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Chapter 1

Introduction

Authenticated encryption, AE for short, is a symmetric cryptographic primitive that provides protections for

confidentiality and integrity (authentication) simultaneously. Simply speaking, confidentiality guarantees

that an adversary can not get any information (except the length) about the plaintext from the ciphertext,

whilst integrity guarantees that the ciphertext is truly delivered from the sender and not modified by an

adversary during transmission.

An AE scheme can be based on some cryptographic components, such as a block cipher, a stream cipher

combined with a MAC (e.g., Grain-128a [1], 128-EIA3 [10]), or a permutation in sponge structure (e.g.,

FIDES [3], APE [2]). The most popular approach to construct AE is to use a block cipher in a mode. The

advantage of this approach is that we can prove the security of the mode in some adversarial model, given

that the underlying block cipher is secure, e.g., it is a pseudorandom permutation (PRP). A large number

of AE modes have been proposed and standardized, such as OCB [17], GCM [16], CCM [19], SIV [18]. Al-

though efficient AE modes, such as OCB, can get both confidentiality and integrity by processing messages

in only one-pass, they still need one block cipher-invocation per message-block. Furthermore, almost all

the modes suffer from birthday attacks which reduce the bits of security from n in block cipher to n/2. It

is not big deal for 128-bit block cipher modes, but for 64-bit modes, 32-bit strength is so weak that it is

allowed to a practical attack.

The other approach to construct AE is to use the component of block cipher such as AES round function,

which is also used in other schemes, for example, message authentication code Pelican [9] and stream

cipher LEX [4]. The existing constructions of AE in this way include ACS-1 [14], ALE [5], Marvin [15],

and AEGIS [20, 21]. Although all these schemes lack provable security against general attacks such as

chosen plaintext/ciphertext attacks (CPA/CCA) as the above modes, the demonstration of security against

some specific attacks such as linear/differential attacks is straightforward by utilizing some AES properties,

for instance, the number of active S-boxes of four-round AES is at lest 25.

Moreover, a set of new instructions AES-NI (Advanced Encryption Standard New Instructions) is sup-

ported in recent years, first by Intel CPU and then by AMD CPU. AES-NI has six instructions: four instruc-

tions for the AES round functions, and the other two for the AES key expansion. These instructions greatly

improve the software performance of AES, its modes, and the schemes based on the AES round function.

AEGIS is the fastest AE scheme so far due to its parallel structure. There are three versions of

1



AEGIS [21], i.e., AEGIS-128, AEGIS-256 and AEGIS-128L, which maintain a state of 5, 6 and 8 paral-

lel blocks (1 block = 16 bytes) respectively. AEGIS-128L amazingly achieves the speed of around 0.48 cpb

(cycles per byte) by using AES-NI.

Unfortunately, as its authors pointed out, AEGIS is not secure against when the nonce is reused. In

other words, the initial vector (IV) of AEGIS should be used a nonce . When it is repeated, it is easy

to recover the internal states of AEGIS, which leads to successful attacks against both confidentiality and

integrity. The security of AEGIS relies on the assumption that IV is never repeated.

In this paper, we propose a new family of AE schemes PAES (PAES-4 and PAES-8) based on AES round

function. The structures of PAES-4 and PAES-8 are similar, except that the state of PAES-4 is 4 blocks while

the state of PAES-8 is 8 blocks. PAES-4 aims at using a smaller state than AEGIS-128, and PAES-8 aims at

achieving an extra robustness in nonce-repeating model. Both schemes preserve the advantages of AEGIS

as many as possible.
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Chapter 2

Specification of PAES

PAES consists of two deterministic algorithms: the encryption algorithm PAES.Enc and the decryption

algorithm PAES.Dec. The encryption algorithm PAES.Enc takes in a 128-bit key K, a 128-bit nonce N ,

variable-length associated data A and a variable-length plaintext P as its input, and outputs a variable-

length ciphertext (C, T ) where T is a 128-bit authentication tag. We write it as PAES.EncK(N,A, P ) =

(C, T ). The decryption algorithm PAES.Dec takes in a tuple (K,N,A,C, T ) as its input and outputs an

authenticated string P or a specific symbol ⊥ indicating that the ciphertext is invalid. We require that

PAES.DecK(N,A,C, T ) = P if PAES.EncK(N,A, P ) = (C, T ). The nonce N is a public message number.

There is no secret message number.

All the operations in PAES are defined in terms of 128-bit block. For the variable-length data such as P ,

C and A in the above notations, we partition them into blocks before the operations. If the last data block

is not a full block, we pad it to 128 bits using successive bits of 0. If the original data is a byte string, we

use little-endian encoding to make them into a block string and vice versa.

2.1 Specification of PAES-4

2.1.1 State update functions of PAES-4

In the encryption and decryption of PAES-4, a state State consisting of 4 128-bit blocks Si, i = 1, 2, · · · , 4 is

always maintained. Two similar state update functions StateUpdate0 and StateUpdate1 are used in PAES-4.

The state update functions use the 128-bit block M to update State. More specifically,

Algorithm StateUpdatei(State,M)
if i = 0

S4 ← S4 ⊕ S3

V1 ← AESRound(S2 ⊕ S4)
V2 ← AESRound(S1)
V3 ← AESRound(S3 ⊕ S2)
V4 ← AESRound(S4 ⊕M)
return (V1, V2, V3, V4)

where AESRound is the AES encryption round function, consisting of a series of three operations: Sub-

Bytes, ShiftRows and MixColumns.
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AES(1R) AES(1R) AES(1R) AES(1R)

S1 S2 S3 S4

M

Figure 2.1: The state update function StateUpdate0. StateUpdate1 is illustrated without the bold line.

We illustrate the two functions in Fig. 2.1.

2.1.2 The encryption: PAES-4.EncK(N,A, P )

The encryption is divided into the following 4 steps.

1) Initialization: Upload the state State with the nonce N , the key K, then run the update function

StateUpdate0 5 times, and then XOR the key to each block of the state. More specifically,

S1 ← K ⊕N
S2 ← L(K)⊕ L3(N)
S3 ← L2(K)⊕ L(N)
S4 ← L3(K)⊕ L2(N)
for i = 1 to 5
State← StateUpdate0(State, 0)

for i = 1 to 4
Si ← Si ⊕K

where L is defined as L(a, b, c, d) = (b, c, d⊕ a, a), a, b, c, d are all 32-bit strings.

2) Processing associated data: After padding and partition, the associated data A becomes A1A2 · · ·As,

a string of 128-bit blocks. Use the block Ai to update State with StateUpdate1. More specifically,

for i = 1 to s
State← StateUpdate1(State,Ai)

3) Processing plaintext: After padding and partition, the plaintext P becomes P1P2 · · ·Pm, a string of

128-bit blocks. Output the XOR of S3 and its previous block S′3 as a key stream to encrypt Pi, and then use

the block Pi to update State with StateUpdate1. More specifically,

State← StateUpdate1(State, 0)
for i = 1 to m
Ri ← S3 ⊕ S′3
Ci ← Pi ⊕Ri

State← StateUpdate1(State, Pi)

We illustrate this step in Fig. 2.2.

4) Finalization: Use tempt = adlen||mslen to update State with StateUpdate0 5 times, and then output

the XOR of the last two state blocks as the authentication tag T , where adlen and mslen, both 64-bit, are

the bit-length of the associated data and the plaintext respectively. More specifically,

4



AES(1R) AES(1R) AES(1R) AES(1R)

S1 S2 S3 S4

Pi-1 Ri

S1 S2 S3 S4

Figure 2.2: Processing plaintext in PAES-4, where P0 = 0, Ri, i = 1, 2, · · ·m is the key stream.

for i = 1 to 5
State← StateUpdate0(State, tempt)

T ← S3 ⊕ S4.

2.1.3 The decryption: PAES-4.DecK(N,A,C, T )

The steps of initialization and processing associated data are the same as in the encryption. After padding

and partition, the ciphertext C becomes C1C2 · · ·Cm,

State← StateUpdate1(State, 0)
for i = 1 to m
Ri ← S3 ⊕ S′3
Pi ← Ci ⊕Ri

State← StateUpdate1(State, Pi)

The generation of authentication tag in the finalization of the decryption is the same as that in the en-

cryption. If the generated tag is not equal to T then return ⊥, else delete the padded bits and return

P .

2.2 Specification of PAES-8

2.2.1 State update functions of PAES-8

In the encryption and decryption of PAES, a state State consisting of 8 128-bit blocks Si, i = 1, 2, · · · , 8 is

always maintained. Two similar state update functions StateUpdate0 and StateUpdate1 are used in PAES.

The state update functions use the block M to update State. More specifically,

Algorithm StateUpdatei(State,M)
if i = 0

S8 ← S8 ⊕ S7

V1 ← AESRound(S6 ⊕ S8)
V2 ← AESRound(S1)
V3 ← AESRound(S2)
V4 ← AESRound(S3)
V5 ← AESRound(S4)
V6 ← AESRound(S5)
V7 ← AESRound(S7 ⊕ S6)
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AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R)
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M

Figure 2.3: The state update function StateUpdate0, and StateUpdate1 is illustrated without the bold line.

V8 ← AESRound(S8 ⊕M)
return (V1, V2, V3, V4, V5, V6, V7, V8)

We illustrate the two functions in Fig. 2.3.

2.2.2 The encryption: PAES-8.EncK(N,A, P )

The encryption is divided into the following 4 steps.

1) Initialization: Upload Statewith the nonceN and the keyK, then run the update function StateUpdate0
10 times, and then XOR the key to each block of the state. More specifically,

S1 ← K ⊕N
S2 ← L(K)⊕ L3(N)
S3 ← L2(K)⊕ L(N)
S4 ← L3(K)⊕ L2(N)
S5 ← L4(K)⊕ L7(N)
S6 ← L5(K)⊕ L4(N)
S7 ← L6(K)⊕ L5(N)
S8 ← L7(K)⊕ L6(N)
for i = 1 to 10
State← StateUpdate0(State, 0)

for i = 1 to 8
Si ← Si ⊕K

where L is the same as defined in PAES-4.

2) Processing associated data: After padding and partition, the associated data A becomes A1A2 · · ·As.

Use the block Ai to update State with StateUpdate1. More specifically,

for i = 1 to s
State← StateUpdate1(State,Ai)

3) Processing plaintext: After padding and partition, the plaintext P becomes P1P2 · · ·Pm. Output the

XOR of S7 and its previous block S′7 as a key stream to encrypt the plaintext Pi, and then use the block Pi

to update State with StateUpdate1. More specifically,

State← StateUpdate1(State, 0)
for i = 1 to m
Ri ← S7 ⊕ S′7
Ci ← Pi ⊕Ri

State← StateUpdate1(State, Pi)
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AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R) AES(1R)

S1 S2 S3 S4 S5 S6 S7 S8

Pi-1 Ri
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Figure 2.4: Processing plaintext in PAES-8.

We illustrate this step in Fig. 2.4.

4) Finalization: Use tempt = adlen||mslen to update S with StateUpdate0 10 times, and then output the

XOR of the last two state blocks as the authentication tag T , where adlen and mslen, both 64-bit, are the

bit-length of the associated data and the plaintext respectively. More specifically,

for i = 1 to 10
State← StateUpdate0(State, tempt)

T ← S7 ⊕ S8

2.2.3 The decryption: PAES-8.DecK(N,A,C, T )

The steps of initialization and processing associated data are the same as those in the encryption. After

padding and partition, the ciphertext C becomes C1C2 · · ·Cm,

State← StateUpdate1(State, 0)
for i = 1 to m
Ri ← S7 ⊕ S′7
Pi ← Ci ⊕Ri

State← StateUpdate1(State, Pi)

The generation of authentication tag in the finalization in the decryption is the same as that in the

encryption. If the generated tag is not equal to T then return ⊥, else delete the padded bits and return P .
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Chapter 3

Security goals

The security goals of PAES are listed in Table 3.1.

Goal
Nonce-respecting Model Nonce-repeating Model

PAES-4/8 PAES-4 PAES-8

confidentiality for the plaintext 128 / /

integrity for the plaintext 128 / 128

integrity for the associated data 128 / 128

integrity for the public message number 128 / 128

Table 3.1: Bits of security goals in two models

Assumptions. We assume that the key of PAES is generated uniformly at random.

Attacking Models. We consider the following attack models according to whether or not the nonce can

be repeated.

1) Nonce-respecting model. In chosen plaintext attacks (CPA), the adversary can not repeat the nonce.

In chosen ciphertext attacks (CCA), the adversary can repeat the nonce when query the decryption

algorithm, but when the verification of PAES fails, only a special symbol ⊥ is revealed.

2) Nonce-repeating model. In CPAs or CCAs, the adversary can repeat the nonce. In CCAs, the adversary

can get the corresponding plaintext even when the verification of PAES fails.

Attacking Goals. The goal of adversary may be one of the following:

1) Recovering the key or the state of PAES;

2) Recovering the plaintext;

3) Distinguishing the key stream from a random stream;

4) Forgery attack, i.e., generating a valid pair of ciphertext and its tag that never appears before.

Security Claims. We denote the nonce-respecting and nonce-repeating models as Model 1 and Model 2

respectively. We make the following security claims:

1) Resistance against key recovery: PAES-4 in Model 1, PAES-8 in Model 1 and 2.
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2) Resistance against state recovery: PAES-4 in Model 1, PAES-8 in Model 1 and 2.

3) Resistance against plaintext recovery: PAES-4 in Model 1, PAES-8 in Model 1 and 2.

4) Resistance against linear distinguishing attack: PAES-4 in Model 1, PAES-8 in Model 1.

5) Resistance against forgery attack: PAES-4 in Model 1, and PAES-8 in Model 1 and 2.

6) All the above resistances have 128 bits of security.

Details of security analysis are given in the next chapter.
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Chapter 4

Security analysis

The main result of this section is that the total number of active AES S-boxes is at least 25/50 in linear

or differential attacks against PAES-4/8, since a sequence of chained four/eight AES round functions is

involved.

4.1 Linear analysis

A linear attack [6] exploits the fact that some linear combinations of the input and output of the non-

linear component are biased. These linear combinations are called linear approximations of the non-linear

function. We view the AES round function as the non-linear component in PAES. The linear combination

is usually defined by the operation of inner product. For two m-bit strings α = a1a2 · · · am and B =

b1b2 · · · bm, the inner product of α and B is defined as α · B = a1b1 ⊕ a2b2 ⊕ · · · ⊕ ambm. When B is the

input or the output of a function, α is called a linear mask.

The aim of the linear attack against stream cipher is to find a biased linear combination of the key

stream generated by the stream cipher, i.e.,
∑s

i=1 τi ·Ri, where Ri are the key stream and τi are the linear

masks, which are obtained by using some linear approximations of the AES round functions. Assume

that the state during the encryption of PAES-4 is Statei = (S1i, S2i, S3i, S4i), i = 1, 2, · · · , the key stream

Ri = S3i ⊕ S3(i+1), i = 1, 2, · · · , and the linear masks of input and output of AES round functions are αi,

α′i, βi, β
′
i, γi, γ

′
i, δi, δ

′
i, i = 1, 2, · · · , which are illustrated in Fig. 4.1.

We turn the idea above into the following equation in terms of the variables of state:

s∑
i=1

τi · (S3i + S3(i+1)) =

s∑
i=1

(αi · (S2i + S4i) + α′i · S1(i+1)

+ βi · S1i + β′i · S2(i+1)

+ γi · (S2i + S3i) + γ′i · S3(i+1)

+ δi · S4i + δ′i · S4(i+1)),
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S14 S24 S34 S44

S15 S25 S35 S45

Figure 4.1: Notations in the linear attack against PAES-4.

or

β1 · S11 + (α1 + γ1) · S21 + (γ1 + τ1) · S31 + (α1 + δ1) · S41

+

s−1∑
i=1

((α′i + βi+1) · S1(i+1) + (β′i + αi+1 + γi+1) · S2(i+1)

+ (γ′i + τi + γi+1 + τi+1) · S3(i+1) + (δ′i + αi+1 + δi+1) · S4(i+1))

+α′s · S1(s+1) + β′s · S2(s+1) + (γ′s + τs) · S3(s+1) + δ′s · S4(s+1) = 0

In order to get the approximation, the variables of state must vanish. We have the following equations:



β1 = 0

α1 + γ1 = 0

γ1 + τ1 = 0

α1 + δ1 = 0,



α′s = 0

β′s = 0

γ′s + τs = 0

δ′s = 0,



α′i + βi+1 = 0

β′i + αi+1 + γi+1 = 0

γ′i + τi + γi+1 + τi+1 = 0

δ′i + αi+1 + δi+1 = 0, i = 1, · · · , s− 1.

Suppose that τs 6= 0, then we can deduce from the above equations that s ≥ 4, γs = β′s−1, βs−1 = α′s−2,

αs−2 = δ′s−3, which define a sequence of chained four AES round functions (as illustrated in Fig. 4.1 by

the bold line when s = 4). Therefore at least 25 active AES S-boxes are involved in the linear attack.

As to PAES-8, a similar argument can prove that in the linear attack against PAES-8, at least 50 active

AES S-boxes are involved.
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Figure 4.2: Differential path of PAES-4.

4.2 Differential analysis

In PAES-4, the difference of any plaintext block, e.g., P1, will go through a sequence of four AES round

functions until it reaches the output ciphertext and the tag. The bold line in Fig. 4.2 illustrates the

differential path starting from P1.

The differential path has two meanings. In nonce-respecting model, although the adversary can not get

the difference from plaintext to ciphertext, or the difference of (P,C, T ) for short, under the same nonce,

he can exploit the difference of (C, T ) to make a forgery attack. In nonce-repeating model, the adversary

can choose arbitrary plaintext under the same nonce, and use the difference of (P,C, T ) to recover the key

or the state.

In AEGIS, the difference of (C, T ) involves a sequence of five AES round functions, but the difference of

(P,C) only involves one AES round function. That is why AEGIS is not secure in nonce-repeating model.

PAES-4 is not strong enough for state recovery attack in nonce-repeating model. That is why we

propose PAES-8, in which any difference of the plaintext will go through a sequence of eight AES round

functions, as illustrated in Fig. 4.3. If we regard the unknown state blocks related to this differential path

as sub-keys, the state recovery attack is just the differential attack against 8-round AES. The best attack

against AES-128 that does not exploit the property of key scheme is 7 rounds [11, 7] as we know, and so

we believe that PAES-8 is secure against state or key recovery attack.
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Figure 4.3: Differential path of PAES-8.
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Chapter 5

Features

We compare AEGIS, PAES and GCM in Table 5.1.

State Efficiency
Security analysis

Misuse resistance Birthday bound
linear analysis differential analysis

AEGIS-128 5 5 No partial No No

AEGIS-256 6 6 No partial No No

AEGIS-128L 8 4 No partial No No

PAES-4 4 4 Yes YES No No

PAES-8 8 8 Yes YES partial No

GCM 1 10 Reduction proof No Yes

Table 5.1: Comparison of AEGIS, PAES and GCM. Here the state is measured by the number of 128-bit

blocks, the efficiency is measured by the number of AES round functions needed to handle a message

block, and robustness is measured in the nonce-repeating model.

PAES preserves the advantages of AEGIS such as parallel structure, fast software performance, etc.

There are two features we want to emphasize.

Security analysis. PAES is a mixture of a stream cipher and a MAC. We measure the security of the stream

cipher by linear distinguishing attacks, and the security of the MAC by differential attacks. A sequence of

chained AES round functions is involved our analyses, which makes the security proof straightforward by

using some property of AES.

Misuse resistance. The design of PAES-8 provides some intermediate level of robustness against nonce

reuse. Although, as a steam cipher, the security of confidentiality no longer exits when the nonce is reused,

the differential property of PAES-8 makes it strong enough against forgery attacks.
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Chapter 6

Design rationale

We designed the PAES scheme according to the following rationales:

Use of the pipeline of AES-NI. AES-NI, short for Advanced Encryption Standard New Instructions, greatly

improves the software performance of cryptographic systems. Moreover, the parallel calls of the same

instruction in a pipeline can further accelerate the performance. In Intel’s white paper on AES-NI [13],

the experiment on Westmere CPU shows that the performance of AES Encryption in the non-parallel CBC

mode and the parallel CTR mode are about 1.38 and 4.15 cpb respectively. In recent Sandy and Ivy

Bridge CPUs [12], the latency and throughput of the instruction AESDES corresponding to the AES round

function used in our schemes are 8 and 1 cycles respectively. So eight divided instructions of AESDES take

(8×8) = 64 cycles, but eight instructions of AESDES in pipeline take only (8+1×7 =)15 cycles. Our design

always puts the AES round functions in parallel, in order to take advantage of the pipeline of AES-NI.

Use of characteristics of AES. One of advantages of AES is that its security against some classic attacks,

such as linear or differential attacks, can be proven in a standard way. Following the wide trail design

strategy, it is showed in [8] that 4-round AES has at least 25 active S-boxes in linear or differential attacks.

Our design makes the sequence of the AES round functions appear in the classic attacks as long as possible.

It is 4 rounds in PAES-4 and 8 rounds in PAES-8 under both linear attack and differential attack, which

makes the security proof straightforward.

Achieving robustness from architecture. AEGIS does not provide any robustness against nonce reuse

attack. It is easy to recover the internal states of AEGIS [21] when nonce is repeated, leading to successful

attacks against both confidentiality and integrity. Our design aims at providing some robustness in this

case. The crucial point of the design goes to how to choose a proper architecture for the scheme. The

final choice of architecture has some flexibility in size of the state. The robustness increases as the state

becomes larger.

The designers have not hidden any weaknesses in PAES.
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Chapter 7

Intellectual property

We have not applied for any patents on PAES. We explicitly release any intellectual property rights to PAES

into the public domain. If any of this information changes, the submitters will promptly (and within at

most one month) announce these changes on the crypto-competitions mailing list.
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Chapter 8

Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selection

or non selection of this submission as a second-round candidate, a third-round candidate, a finalist, a

member of the final portfolio, or any other designation provided by the committee. The submitters under-

stand that the committee will not comment on the algorithms, except that for each selected algorithm the

committee will simply cite the previously published analyses that led to the selection of the algorithm. The

submitters understand that the selection of some algorithms is not a negative comment regarding other

algorithms, and that an excellent algorithm might fail to be selected simply because not enough analysis

was available at the time of the committee decision. The submitters acknowledge that the committee deci-

sions reflect the collective expert judgments of the committee members and are not subject to appeal. The

submitter understands that if he disagrees with published analyses then he is expected to promptly and

publicly respond to those analyses, not to wait for subsequent committee decisions. The submitters un-

derstand that this statement is required as a condition of consideration of this submission by the CAESAR

selection committee.
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