of tag is failed, then the algorithm
returns no information beyond the verification failure. This can efficiently reduce the impact
of chosen-ciphertext attack and help to provide the integrity security.

Under these assumptions, the security claims for LAC are given as follows:

Claim 1 (Confidentiality for the plaintext)

The security claim of confidentiality for the plaintext is that the expected number of key
guesses is no less than 280.

Claim 2 (Integrity for the plaintext)

The security claim of integrity for the plaintext is that any forgery attack with an unused
tuple (PMN∗, α∗, c∗, τ∗) has a success probability at most 2−64.

Claim 3 (Integrity for the associated data)

The security claim of integrity for the associated data is that any forgery attack with an
unused tuple (PMN∗, α∗, c∗, τ∗) has a success probability at most 2−64.

Claim 4 (Integrity for the public message number)

The security claim of integrity for the public message number is that any forgery attack
with an unused tuple (PMN∗, α∗, c∗, τ∗) has a success probability at most 2−64.

Table 3.1: Security claims of LAC

plaintext associated data public message number
Confidentiality 80-bit security − −

Integrity 64-bit security 64-bit security 64-bit security

7

Chapter 4

Security Analysis

4.1 Extinguishing Differentials Analysis

We evaluated the minimal number of active sboxes for LBlock-s. Results show that 16-round
LBlock-s guarantees at least 35 active sboxes. Since the maximum differential probability of
the sbox used in LBlock-s is 2−2, the probability of introducing and detecting an internal
collision in LAC is less than or equal to 2−70.

In Asiacrypt 2013, Wu et al [7] proposed a new kind of forgery attack named Leaked-
State-Forgery attack, which may employ the leaked state of LAC to increase the probability
of finding internal collisions. Notice that 6 leaked nibbles in G/leak may be used to increase
the probability. After taking these 6 leaked nibbles into account, results show that 16 rounds
of LBlock-s provide at least 32 effective active sboxes. Moreover, we enumerate all differential
patterns with exact 32 effective sboxes to check whether the differential probability of each ef-
fective sbox can reach the maximum probability 2−2, and no result has been found. Thus, the
probability of introducing and detecting an internal collision in G/leak is less than 2−64. Fur-
thermore, the searching program illustrates that there is no practical differential characteristic
corresponding to the maximum differential probability.

4.2 State Recovery

Subjected to the attacks on Pelican MAC [9], which mainly makes use of the small size of
internal state to construct collisions due to birthday paradox, the newly proposed algorithms
ALE [2], AEGIS [6], and FIDES [1] all have a big internal state size. In our algorithm the size
of the internal state is 144-bit which can resist against the birthday attacks, and because of
the assumption of nonce-respecting adversary, the round keys are ensured not to be reused,
making the attacks on LEX [3] ineffective here.

However, an attacker can still inject a difference into the state in the tag verification process
and obtain the decrypted plaintext if the forgery attack is allowed to be repeated for multiple
times with the same key and nonce pair. Especially when the tag length is shorter than the key
length as in our algorithm, a successful forgery can be obtained after enough attempts (such
as 264 times), but it is still hard to recover the whole state. Moreover, in our specification of
LAC, we restrict that at most 240 bits are allowed to be processed with the same master key,
which may make this kind of attack more impractical.

4.3 Key Recovery

To recover the master key in LAC, an attacker needs to break the full (32 rounds) round
of LBlock-s, which seems to be impossible. Even if the internal state has been completely
recovered, the only information exposed to the adversary is just the input and output of the
full LBlock-s, which does nothing to help recover the master key.

8

4.4 Forgery without State Recovery

The security of LAC against forgery attacks mainly depends on the probability of finding an
internal collision. The higher the probability is, the weaker the security of LAC against forgery
attacks is.

After collecting several known plaintext-ciphertext pairs, including the corresponding nonces
and tags, an attacker may insert a difference into the state in the decryption and tag verification
process by modifying the ciphertext, and makes a forgery attack if the introduced difference
can be cancelled with a high probability.

However, the design of LAC provides enough security margins to avoid this kind of forgery
attack by using internal collision. In summary, the probability of finding an internal collision
and then making a successful forgery attack is less than 2−64. Therefore, LAC is secure against
forgery attacks.

4.5 Distinguishing Attack

If the PMN can be used to process different messages under the same key, we can easily obtain
a distinguishing attack of LAC. Specifically, the differences of the ciphertexts are equal to that
of plaintexts under the same key and same PMN. Thus, we can distinguish the cipher LAC
from the random function immediately. As a result, the PMN is restricted to be used only
once under the same key.

Moreover, we note that the length of the master key is 80-bit and the size of the state is
64-bit. According to the birthday attack, a collision on the 144-bit occurs with a high prob-
ability after querying the encryption processing with 272 triple (PMN,K,m). The querying
messages are fixed to be 5 blocks m0||m1||m2||m3||m4 and the values of m2||m3 are fixed
for all queries. After obtaining the corresponding ciphertexts and tags, we compute the dif-
ferences of the message and the corresponding ciphertext to verify if the collision occurs on
the first consecutive three blocks, that is mi ⊕ ci, 0 ≤ i ≤ 2. If the 144 bits are equal for
(PMN,K,m) and (PMN∗,K∗,m∗), we expect that the internal state generating from these
two queries are equal after m2 and m∗

2. Because mi = m∗
i , 2 ≤ i ≤ 3, c3 also equals to c∗3

for LAC. While, the probability of c3 = c∗3 is small for a random function. Therefore, we can
distinguish the LAC from the random function with a time complexity of 272. If K = K∗,
the tag for (PMN,K,m0||m1||m2||m3||m∗

4) is equal to that of (PMN∗,K∗,m∗) and we de-
note the tag as τ . Based on the collision-pair, we can successfully show a forgery attack for
(PMN,K, c0||c1||c2||c3||c∗4, τ) with a time complexity 272. However, the security to resist the
forgery attack is restricted to 64-bit and this attack makes no influence on the security against
forgery attack.

To avoid the unknown potential threat, we restrict that an equivalent of at most 240 bits
are allowed to be authenticated or both authenticated and encrypted with the same master
key.

4.6 Guess-and-Determine Attack

Since LAC employs a data-leaked module in the encryption procedure, the values of several
internal state nibbles may be available to adversary. Hence the guess-and-determine attack
may be a possible threat. We evaluate the security of LAC against guess-and-determine attack
by the method proposed in [3]. After searching with the tool [10] we believe that when knowing
6 nibbles at both the beginning and the end of 8-middle-round of G/leak, it takes no less than
20 guessed-nibbles to recover all middle states.

4.7 Slide Attack

Slide attacks are quite common to the authenticated encryption scheme by exploiting the
similarities of the algorithm. However, LAC uses the full 32-round LBlock-s in the initialization

9

and finalization, but only 16-round LBlock-s for the encryption. In the key schedule algorithm
of LBlock-s, different round constants are used to generate subkeys. Moreover, in the padding
procedure of LAC, we will append the length of message in the last padded block which can
destroy the similarity efficiently. All of these features make it sufficient to break the similarities
which can be exploited by slide attacks.

10

Chapter 5

Features

5.1 Main Features

Here we list some main features of LAC in respect to security and performance aspects. Since
LAC is based on similar design structure as ALE, it also shares many strong properties of its
design.

One-Pass LAC needs only one pass through the message to provide both encryption and
authentication. This allows on-the-fly operation.

On-Line LAC is an online scheme since it does not have to know message length before
the last message block is input in the encryption/authentication procedure.

Efficient Security Analysis Security analysis of LAC benefits from existing analysis on
ALE, Pelican MAC and LEX which have similar design principles. Hence in the design process
and parameter choices of LAC, we consider the previous known analytical results sufficiently
and choose rounds number, position of leak-data etc carefully to avoid previous known attacks.

Secure Underlying Primitive LAC exploits a mature lightweight block cipher LBlock-s
as its underlying primitive. Hence previous analytical results of LBlock can provide enough
security confidence and avoid the suspicion of back-door or potential weakness. Moreover, the
optimized hardware/software implementations of LBlock can be reused with only a few simple
modifications.

Extremely Lightweight The design of LAC aims at lightweight authenticated cipher
scheme. We try to provide enough confidentiality and integrity protections in extreme con-
straint application environment. Hence by choosing appropriate parameter such as key/public
message number size and the underlying block cipher, we can obtain a hardware implementa-
tion of LAC in around 2000 GE which can satisfy most lightweight applications.

Flexible and Compatible The design of LAC including the basic module of LBlock-s
only utilize basic instructions such as 4-bit table look-up, bit-wise xor and rotation etc, without
any complex or special operations such as finite multiplication or integer addition. Hence the
implementation of LAC can be very flexible and compatible for various platforms and do not
need the support of any special instruction set.

5.2 Hardware Performance Evaluation

The design of LAC is targeted for lightweight hardware implementation. It is basically employ-
ing the module of LBlock-s together with a control unit for the other operations of initialization,
xor of the leak state with message, and finalization etc.

First of all, load the 64-bit public message number (PMN) and 80-bit master key K in the
module of LBlock-s. After the first execution of full round LBlock-s, store the 64-bit output.
Then reload the 80-bit master key K and execute the second full round LBlock-s. Concatenate
the resultant output to obtain the 128-bit UKey. Load the 64-bit null message as plaintext
and the higher 80-bit of UKey as master key, and execute the full round LBlock-s to obtain
the beginning state of encryption procedure. Then load the lower 80-bit of UKey as master

11

key, and execute the round-reduced LBlock-s functions G(G/leak) and KS to process the
associated data and message in order. Meanwhile, maintain the input and output values in
the respective wires and synchronized with the correct order to perform the xor operations of
state and message. Finally, reload the 80-bit master key K and execute the finalization full
round LBlock-s to obtain the tag.

Therefore, except the basic module of LBlock-s, we still need 80-bit register to store the
intermediate value of lower 80-bit of UKey, 48-bit xor operation, and a module of control
unit to maintain the data in respective wires and choose data in correct order to perform
the operation. For the module of LBlock-s, we apply a parallelization implementation which
performs one round in one clock cycle. Compared with original LBlock, the main difference
of the hardware implementation of LBlock-s employs the same 4-bit sbox in both encryption
and key schedule, and the modified key schedule needs four additional 4-bit xor operations.
Hence to perform one round LBlock-s occupies about 1360 GE and requires one clock cycle.
Therefore, in the above trivial parallelization implementation, LAC occupies about 2030 GE,
and requires 144 clock cycles to authenticate and encrypt one block of 48 bits. This cycle
count includes the overhead of 128 cycles, which is caused by the four invocation of LBlock-s
algorithm in initialization and finalization. Thus, only 16 clock cycles are needed to process
each further 48-bit block of data.

Moreover, we can present a more compact implementation of LAC for extreme constraint
application environment. Here we utilize a serialized implementation of LBlock-s module. It
employs a 4-bit datapath and only one 4-bit sbox is implemented and reused in both encryption
and key schedule. Then to perform one round LBlock-s occupies about 1060 GE, and requires
12 clock cycles in total (including encryption and subkey generation). Moreover, in the above
LAC implementation, we can utilize external RAM to avoid the 80-bit register needed to store
the intermediate result of UKey. Therefore, in a more compact serialized implementation,
LAC occupies about 1300 GE, and requires 1728 clock cycles to authenticate and encrypt one
block of 48 bits. This cycle count includes the overhead of 1536 cycles, which is caused by the
four invocation of LBlock-s algorithm in initialization and finalization. Thus, only 192 clock
cycles are needed to process each further 48-bit block of data.

5.3 Software Performance Evaluation

In this subsection, we evaluate the performance of LAC in various software platforms such as
8-bit, 32-bit and 64-bit processors in sensor network and high performance server etc. Notice
that the overhead of LAC per message amounts to 4 full-round LBlock-s calls, and for long
messages, LAC needs about 16-round LBlock-s to both encrypt and authenticate a block of
message.

8-bit Platform

For the encryption procedure of one round LBlock-s, we can split 64-bit input block into 16
nibbles and each nibble is 4-bit long. Then one round encryption needs 8 sbox table look-up
operations and 16 xor operations in total. For the key schedule procedure, we can store the
80-bit key in 20 nibbles, and to produce a new round subkey needs 2 sbox table look-ups and
6 xor operations. Therefore, one round of LBlock-s needs about 32 instructions in total. Then
LAC requires about 4620 instructions to authenticate and encrypt one block of 48 bits. This
count includes the overhead of 4096 instructions caused by the four invocation of LBlock-s
algorithm needed for initialization and finalization. Then only 524 instructions (including the
xor operation of state/leaked state and message) are needed to process each further 48-bit
block of data. This count does not consider the overhead for loading and offloading of the
data.

32/64-bit Platform

To perform high performance implementation, we utilize several 8× 32 big tables to perform
the round function of LBlock-s. Then we can finish one round of LBlock-s by simply using 4

12

table look-ups and 5 xor operations. We give our software implementation performances for
LAC with different message lengths in Table 3. The processor used for the benchmarks is an
Intel Core i7-3612QM @2.10GHz. Note that here we only give a standard implementation of
LAC and do not need any special instruction sets or parallelized operation to optimize the
performance.

Table 5.1: Software performance of LAC

message length (bytes) 12 16 32 64 128 256 512 1024 2048 4096
LAC (cycles/byte) 720 589 440 256 206 174 152 144 140 138

5.4 Potential Applications

Nowadays, with the development of wireless communicating and embedded system, many
aspects of our modern life are all in need of lightweight applications. Because of its compet-
itive footprint and time-efficient implementation, LAC is particularly suitable for resource-
constrained environment, such as public transport, pay TV systems, smart electricity meters,
anti-counterfeiting, access control, parking management, identification, goods tracking etc.
Meanwhile, LAC can be a preferable choice as the basic cryptographic primitives of smart
cards, RFID tags, and sensor nodes, which have similar features, weak computation ability,
small storage space, and strict power constraints etc.

5.5 Security and Performance Comparison

Let us show the justification of the recommended parameter set. Firstly, LAC does not support
the secret number as AES-GCM does. In LAC, the public message number is processed through
the block cipher as the plaintext and plays the same role as the nonce in other nonce-based
authenticated encryption ciphers. Meanwhile, the length of key and public message number
are respectively equal to the key length and block length of LBlock-s, which is compatible to
many previous lightweight block ciphers. Furthermore, the tag is restricted to the same length
as the ciphertext without any truncation.

Previously, designers always proposed a provable secure authenticated encryption scheme
assuming that the internal block cipher is pseudorandom. After determining the advance
encryption standard(AES), the composite authenticated ciphers are recommended by the NIST
and GCM-AES is famous for its various applications. Because the security goals of LAC and
GCM-AES are different, the comparison of security is meaningless.

LAC is a specific lightweight authenticated encryption cipher. The lightweight property is
the most important feature for LAC. That is to say, the area cost is the biggest advantage
over other ciphers. As the cost of LBlock-s is much cheaper than that of AES, the area needed
for authenticated encryption cipher with LBlock-s is also much less than that with AES block
cipher. As shown in hardware performance, the cost of LAC is even less than the performance of
AES block cipher. Thus, the hardware performance of LAC has an advantage over AES-GCM
and ALE.

For software performance, the intel AES-NI instruction enables the high speed performance
in GCM-AES. Obviously, LAC has no advantage on the software performance without using
the block cipher instruction. However, the operations of LAC are all basic and easy to process
in arbitrary computer and system. As a result, the performance of LAC is more flexible than
that of GCM-AES.

13

Chapter 6

Design Rationale

6.1 Structure

The structure of our algorithm is directly inherited from the ALE. We choose it because of
its so many merits. It is a nature and innovative way to enlarge the size of the internal state
by a layer of key schedule on the basis of the structure of Pelican MAC. The structure seems
quite general and flexible, just like an encryption mode, where the designers can choose the
underlying block cipher with some fine tuning to ensure the security requirement. ALE adopts
AES, while our algorithm uses the lightweight block cipher LBlock-s, making it more applicable
in resource constraint environment.

6.2 The Underlying Encryption Cipher LBlock-s

LBlock-s is an improved version of LBlock [8], which is a lightweight block cipher proposed at
ACNS 2011. Let us first revisit the design rationality of LBlock and then explain the reasons
for improved parts. The general structure of LBlock is a variant of Feistel network, and its
design decisions contain a lot of considerations about security and efficient implementations
(such as area, cost and performance etc).

For the sbox layer, 4-bit sbox has much more advantage when implemented in hardware
compared with the regular 8-bit sbox. Therefore, 10 different 4-bit sboxes are used in LBlock
and all of them can be implemented in hardware with only about 22 GE. Furthermore, in the
aspect of security, the sboxes used in LBlock are carefully chosen so that they all fulfill the
following conditions: no fix point, completed, best nonlinearity, best differential probability,
and good algebraic order etc. In LBlock-s, we only use the same 4-bit sbox (s0 in LBlock) for
ten positions to reduce the cost in hardware but with no influence on security. Thus, the cost
in compact serialized implementation for sbox layer can be reduced from 220 GE to 22 GE.

For the diffusion layer, LBlock chooses to use two permutations which can be implemented
with no cost in hardware. Instead of the bitwise permutation usually used, the 4-bit nibble-wise
permutation in round function can be implemented cheaply not only in hardware but also in
software environments such as 8-bit microprocessor platforms. Moreover, the 8-bit rotation of
right half in each round can be omitted in 8-bit platform implementation. On the other hand,
in the aspect of security requirement, the overall structure of LBlock satisfies that in both
encryption and decryption directions it can achieve best diffusion in 8 rounds. Furthermore,
the number of differential and linear active sboxes both increase quickly.

Similar to many other lightweight block ciphers, the key schedule algorithm of LBlock is
also designed in a stream cipher way. A 29-bit left rotation and two 4-bit S-boxes as non-
linear operations are applied to generate the round subkeys. In order to improve the security
of LBlock-s, the modified key schedule algorithm [5] is used to get faster diffusion. Firstly,
the bit-wise key schedule is revised to nibble-wise algorithm to get a faster implementation
on software platform. Secondly, four nibble-wise XORs are added to improve the diffusion.

14

Finally, the security of the new algorithm LBlock-s against biclique cryptanalysis and related-
key attack has been improved.

6.3 Parameter Choices

The choices of parameters in LAC are highly related to the goals of security and efficiency.
We enhance the ability of LAC in processing associated data and message by reducing the
encryption round of G and G/leak, with the precondition that LAC is secure against various
attacks.

Thus, the number of encryption rounds in G and G/leak, the length of message blocks
and the leaked positions in G/leak are carefully chosen to protect LAC against forgery attacks
and state recovery attacks, especially the leaked-state-forgery attack of ALE [7] and the guess-
and-determine attack of FIDES [4]. In the initialization and finalization of LAC, a 32-round
LBlock-s is used to protect LAC against key recovery attack. Since the key schedule algorithm
of LBlock-s has a better diffusion property than that of LBlock, and LBlock (also has 32
rounds) has enough secure margin against known attacks, we expect that the initialization and
finalization of LAC is strong. The key length of LAC is the same as that used in LBlock.

Moreover, the choice of constant 0x15 in processing associated data and massage has two
aspects of consideration. First, it helps to distinguish the round functions of promoting associ-
ated data and massage from those of initialization and finalization, thus provides some security
to protect LAC against slide attacks. Secondly, the representation of 0x15 in bits is ”10101”,
which influences two nibbles of subkeys.

The designers have not hidden any weaknesses in this cipher.

15

Chapter 7

Intellectual Property

To the best of our knowledge, neither the LAC authenticated cipher, the LBlock and LBlock-s
block cipher, nor any part of our design are covered by any patents or other intellectual-
property constraints. We have not, and will not, apply for patents on any part of our design or
anything in this document, and we are unaware of any other patents or intellectual-property
constraints that cover this work.

If any of this information changes, the submitters will promptly (and within at most one
month) announce these changes on the crypto-competitions mailing list.

16

Chapter 8

Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding
the selection or non-selection of this submission as a second-round candidate, a third-round
candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. The submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms,
and that an excellent algorithm might fail to be selected simply because not enough analysis
was available at the time of the committee decision. The submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are
not subject to appeal. The submitters understand that if they disagree with published analyses
then they are expected to promptly and publicly respond to those analyses, not to wait for
subsequent committee decisions. The submitters understand that this statement is required as
a condition of consideration of this submission by the CAESAR selection committee.

17

Chapter 9

Test Vector

Key 01 23 45 67 89 AB CD EF FE DC

Public Message Number FE DC BA 98 76 54 32 10

Message 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

Associated Data 88 99 AA BB CC DD EE FF

Ciphertext D2 F8 DC 9D D2 90 0C B2 09 76 CC FA 43 6C B0 9E

Tag E8 72 F1 D8 5D 97 FE B9

18

Bibliography

[1] Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: FIDES: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware. CHES
2013. LNCS vol. 8086, pp. 142-158. Springer, (2013)

[2] Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-Based
Lightweight Authenticated Encryption. Accepted by FSE 2013. http://www2.compute.
dtu.dk/~anbog/fse13-ale.pdf (2013)

[3] Bouillaguet, C., Derbez, P., Fouque, P.A..: Automatic Search of Attacks on Round-
Reduced AES and Applications. CRYPTO 2011. LNCS vol. 6841, pp. 169-187. Springer,
(2011)

[4] Dinur, I., Jean, J.: Cryptanalysis of FIDES. accepted by FSE 2014. https://eprint.
iacr.org/2014/058.pdf (2014)

[5] Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against Biclique Cryptanalysis.
WISA 2012. LNCS, vol. 7690, pp. 1-14. Springer, (2012)

[6] Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm (Full Version).
http://eprint.iacr.org/2013/695.pdf (2013)

[7] Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-State-Forgery Attack against
the Authenticated Encryption Algorithm ALE. ASIACRYPT 2013. LNCS, vol. 8269, pp.
377-404. Springer, (2013)

[8] Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. ACNS 2011. LNCS, vol. 6715,
pp. 327-344. Springer, (2011)

[9] Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New Birthday Attacks on Some MACs
Based on Block Ciphers. CRYPTO 2009. LNCS, vol. 5677. pp. 209-230. Springer, (2009)

[10] http://www.lifl.fr/~bouillag/implementation.html

19

