
Marble Specification Version 1.0

Designer/Submitter : Jian Guo

Affiliation : Nanyang Technological University, Singapore

Contact Address : guojian@ntu.edu.sg

Submission Date : March 15, 2014

1 Specification

Marble is an authenticated cipher based on reduced AES block ciphers with 128-bit key and 128-bit tag.
Nonce is not a necessary input for Marble, and it allows repeated usage of associated data.

1.1 Notations

In this design, a word in general refers to a 128-bit string, unless otherwise stated. Multiplication is
defined in Galois Field (GF) with irreducible polynomial poly(x) = x128 + x7 + x2 + x + 1. We use
X · Y , or simply XY , to denote GF multiplication of X and Y , and X + Y for bit-wise XOR, depicted
as in figures, a function used in the chaining layer TRANS(x, y) = (x + y, 3x+ y), depicted as . AES
round function R consists of SubByte, ShiftRow, MixColumn and AddKey, based on which three
block ciphers are defined, each of 4 AES rounds, denoted as E1, E2, E3, with subkeys taken from the first,
second and third 4 subkeys of AES-128 key schedule. Note AES-128 generates 11 subkeys with the first key
same as the master key, and we use the master key again as the 12-th subkey. There is no whitening key
addition for E1, E2 and E3.

A message M, or plaintext is broken into blocks of 128 bits, M[1], M[2], . . . , M[lM] for a message of
length in the range (128 × (lM − 1), 128 × lM]. Similarly, the associated data AD is split into blocks of
AD[1], AD[2], . . . , AD[lA] for processing.

1.2 Design Description

Fig. 1. Marble design — Overview

τ

S1

S2

AD[2]

2 · 32L32L
AD[1]

E1E1

E2E2

E3 E3

Const1

Const2

Const0

L

E1

E2

E3

C[2]C[1] T
3L 2 · 3L

M[1]

2L

M[2]

22L

2lM−1 · 3 · 7L

2lM · 7L

· · ·

∑
M [i]

τ

S1

S2

E1E1E1

E2E2E2

E3E3 E3

· · ·

S1

S2

S1

S2

An overview of the design is depicted in Fig. 1. In this description, we follow a bottom-up approach to
describe the design. The core encryption process is denoted as ENC with pseudo code shown in Algorithm 1.
It takes two chaining values S1 and S2, two masks MASK1 and MASK2, and the input block IN as input,
and outputs a block OUT and updates the two chaining values S1 and S2, in short we write (OUT, S1,
S2) = ENC (IN, S1, S2, MASK1, MASK2). Roughly speaking, ENC masks the input IN with MASK1,
passes through block cipher call E1, the output is used to update S1, followed by block cipher call E2,
then the value is used to update S2, finally apply block cipher E3 and mask MASK2. Using the same
ENC with different parameters, a mask L is generated and associated data, message and tag are then
processed.

2

Algorithm 1 ENC: encryption of a single block

Input: IN, S1, S2, MASK1, MASK2
Output: OUT, updated S1 and S2

1: ITR = E1(MASK1 + IN)
2: (S1, ITR) = TRANS (S1, ITR)
3: ITR = E2(ITR)
4: (S2, ITR) = TRANS (S2, ITR)
5: OUT = E3(ITR) + MASK2

The pseudo code of the workflow is shown in Algorithm 2. Firstly, the mask L is prepared with
IN← Const0, and preset S1 ← Const1 and S2 ← Const2, and apply ENC, as shown in Algorithm 2
lines 2∼3. This L is then used as the source of masks for the following ENC calls. Similar ENC is then
applied to associated data and message blocks with distinct masks, i.e., input mask 2i−132L for the i-th
block of associated data for i = 1, . . . , lA − 1 and 2lA−133L for the last block when it is full block, and
2lA−134L for last partial block. No output mask is used for associated data processing. 2iL and 2i−1 · 3L
are used as input/output masks for i-th message block. Lastly, 2lM · 7L and 2lM−13 · 7L are used as
input/output mask for tag generation. For simplicity we set Const0 = 0, Const1 = 1 and Const2 = 2.

Algorithm 2 Marble: pseduocode for the workflow, with multiple blocks of M and AD

Input: AD, M, K
Output: C, T

1: Initialize the subkeys for E1, E2 and E3 with the master key K

2: S1 = Const1, S2 = Const2, τ = 0, SM = 0
3: (L, S1, S2) = ENC (Const0, S1, S2, 0, 0)
4: for i = 1, . . . , lA
5: (OUT, S1, S2) = ENC (AD[i], S1, S2, 2

i−1 · 32+⌊i/lA⌋L, 0)
6: τ = τ + OUT
7: endfor
8: for i = 1, . . . , lM
9: (C[i], S1, S2) = ENC (M[i], S1, S2, 2

i · L, 2i−1 · 3L)
10: SM = SM + M[i]
11: endfor
12: (T, S1, S2) = ENC (SM + τ , S1, S2, 2

lM · 7L, 2lM−1 · 3 · 7L)

1.3 Processing the last block of associated data

When the last block of associated data is of full block, the input mask is 2lA−1 · 33L, distinguished from
2i · 32L as for other blocks, as depicted in the left part of Fig. 2. Otherwise, the last block is of length
less than 128 bits, a ‘1’ bit is padded, followed by least number of ‘0’s so that it becomes a full block, the
input mask 2lA−1 · 34L is applied, as depicted in the right part of Fig. 2.

1.4 Processing non-full block message

For non-full block message, tag splitting technique [4] is used when the message is less than one block,
and XLS [7] technique otherwise.

Tag splitting for l = |M | < 128. Firstly, define (C′, T′) by processing the padded message block as
usual

(C′, T′)← Marble(M‖10∗)
C← ⌈C′⌉l leftmost l bits
T← ⌊C′⌋128−l‖⌈T

′⌉l rightmost 128− l bits of C′ concatenated with leftmost l bits of T′

3

Fig. 2. Marble design — associated data processing

32L

AD[2]

2 · 32L

AD[1]

2lA−2 · 32L

AD[la-1]

· · ·

· · ·

· · ·

S1

S2

2lA−1 · 33L

τ

AD[la]

τ

AD[la] ‖10 . . .

2lA−1 · 34L

S2

S1
Const1

Const2

Const0

L

E1

E2

E3

E1 E1E1E1E1

E2 E2 E2 E2 E2

E3 E3E3 E3E3

XLS for non-full message block with l > 128. XLS processes one full block + one partial block,
and output a ciphertext with equal length by making three calls to ENC. One can then process the first
lM − 2 full message blocks as usual, and last two blocks (inclusive of the last partial block) are processed
by XLS, followed by tag generation. Note the chaining values S1 and S2 remain unchanged in the first
two ENC calls and are only updated in the last ENC call of the XLS, in order to allow decryption.

1.5 Decryption Algorithm

Decryption can be defined by reversing ENC for the plaintext/ciphertext part only, and the workflow
is exactly the same as for encryption, except replacing ENC by DEC. The details of DEC is shown in
Algorithm 3, where E−1

1
, E−1

2
, E−1

3
are defined similarly as for AES decryption, and TRANS−1(x, y) =

(2x+ y, 3x+ y).

Algorithm 3 DEC: decryption of a single block

Input: C, S1, S2, MASK1, MASK2
Output: M, updated S1 and S2

1: ITR = E−1

3 (MASK2 + C)
2: (S2, ITR) = TRANS

−1(S2, ITR)
3: ITR = E−1

2 (ITR)
4: (S1, ITR) = TRANS

−1(S1, ITR)
5: M = E−1

1 (ITR) + MASK1

2 Security Goals

The security goals of Marble are to achieve full security level for both privacy and authenticity, for both
cases when the associated data is unique or re-used. Marble is also decryption mis-use resistant, i.e.,
attacker is allowed to access the decryption oracle without checking the integrity of the tag. We don’t
claim resistance against any distinguisher or any security in related-key settings, or any other security
against attacks rather than forgery or key recovery.

3 Security Analysis

The security of Marble is not proved, hence we show our arguments against recent attacks, including
here slide attack, generalized birthday attack and differential attack. Generally speaking, ENC consists

4

of 12 rounds, 2 more rounds than AES-128, hence we expect higher security margin against attacks
involving single block plaintext/ciphertext. Hence, here we focus on attacks involving more than one
plaintext/ciphertext blocks.

3.1 Slide Attack

It is proved in [2] that the masks will not collide, hence difficult to launch slide attack between ENC calls
of message blocks at different block positions. It is also difficult to slide between the AES rounds inside
one ENC call, due to the different constants used in the AES-128 subkey generation.

3.2 Generalized Birthday Attacks

We note that COPA [2] and POET [1, 5] are not decryption resistant due to the fact that a block difference
in ciphertext affects only a limited number of plaintext blocks. In particular, a difference in ciphertext
block affects two plaintext blocks of COPA, and hence one can generate many lists by choosing different
positions of the ciphertext block independently and generalized birthday attack applies. This is not the
case for Marble due to the choice of TRANS function, which ensures at least three out of 4 values (2 inputs
and 2 outputs) will consist differences. Difference in a single block will be propagated further to later
blocks through the chaining values S1 and S2. One might think of two or more blocks so that the chaining
value collides, this does not apply either due to the reason below.

3.3 Differential Attacks

In case when the difference appears in more than one blocks, any differential characteristic or differential
will involve at least 8 AES rounds, which is not vulnerable to any key recovery type of attacks, as far as
we are aware of. Furthermore, a distinguishing property in either S1 or S2 is difficult to detect/validate.
For instance, a collision of S1 cannot be easily verified, since this value is “masked” by E−1

1
in decryption

oracle or E3 ◦E2 in encryption oracle. A zero difference in both S1 and S2 is detectable, however, this has
to involve at least 16 AES rounds in total in a differential resulting this. It is noted that maximum expected
differential probability is about 2−112 [3], one cannot fulfill two 4-round differentials independently in this
design due to the chaining values.

4 Features

4.1 Features and Use Cases

Marble is online, i.e., a message in current block will affect the value of current and all subsequent
ciphertext blocks and tag values. Marble aims to be robust, so that it can be used in many extreme use
cases such as:

– Encryption/Decryption only: Marble aims to achieve confidentiality without the tag, by opting out
the tag generation part.

– Integrity of associated data: Marble allows empty message, and takes only associated data and outputs
the tag T. This is processed as usual, but opt out the message processing part, and set

∑
M[i] = 0 for

tag generation. Note, in this case, the input mask for tag generation is set uniquely to 2 · 7L with
lM = 0. This can be used to check the integrity of associated data.

– MAC only: Marble is also allowed to achieve integrity alone, by showing the plaintext together with
the tag, which is generated as usual but discard the ciphertext.

– Empty associated data:Marble is allowed to take no associated data, by opting out the associated data
processing part and setting τ = 0 for tag generation, for both authenticity and integrity functionalities.

4.2 Software speed

A preliminary implementation result shows that Marble runs at 1.6 cycles per byte on an Intel(R)
Core(TM) i5-4570 CPU clocked at 3.20 GHz with AES new instruction for a message of 8 KBytes.

5

4.3 Other parameters

The current proposal is for maximum software performance, one may choose to use 6-round E1, E2, E3

and TRANS(x, y) = (3x+ y, x+ 3y) for better security. Furthermore, one may consider using AES itself to
replace E1, E2, E3 for even larger security margin.

5 Design Rationale

The designer has not hidden any weaknesses in this cipher.

5.1 2n-bit chaining

In order to achieve full security level in case of nonce/AD reuse, this “chaining” needs to have at least
2n bits, otherwise, a birthday attack to find colliding “chaining” values applies, this is the key reason
that we have 2n bit chaining in total. This strategy has been noted and widely adopted by hash function
designs since [6].

5.2 Parallelization and being online

For an authenticated cipher being online and parallel processing seems contradicting properties for an
AE, some “chaining” value has to be passed to next block for it to be online, so this has to be done in
sequential. In the meanwhile, being parallel requires processing message blocks independently as much
as possible. Hence, “chaining” computation has to be fast in software, otherwise it can become the
bottleneck of the software speed, as for [1]. Hence, we choose the simple TRANS(x, y) = (x + y, 3x + y),
which involves one doubling and three xor operations. Furthermore, to udpate the chaining S1 and S2,
there is no doubling involved, and requires only a single XOR operation, which can be realized fast.

5.3 Masking and pre-/post- processing

It is in general not a good idea to reveal internal state/chaining when one wants to claim AD misuse
resistance. To protect the two chaining values S1 and S2, pre-process the message block using E1 and
a post-processing of E3 for ciphertext is necessary. An additional minimum process between the two
chaining values adds up the three-layer construction. A layer of masking for plaintext/ciphertext adds
more to the pre-/post- processing, besides resisting slide attacks.

6 Intellectual Property

This design is patent free, and the designer has no intend to file a patent. If any of this information
changes, the submitter will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

7 Consent

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selection
or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitter
understands that the committee will not comment on the algorithms, except that for each selected
algorithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitter understands that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitter acknowledges that
the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitter understands that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter understands that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.

6

Acknowledgements. We thank Jérémy Jean, Thomas Peyrin and Lei Wang for fruitful discussions.
The work in this design was supported by the Singapore National Research Foundation Fellowship 2012
(NRF-NRFF2012-06).

References

1. Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List, Stefan Lucks, David McGrew, and Jakob
Wenzel. Pipelineable On-Line Encryption. In FSE, 2014, preproceedings version.

2. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda. Par-
allelizable and Authenticated Online Ciphers. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (1),
volume 8269 of LNCS, pages 424–443. Springer, 2013.

3. Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, and Frederik Vercauteren. Compu-
tational aspects of the expected differential probability of 4-round AES and AES-like ciphers. Computing,
85(1-2):85–104, 2009.

4. Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost Foolproof On-Line Authen-
ticated Encryption Schemes. In Anne Canteaut, editor, FSE, volume 7549 of LNCS, pages 196–215. Springer,
2012.

5. Jian Guo, Jérémy Jean, Thomas Peyrin, and Lei Wang. Breaking POET Authentication with a Single Query.
Cryptology ePrint Archive, Report 2014/197, 2014. http://eprint.iacr.org/.

6. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K. Roy, editor, ASIACRYPT,
volume 3788 of LNCS, pages 474–494. Springer, 2005.

7. Thomas Ristenpart and Phillip Rogaway. How to Enrich the Message Space of a Cipher. In Alex Biryukov,
editor, FSE, volume 4593 of LNCS, pages 101–118. Springer, 2007.

7

