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Chapter 1

Introduction

We construct a family of authenticated ciphers from scratch. We name it PANDA which consists of two au-

thenticated ciphers: PANDA-s and PANDA-b. Authenticated cipher is a symmetric cryptographic primitive

that provides data protections of confidentiality and integrity (authentication) simultaneously. It is also

called authenticated encryption (AE for short) scheme in the literature.

PANDA is based on a simple round function, like other directly constructed ciphers, such as block

ciphers, stream ciphers or hash functions. During the design of PANDA, there are three problems we try

to deal with: 1) how to construct a round function; 2) how to use it in our authenticated ciphers; and 3)

how to prove the security of our ciphers.

The construction of the round function. The most popular way of constructing round functions is to

make use of substitution-permutation networks, i.e., put several S-boxes and a linear transformation in

series as a round function. This method is broadly used in the design of block cipher and hash function [3]

, especially after the success of AES [7]. Following the wide trail strategy in the design of AES [7], the

lower bound of active S-boxes in iterations of several round function can be estimated through the branch

number of the linear transformation. The bound provides an explicit evidence of security against classic

attacks, such as differential and linear attacks.

In PANDA, we choose a unusual way to put several S-boxes and a linear transformation in parallel as

the round function. This method is greatly different from that of SP-networks. For instance, the number

of active S-boxes is actually connected to the minimal polynomial of the linear transformation. Further-

more the round function and its reverse have similar components and are efficient in both software and

hardware.

The way to use the round function. Two different ways result in two authenticated ciphers: PANDA-s

and PANDA-b. Similar to AE with sponge structures [2], e.g., FIDES [4], or Helix [11] and Phelix [15],

PANDA-s is a mixture of a stream cipher and a MAC. The basic component of PANDA-b is a permeation

by 14 iterations of the round function. PANDA-b is also an online cipher like APE [1] but with a different

structure.

The security proofs of the ciphers. The security proofs of PANDA are different from that of block cipher

modes of operation (e.g., OCB [14], GCM [13]) which give reduction proof with an assumption that the
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underlying block cipher is secure. It is also different from that of schemes based on AES round function

(e.g., Pelican [8], ACS-1 [12], ALE [5], AEGIS [16]) in which the properties of AES can be used.

To PANDA-s, we measure the security of the stream cipher by linear distinguishing attack, and the

security of the MAC by differential attack. As to PANDA-b, the differential property of the underlying

permutation is analyzed, and then the permutation is treated as a public random oracle to show the

security of PANDA-b as an online cipher.
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Chapter 2

Specification of PANDA

PANDA is a family of authenticated ciphers, consisting of two ciphers: PANDA-s and PANDA-b. Both

PANDA-s and PANDA-b have two deterministic algorithms: the encryption algorithm Enc and the decryp-

tion algorithm Dec. The encryption algorithm Enc takes in a 128-bit key K, a 128-bit nonce N , variable-

length associated data A and a variable-length plaintext P and outputs a variable-length ciphertext (C, T )

where T is a 128-bit authentication tag. We write it as EncK(N,A, P ) = (C, T ). The decryption algorithm

Dec takes in a tuple (K,N,A,C, T ) and outputs P or a special symbol ⊥ indicating that the ciphertext is

invalid. We require that DecK(N,A,C, T ) = P if EncK(N,A, P ) = C.

2.1 The round function

First define a general round function RoundFunc from an 8-block input to an 8-block output, consisting of

a linear transformation LinearTrans, and four non-linear transformations SubNibbles. We illustrate it in

Fig. 2.1.

More specifically, RoundFunc is defined as follows:

Algorithm RoundFunc(w, x, y, z, S(0), S(1), S(2),m)
w′ ←SubNibbles(w ⊕ x⊕m)
x′ ←SubNibbles(x⊕ y)
y′ ←SubNibbles(y ⊕ z)
z′ ←SubNibbles(S(0))

(S′(0), S′(1), S′(2))←LinearTrans(S(0) ⊕ w, S(1), S(2))

SubNibbles SubNibbles SubNibbles SubNibbles LinearTrans

m

w x y z S (0)
S (1)

S (2)

r

Figure 2.1: The round function in PANDA.
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a0   a1     a2    …… a14 a15

a16 a17  a18  …… a30 a31

a32 a33  a34  …… a46 a47

a48 a49  a50  …… a62 a63

b0   b1     b2    …… b14 b15

b16 b17  b18  …… b30 b31

b32 b33  b34  …… b46 b47

b48 b49  b50  …… b62 b63

S-box

Figure 2.2: SubNibbles acts on the individual columns of its input block.

r ← x⊕ x′
return (w′, y′, y′, z′, S′(0), S′(1), S′(2), r)

The above algorithm is denoted as RoundFunc(w, x, y, z, S(0), S(1), S(2),m) =

(w′, y′, y′, z′, S′(0), S′(1), S′(2), r), where the first 7 blocks are used as a state in our ciphers, m is a

data block, and r is a key stream block. The following expressions are used in our ciphers:

• (state, r) ← RoundFunc(state,m): use the data block m to update the state state =

(w, x, y, z, S(0), S(1), S(2)), and output the key stream block r.

• state ← RoundFuncs(state,m): use a data block m to update the state state, without the output of

any key stream block.

• RoundPerm(state) = RoundFuncs(state, 0): a permutation on a state of 7 blocks, which is used in

PANDA-b.

Notice that SubNibble and LinearTrans are all permutations, and so the inverse of RoundPerm which is

used in PANDA-b can be calculated as the following:

Algorithm RoundPerm−1(w, x, y, z, S(0), S(1), S(2))
x←SubNibbles−1(x)
y ←SubNibbles−1(y)
z ←SubNibbles−1(z)

(S(0), S(1), S(2))←LinearTrans−1(S(0), S(1), S(2))

w′ ← z ⊕ S(0)

x′ ← w ⊕ w′
y′ ← x⊕ x′
z′ ← y ⊕ y′
return (w′, x′, y′, z′, z, S(1), S(2))

SubNibbles. The nonlinear transformation is defined as SubNibbles(a0a1 · · · a63) = b0b1 · · · b63, where

bibi+16bi+32bi+48 = S(aiai+16ai+32ai+48), i = 0, 1, · · · , 15. Here ai, bi are binary elements, i = 0, 1, · · · , 63.

S(·) represents a 4× 4 S-box. Fig. 2.2 illustrates the effect of SubNibbles.

The S-box is defined in hexadecimal by the following table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 1 3 2 f c 9 b a 6 8 7 5 e d 4

Obviously SubNibbles is self-reversible, i.e., SubNibbles−1 =SubNibbles.
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LinearTrans. The linear transformation uses the operations of a finite field. The finite field F264 is defined

by an irreducible polynomial p(x) = x64 + x30 + x19 + x + 1, i.e., F264 = F2(θ) where θ is a root of p(x).

The block a0a1 · · · a63 corresponds to a0 + a1θ + · · · + a62θ
62 + a63θ

63 ∈ F264 . The linear transformation

LinearTrans is defined as LinearTrans(S(0), S(1), S(2)) = (S(0), S(1), S(2))A where the matrix

A =


0 1 0

0 0 1

1 α α+ 1


7

,

where α = θ32 ∈ F264 .

The reverse of A is

A−1 =


α α+ 1 1

1 0 0

0 1 0


7

which is used in LinearTrans−1 and RoundPerm−1.

2.2 Specification of PANDA-s

All the operations in PANDA-s are defined in terms of 64-bit block. For the variable-length data such as P ,

C, A in the above notations, we partition them into blocks before the operations. If the last data block is

not a full block, we pad it to 64 bits using successive bits of 0. If the original data is a byte string, we use

little-endian encoding to make them into a block string and vice versa.

2.2.1 The encryption: PANDA-s.EncK(N,A, P )

The encryption is divided into the following 4 steps.

1) Initialization: Upload the state state with the nonce N = (N0, N1), the key K = (K0,K1) and some

constants, then run the permutation RoundPerm 14 times, and XOR the key into the state, where Ni and

Ki are 64-bit, i = 0, 1. More specifically,

w ← K0

x← N0

y ← K1

z ← N1

S(0) ← C0 ⊕ L(K0)

S(1) ← C1 ⊕ L(K1)

S(2) ← C2 ⊕N0 ⊕N1

for i = 0 to 13
state← RoundPerm(state)

w ← w ⊕K0

x← x⊕K1

y ← y ⊕K0

z ← z ⊕K1

S(0) ← S(0) ⊕K0

S(1) ← S(1) ⊕K1

S(2) ← S(2) ⊕K0
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SubNibbles SubNibbles SubNibbles SubNibbles LinearTrans

w x y z S (0) S (1) S (2)

pi-1ri

Figure 2.3: Processing plaintext in PANDA-s.

where L(a, b) = (b, a ⊕ b), a and b are 64-bit strings. C0 = 32||43||f6||a8||88||5a||30||8d, C1 =

31||31||98||a2||e0||37||07||34 and C2 = 4a||40||93||82||22||99||f3||1d, all in hexadecimal.

2) Processing associated data: After padding and partition, the associated data A becomes a0a1 · · · as−1,

then use the block ai to update state with RoundFunc. More specifically,

for i = 0 to s− 1
state← RoundFuncs(state, ai)

3) Processing plaintext: After padding and partition, the plaintext P becomes p0p1 · · · pm−1. Use the block

pi to update state with RoundFunc and use the key stream to encrypt the plaintext. More specifically,

(state, r)← RoundFunc(state, 0)
for i = 0 to m− 1
ci ← pi ⊕ r
(state, r)← RoundFunc(state, pi)

We illustrate this step in Fig. 2.3.

4) Finalization: Use tempti to update state with RoundFunc 14 times, and then output the XOR of some

of state bits as the authentication tag T , where tempti = adlen when i is even, tempti = mslen when

i is odd i, adlen and mslen is the bit-length of the associated data and the plaintext respectively. More

specifically,

for i = 0 to 13
state← RoundFuncs(state, tempti)

T ← (w ⊕ y, x⊕ z)

2.2.2 The decryption: PANDA-s.DecK(N,A,C, T )

The initialization and processing associated data are the same as in the encryption of PANDA-s. After

padding and partition, the ciphertext becomes c0c1 · · · cm−1, and the decryption as following:

(state, r)← RoundFunc(state, 0)
for i = 0 to m− 1
pi ← ci ⊕ r
(state, r)← RoundFunc(state, pi)
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The generation of authentication tag in the finalization of the decryption is the same as that in the en-

cryption. If the generated tag is not equal to T then return ⊥, else delete the padded bits and return

P .

2.3 Specification of PANDA-b

The core of PANDA-b is permutation R = RoundPerm. R14 represents the 14 times compositions of R.

All the operations in PANDA-b are defined in terms of 7-block big-block. For the variable-length data

such as A, P in the above notations, we pad and partition them into big-blocks before the operations. The

padding method append a bit 1 and minimal bits of 0 to make the length a multiple of big-block. If the

original data is a byte string, we use little-endian encoding to make them into a big-block string and vice

versa.

2.3.1 The encryption: PANDA-b.EncK(N,A, P )

The encryption is divided into the 4 steps.

1) Initialization: It is the same is in PANDA-s.

2) Processing associated data:

pad and partition A into big-blocks as A0A1 · · ·As−1
state← R14(state⊕Ai)⊕ state

3) Processing plaintext:

pad and partition P into big-blocks as P0P1 · · ·Pm−1
for i = 0 to m− 1

U ← R14(Si ⊕ Pi)
Ci ← R14(U)⊕ Si
Si+1 ← U ⊕ Si

where S0 is the state after the previous step.

4) Finalization:

(w, x, y, z, a, b, c)← R14(Cm−1 ⊕ Sm−1)⊕ Sm
T ← (w ⊕ y, x⊕ z)

2.3.2 The decryption: PANDA-b.DecK(N,A,C, T )

The decryption is also divided into the following 4 steps. The steps of initialization and processing associ-

ated data are the same as those in the encryption of PANDA-b. The other two steps are as follows:

3) Processing ciphertext:

partition C into big-blocks as C0C1 · · ·Cm−1
for i = 0 to m− 1

U ← R−14(Ci ⊕ Si)
Pi ← R−14(U)⊕ Si
Si+1 ← Si ⊕ U

where S0 is the state after the previous step.
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R
14

A0

…

… R
14

As-1…

R
14

P0

R
14

C0

R
14

P1

R
14

C1

…

…

…

R
14

Pm-1

R
14

Cm-1…

R
14

T

Figure 2.4: Processing associated data and plaintext in PANDA-b.

4) Finalization:

(w, x, y, z, a, b, c)← R14(Cm−1 ⊕ Sm−1)⊕ Sm
T ′ ← (w ⊕ y, x⊕ z)
if T ′ = T

return P0P1 · · ·Pm−1
else

return ⊥
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Chapter 3

Security goals

The security goals of PANDA are listed in Table 3.1.

Table 3.1: Bits of security goals in two models

Goal
Nonce-respecting Model Nonce-repeating Model

PANDA-s/b PANDA-s PANDA-b

confidentiality for the plaintext 128 / 128

integrity for the plaintext 128 128 128

integrity for the associated data 128 128 128

integrity for the public message number 128 128 128

Assumptions. We assume that the key of PANDA is generated uniformly at random.

Attacking Models. We consider the following attack models according to whether or not the nonce can

be repeated.

1) Nonce-respecting model. In chosen plaintext attacks (CPA), the adversary can not repeat the nonce.

In chosen ciphertext attacks (CCA), the adversary can repeat the nonce when query the decryption

algorithm, but when the verification of PANDA fails, only a special symbol ⊥ is revealed.

2) Nonce-repeating model. In CPAs or CCAs, the adversary can repeat the nonce. In CCAs, the adversary

can get the corresponding plaintext even when the verification of PANDA fails.

Attacking Goals. The goal of adversary may be one of the following:

1) Recovering the key or the state of PANDA;

2) Recovering the plaintext;

3) Distinguishing the key stream from a random stream;

4) Forgery attack, i.e., generating a valid pair of ciphertext and its tag that never appears before.

Security Claims. We denote the nonce-respecting and nonce-repeating models as Model 1 and Model 2

respectively. We make the following security claims:

1) Resistance against key recovery: PANDA-s/b in Model 1 and 2.
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2) Resistance against state recovery: PANDA-s/b in Model 1 and 2.

3) Resistance against plaintext recovery: PANDA-s in Model 1, PANDA-s/b in 1 and 2.

4) Resistance against linear distinguishing attack: PANDA-s/b in Model 1.

5) Resistance against forgery attack: PANDA-s/b in Model 1 and 2.

6) PANDA-b is a secure online cipher.

7) All the above resistances have 128 bits of security.

Details of security analysis are given in the next chapter.
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Chapter 4

Security analysis

4.1 (Non-) Linear transformation in PANDA

The S-box in PANDA is the inverse function over F24 , i.e., S-box(x) = x−1. The maximum differential

probability of the S-box is 2−2.

The linear transformation in PANDA is defined by the matrix A over F264 in section 2.1. α ∈ F264 is

carefully chosen so that f(x) = x3 + (α+ 1)x2 +αx+ 1 is an irreducible polynomial over F264 . If we define

F264×3 = F264(β) where β is a root of f(x) and let S = (a, b, c) ∈ F3
264 corresponds to a+ bβ+ cβ2 ∈ F264×3 ,

then the matrix A corresponds to β7. We will not distinguish the notations between matrix and finite field.

In the following analysis, the differences (or the linear masks) Di in differential (or linear) analysis

satisfy the equation
s∑
i=0

DiAi = 0.

This is a crucial point in our analysis.

If the minimal polynomial of A over F264 is g(x) = 1 + α1x + α2x
2 + x3, then

∑
Dix

i is a multiple of

g(x). Therefore, if s = 3, then (D0, D1, D2, D3) = c(1, α1, α2, 1) for some c ∈ F264 .

Definition 1 (Weight) For a 64-bit block D = d0d1 · · · d63, we define the weight of D as the number of

non-zero inputs to SubNibbles, and denote it as wt(D). More specifically,

wt(D) = #{i|D(i) 6= 0, 0 ≤ i ≤ 15},

where D(i) = didi+16di+32di+48. If a string consists of several blocks, we define its weight by the sum of all

the block weights.

The linear transformation in our ciphers has the following property:

Property. The minimal polynomial of A over F264 has coefficients not all vanishing at every level. In other

words, if the minimal polynomial is g(x) = 1 + α1x+ α2x
2 + x3, then for any 0 ≤ i ≤ 15, 1(i), α1(i), α2(i)

are not all zero.
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4.2 Analysis of PANDA-s

4.2.1 Linear analysis

A linear attack [6] exploits the fact some linear combinations of the input and output of the non-linear

component are biased. We also call these linear combinations linear approximations. The only non-linear

components in PANDA-s is SubNibbles consisting of S-boxes. The linear combination is usually defined

by the operation of inner product. For two m-bit strings α = a1a2 · · · am and B = b1b2 · · · bm, the inner

product of α and B is defined as α ·B = a1b1 ⊕ a2b2 ⊕ · · · ⊕ ambm. When B is the input or the output of a

function, α is called a linear mask.

The aim of the linear attack is to find a biased linear combination of the key stream generated by

the stream cipher, i.e.,
∑s
i=1 τi · Ri, where Ri are key stream blocks and τi are linear masks. Suppose

that the linear masks before and after the four SubNibbles are (Ai, A
′
i), (Bi, B

′
i),(Ci, C

′
i),(Di, D

′
i), and the

corresponding state is (wi, xi, yi, zi, S
(0)
i , S

(1)
i , S

(2))
i .

In order to get the linear masks τi, we have

n∑
i=0

[Ai · (wi−1 + xi−1) +A′i · wi +Bi · (xi−1 + yi−1) +B′i · xi + Ci · (yi−1 + zi−1) + C ′i · yi

+Di · S(0)
i−1 +D′i · zi + τi · (xi−1 + xi)] = 0,

for all wi, xi, yi, zi and Si. Then we have the following restricted functions

w−1 : A0 +

n−1∑
j=0

Dj+1 · (Aj+1)0,0 = 0;

x−1 : A0 +B0 + τ0 = 0;

y−1 : B0 + C0 = 0;

z−1 : C0 = 0;

S
(0)
−1 :

n∑
i=0

Di ·Ai = 0;

wi : Ai+1 +A′i +

n−1∑
j=i+1

Dj+1 · (Aj−i)0,0 = 0, for 0 ≤ i ≤ n− 2;

xi : Ai+1 +Bi+1 +B′i + τi+1 + τi = 0 for 0 ≤ i ≤ n− 1;

yi : Bi+1 + Ci+1 + C ′i = 0 for 0 ≤ i ≤ n− 1;

zi : Ci+1 +D′i = 0 for 0 ≤ i ≤ n− 1;

wn−1 : An +A′n−1 = 0;

wn : A′n = 0;

xn : B′n + τn = 0;

yn : C ′n = 0;

zn : D′n = 0,

(4.1)

where the entry in the i-th row and j-th column of a matrix A is denoted by Ai,j .
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Since the S-box used in this stream cipher is a map from F4
2 to F4

2, the mask code Bi can be regarded

as a 16-dimension vector over F4
2, i.e.,

Bi = (Bi(0), Bi(1), · · · , Bi(15)),

where Bi ∈ F64
2 and Bi(j) ∈ F4

2 for 0 ≤ j ≤ 15. The weight of Bi, denoted by wt(Bi), is defined as

wt(Bi) = |{j |Bi(j) 6= 0, 0 ≤ j ≤ 15}|. Note that the input and output mask codes (Bi(j), Bi′(j)) satisfy

that Bi(j) = 0 if and only if Bi′(j) = 0. Similarly as other mask codes B′i, Ci, C
′
i, Di and D′i. Our strategy

is to enumerate the number of active S-boxes by equalities (4.1) when n = 5. When n = 5, we have the

following equalities:

B0 = C0 = A2 = A3 = A4 = A5 = C5 = D4 = D5 = 0,

Ci+1 = D′i, 0 ≤ i ≤ 3,

B1 = C1,

Bi+1 = Ci+1 + C ′i, 1 ≤ i ≤ 3,

B5 = C ′4,

A0 = τ0 = D0,

A1 +A′0 = D2 ·A0,0 +D3 · (A2)0,0,

A′1 = D3A0,0,

D0 +D1 ·A+D2 ·A2 +D3 ·A3 = 0.

(4.2)

Since the characteristic polynomial fA(λ) of the linear transformation A

fA(x) = 1 + α1x+ α2x
2 + x3

over F264 is irreducible, (D0, D1, D2, D3) = c(1, α1, α2, 1) for some c ∈ F264 , where a1, a2 ∈ F64
2 . For

convenience, denote ND(j) = |{i |Di(j) 6= 0, 0 ≤ i ≤ 3}|, 0 ≤ j ≤ 15. Similarly, denote NB(j) = |{i |Bi(j) 6=
0, 1 ≤ i ≤ 5}|, NC(j) = |{i |Ci(j) 6= 0, 1 ≤ i ≤ 4}| and N(j) = NB(j) +NC(j) +ND(j) for 0 ≤ j ≤ 15. Next

we will estimate the value of N(j) for all values of (D0(j), D1(j), D2(j), D3(j)) by (4.2). In other words, we

will estimate the number of active S-boxes.

Lemma 1 If D0(j) = D3(j) 6= 0, we have N(j) ≥ 8.

Proof: It is easy to see that NC(j) = ND(j) by (4.2). To prove this lemma, it is divided into four cases as

(D1(j), D2(j)) = (0, 0), (∗, 0), (0, ∗) and (∗, ∗), where the notation “∗” denotes nonzero value.

Case I, (D1(j), D2(j)) = (0, 0). Then we have ND(j) = 2. By (4.2), we have C1(j) = D′0(j) 6= 0,

C2(j) = D′1(j) = 0, C3(j) = D′2(j) = 0 and C4(j) = D′3(j) 6= 0. Therefore, NC(j) = 2. Similarly, by (4.2),

B1(j) = C1(j) + C ′0(j) 6= 0, B2(j) = C2(j) + C ′1(j) 6= 0, B3(j) = C3(j) + C ′2(j) = 0, B4(j) = C4(j) + C ′3(j) 6= 0

and B5(j) = C ′4(j) 6= 0, i.e., NB(j) = 4. Therefore, N(j) = NB(j) +NC(j) +ND(j) = 8.

Case II, (D1(j), D2(j)) = (∗, 0). By (4.2), we have C1(j) = D′0(j) 6= 0, C2(j) = D′1(j) 6= 0, C3(j) =

D′2(j) = 0 and C4(j) = D′3(j) 6= 0, i.e., ND(j) = NC(j) = 3. Similarly, by (4.2), B1(j) = C1(j) + C ′0(j) 6= 0,

B3(j) = C3(j) +C ′2(j) 6= 0, B4(j) = C4(j) +C ′3(j) 6= 0 and B5(j) = C ′4(j) 6= 0. We can not determine whether

B2(j) = C2(j) + C ′1(j) = 0 or not. Therefore, NB(j) ≥ 4 and N(j) ≥ 10.
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Case III, (D1(j), D2(j)) = (0, ∗). Similarly as the proof of Case II, we have N(j) ≥ 9.

Case IV, (D1(j), D2(j)) = (∗, ∗). It is easy to see thatN(j) ≥ 10 sinceNC(j) = ND(j) = 4, B1(j) = C1(j) 6=
0 and B5(j) = C ′4(j) 6= 0.

Combining with Cases I, II, III and IV, the proof of this lemma is completed.

Lemma 2 If D0(j) = D3(j) = 0 and (D1(j), D2(j)) 6= 0, we have N(j) ≥ 4.

Proof: The proof of this lemma is similar to that of Lemma 1.

For safety considerations, the number N of active S-boxes is preferably more than 80. By Lemma 1,

we directly find that the number of active S-boxes decreases as the weight wt(Di) decreases. Since the

number of all possible values of (D0, D1, D2, D3) is 264−1, it can not be checked by exhaustive search. We

only focus on the cases that the value of N is possible less than 80. To this end, we verify three cases that

(I) N ≥ 5, (II) wt(D0) ≤ 3 and (III) wt(D0) ≥ 4 and N ≤ 4, where N = |{j | (D0(j), D1(j), D2(j), D3(j)) =

(0, 0, 0, 0), 0 ≤ j ≤ 15}|.
For Case I, assume that (D0(jt), D1(jt), D2(jt), D3(jt)) = (0, 0, 0, 0), 1 ≤ t ≤ 5 and 0 ≤ jt ≤ 15. Let

D0 = c = (c0, c1, · · · , c63) which is regarded as D0 =
63∑
i=0

ciθ
i in F264 . Then we have

cjt = cjt+16 = cjt+32 = cjt+48 = 0, 1 ≤ t ≤ 5.

Since (D0, D1, D2, D3) = c(1, a1, a2, 1), then D1 = ca1 =
63∑
i=0

(θia1)ci. Denote θia1 = (di,0, di,1, · · · , di,63),

0 ≤ i ≤ 63, and then we also have 20 linear equations

63∑
i=0

di,jt+16kci = 0, 1 ≤ t ≤ 5 and 0 ≤ k ≤ 3.

Similarly, we have other 20 linear equations

63∑
i=0

ei,jt+16kci = 0, 1 ≤ t ≤ 5 and 0 ≤ k ≤ 3,

where θia2 = (ei,0, ei,1, · · · , ei,63). Solving the 60 linear equations, the dimension of this linear equations

is about 4, and the number of possible cases is about
(
16
5

)
× 24. By the help of a computer, the minimal

number of active S-boxes is 111.

For Case II, the mask code D0 can have less than
(
16
3

)
× (212−1) values. For these values, we can check

it one by one with the help of a computer. As a result, the minimal number of active S-boxes is 102.

For Case III, if N = 0, we have N = NA +NB +NC +ND ≥ 4 + 4× 8 + 4× 12 = 84 by Lemma 1 and

2. Similarly, if N = 1, 2, 3 and 4, we have N ≥ 80, 76, 72 and 68, respectively. Since we only focus on the

cases that the value of N is possible less than 80, the three sub-cases as (i) wt(D0) = 4 and N = 2, (ii)

wt(D0) = 5 and N = 3, and (iii) wt(D0) = 6 and N = 4 should be considered. For sub-case (i), there are

64 equations with 64 unknowns. By the help of a computer, the minimal number of active S-boxes is 103.

For sub-cases (ii) and (iii), there is no solution by the help of a computer.

Note that Cases I, II and III have contained all the possible cases that the value of N is possible less

than 80. For example, if N = 2 and wt(D0) ≥ 5, then N ≥ 4 + 5× 8 + 9× 4 = 80.
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4.2.2 Differential analysis

The probability that two different messages show the same authentication tag is associated with the num-

ber of active S-boxes which will be analyzed in the following. Without loss of generality, the first message

has non-zero difference, and all the state differences after initialization are zero. It is easy to know that

state differences before round 5 can not be all zero with the first non-zero message. Here we just count

the number of active S-boxes that all state differences of round 5 are zero, because there usually have

more active S-boxes if the zero state differences appear after more rounds. Suppose that the differences

before and after the four SubNibbles are (Ai, A
′
i), (Bi, B

′
i),(Ci, C

′
i),(Di, D

′
i), the difference of message mi

is ∆mi. Combining with theory and experience, the lower bound of the number is 84 in the situation that

the active S-boxes in A1, A2, D3 have not be contained.

The following relations between the differences can be easily obtained:

Ai = A
′

i−1 +B
′

i−1 + ∆mi

Bi = B
′

i−1 + C
′

i−1

Ci = C
′

i−1 +D
′

i−1

Di = ∆S
(0)
i−1 = (

∑i−2
j=0A

i−j−1A
′

j)
(0)

i ≥ 2 (4.3)

Obviously, the non-zero message difference can not propagate to all states. Some state differences are

zero at first:

B0 = C0 = D0 = B1 = C1 = D1 = B2 = C2 = B3 = 0 (4.4)

In our consideration, all state differences of round 5 will be zero. i.e.,A5 = B5 = C5 = D5 = 0

∆S4 +A
′

4 = 0
(4.5)

.

Combing Eq. (4.3), (4.4) and (4.5), some relations between the differences can be expressed as follows:

C3 = D
′

2

B4 = C
′

3

C
′

4 = B
′

4

D
′

4 = C
′

4

(4.6)

D5 = (A4A
′

0 + A3A
′

1 + A2A
′

2 + AA′3)(0) = 0

∆S4 +A
′

4 = A4A
′

0 + A3A
′

1 + A2A
′

2 + AA′3 +A
′

4 = 0
(4.7)

Since the minimal polynomial of A is

x3 + (1 + α2 + α3 + α4 + α7)x2 + (1 + α2 + α5 + α6 + α7)x+ 1,

the following consequences can be obtained from Eq.(4.7):
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
A
′

0

A
′

1

A
′

2

A
′

3

 = τ


1

1 + α2 + α3 + α4 + α7

1 + α2 + α5 + α6 + α7

1

 (4.8)

A
′

4 = 0 (4.9)

where τ belongs to F264 .

Another two relations can also be obtained from Eq.(4.3), (4.8) and (4.9):A
′

3 = D4

A
′

0 = A
′

3

(4.10)

The Eq.(4.6) and Eq.(4.10) show the fact that the position of active (non-active) S-boxes in

D2, C3, B4, C4, D4, A0, A3 are all the same. Next, the number of active S-boxes are counted as follows:

1. If 16 S-boxes are all active in D2, 112 = 16 ∗ 7 S-boxes in D2, C3, B4, C4, D4, A0, A3 are active.

2. If only 1 sbox is non-active in D2, 105 = 15 ∗ 7 S-boxes in D2, C3, B4, C4, D4, A0, A3 are active.

3. If only 2 S-boxes are non-active in the D2, 98 = 14∗7 S-boxes in D2, C3, B4, C4, D4, A0, A3 are active.

4. If only 3 S-boxes are non-active in the D2, 91 = 13∗7 S-boxes in D2, C3, B4, C4, D4, A0, A3 are active.

5. If only 4 S-boxes are non-active in the D2, 84 = 12∗7 S-boxes in D2, C3, B4, C4, D4, A0, A3 are active.

6. If at least 5 S-boxes are non-active inD2, we will count the active S-boxes by experience which shows

that at least 108 S-boxes are active totally. The process of the experience is stated as follows:

First, if the position in D2 is non-active, the corresponding position in C3, C4 and D4 are non-active

from Eq.(4.6). Besides, C4 = C
′

3 + D
′

3 gives that the position in D3 is also non-active. So the

non-active position in D2 which is the same as the non-active in D4 is contained by the non-active

position in D3. After letting any five nibble in D2, D3 and D4 be zero, we obtain the equations for τ

from the next three equations 
D2 = (AA′0)0

D3 = (A2A
′

0 + AA′1)0

D4 = (A3A
′

0 + A2A
′

1 + AA′0)0

(4.11)

where 
A
′

0

A
′

1

A
′

2

A
′

3

 = τ


1

1 + α2 + α3 + α4 + α7

1 + α2 + α5 + α6 + α7

1

 (4.12)

For each τ , we get the values of A
′

1, A
′

2, A
′

3, A
′

4, D2, D3, D4. If the active positions in D2, D4

are the same and the active positions in D3 are contained by the active positions in D2,

count the number of the active S-boxes in A
′

0, A
′

1, A
′

2, A
′

3, D2, D3. The positions of active (non-

active) S-boxes in D2, C3, B4, C4, D4 are all the same, so the number of active positions in

A
′

0, A
′

1, A
′

2, A
′

3, D2, D3, D4, C3, B4, C4 have been obtained. The lower bound of the number is 108

by experience.
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To sum up, the lower bound of the number of the active S-boxes is 84 in the situation that we did not

consider the active S-boxes in A1, A2, D3.

4.3 Analysis of PANDA-b

4.3.1 Differential analysis of iterations of R

For any trail, the number of active S-boxes is greater than∑
i

(wt(Ai) + wt(Di)).

The lower bound can be estimated as (2n− (n+ 3))× 15 = 15(n− 3), if we take (Ai, S0, Di) as a random

linear code of dimension 64(n+ 3).

This estimation makes sense only if we exclude some obvious subspaces with vanishing Ai, Si. For

example, we can have 4 consecutive rounds with vanishing Ai, Si for all trails ≥ 4 rounds, so we would

decree the estimation as 15× (n− 7), and we hope this is valid for n ≤ 14.

In fact, we can find very thin trails up to 7 rounds. For example: we begin with a state with only

1 active S-box at z, rewinding 2 rounds would get only 5 S-box, and forwarding 5 rounds would get 15

S-boxes. So we have a class of 7-round trails with only 20 S-boxes. The lowest trails of less than 10 rounds

seem to lie in extends of these trails. Extending these 7-round trails with 3 more rounds will result in at

least 60 more active S-boxes. We hope these are the lowest trails of 10 rounds, and it is unlikely that there

exist exploitable differential characteristics for R14.

4.3.2 Online cipher and PANDA-b

Definition 2 (Ideal online cipher) It is an oracle accepting queries of the two types: q1q2 · · · qk for encryp-

tion or for decryption, where qi is the blocks of the plaintext or ciphertext. The oracle I maintains a list

recording the previous queries and answers. It treats a fresh query as follows: find maximal match (may be

empty) for prefix, say q1q2 · · · qi, give the answer given by the list. For the rest of blocks choose uniform random

blocks as the answer. Append q1 · · · qk and its answer to the list.

A real online cipher in the following

Enc

Pi

Ci

Si Si+1 Dec

Ci

Pi

Si Si+1

also defines an oracle RK , whereK is the key. It answers queries by running the encryption and decryption

algorithms. We call an online encryption scheme secure online cipher if any efficient adversary A cannot

distinguish I and RK , or in other words,

Pr[AI = 1]− Pr[K ←R {0, 1}λ : ARK = 1]
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is negligible.

If we model R14 in PANDA as a public random permutation oracle, then it is not hard to see that

PANDA-b is a secure online cipher. The result is showed by the following lemmas.

Lemma 3 For a block cipher E (its reverse is D), we define a oracle I[E]. It begins with a random key k0. It

maintain a list recording all previous queries and associated key sequence. To treat a fresh query, it first check

the list to find maximal match (may be empty) for prefix, say (q1q2 · · · qi, k0k1k2 · ki), give the answer given

by the list. It replies qi+1 with Eki for encryption or Dki for decryption, then select a uniformly random key

as ki+1 and go on. It append q1 · · · qk, its answer and the key sequence to the list when a query is completed.

If E is secure block cipher, I[E] is a secure online cipher. In other words, any adversary can not distinguish

I and I[E].

Lemma 4 [10] Let T be public random permutation oracle. Then Enc(K,M) := K ⊕P (M ⊕K) is a secure

block cipher (or a pseudorandom permutation).

Lemma 5 If we model R14 as a public random permutation oracle, any efficient adversary can not distinguish

I[E] and PANDA-b.

For practical security of PANDA-b, we can not take R14 as an oracle; it has obvious weakness: it

commutes with a simple function R. But it seems that this weakness is not exploitable for a practical

attack to invalidate Lemma 4 because of the large block size. For a practical attack to invalidate Lemma

5, it seems that the most effective approach is to exploit the differential characteristic of R14, which (we

contend in section 4.3.1) is also infeasible.
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Chapter 5

Features

Compared with block cipher modes of operation, such as AES-GCM, PANDA as a family of directly con-

structed ciphers does not have the performance restriction by the underlying block cipher and does not

suffer from birthday attacks which is universal in models. Furthermore there are three features we want

to emphasize.

Unique structure. The structure of the underlying round function in PANDA is different from the usual

structure of SP-networks. Putting S-boxes and a linear transformation in parallel also makes the analysis

different. We hope to bring some new ideas in the design of ciphers.

Security analysis. In order to guarantee the security of ciphers, it is important to provide some evidences,

e.g., a reduction proof or analysis to the classic attacks such as differential or linear attacks. For those that

have such evidences may suffer from the classic attacks later. PANDA-s is a mixture of a stream cipher and

a MAC. We measure the security of the stream cipher by linear distinguishing attacks, and the security of

the MAC by differential attacks. We consider the security of PNADA-b when the underlying permutation is

a public random oracle.

Note that some of analyses are not delicate enough, we will improve them in the process of CAESAR.

Misuse resistance. The design of PANDA bears the robustness against misuse resistance in mind. We

believe that even if the nonce is reused, the differential property of PANDA-s guarantees the security of in-

tegrity, and the online-cipher properties of PANDA-b make it strong enough to provide both confidentiality

and integrity.
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Chapter 6

Design rationale

6.1 Objective

Our goal is to design a stream-friendly AE of 128-bit security which is efficient on common software and

hardware platforms. The security goal is mainly to stop nonce-respecting adversaries, while allowing the

choice to stand for nonce-misusing via simple construction based on the round function of the design.

6.2 Choice of algorithm structure

To be stream-friendly, the outlook of the algorithm should look like:

ci = mi ⊕ f(mi−1, Si−1)

Si = g(mi−1, Si−1)

where mi, ci, Si are message, ciphertext, state respectively. g is the state-transfer function and f is the

output function. That is, our AE is a mixture of a stream cipher and a MAC. We assume that the AE is

secure if both the stream cipher and the MAC are secure. We measure the security of the stream cipher by

linear distinguishing attack, and the security of the MAC requires that the adversary can not figure out two

different message streams resulting the same state. These define the problem of our linear and differential

analysis.

Since the output function is simply based on the state transfer, the main issue here is the choice of the

state transfer function. One option is to use the round-function structure of a good block cipher or hash

function [7, 3] . This would make the linear and differential analysis resulting large linear-spaces, which

makes it hard to estimate the lower bound of active S-boxes; to get a verifiable bound, one has to choose

very small message block size, which results in inefficient algorithm. Inspired by ideas of the stream cipher

Snow [9], we use a separated linear transform for diffusion, but our algorithm is different from Snow in

following respect:

1) We choose small S-boxes and large non-linear state, this makes our non-linear part can be efficiently

implemented both in hardware and software.
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2) We choose to output 1 bit for each S-box, and the size of linear part as in PANDA seems appropriate.

Another choice would be to output 1 bit for every 2 S-boxes, and the linear part may only have 32 bits.

Our analysis for this choice has not been completed.

3) We choose a complex linear transform but a smaller linear state; this makes our algorithm more com-

pact.

4) We choose to let the non-linear part and linear part affect each other. This improves the results of linear

and differential analysis.

6.3 Choice of linear transformation A

We choose A according to the following considerations:

1) Efficient both in software and hardware. We decide A be the form A = βn, where β is simple.

2) A−1 has similar implementation with A. This is because we wish our round function can be used in

PANDA-b. So we choose β ∈ F264×3 and the minimal polynomial over F264 as: x3 + (α+ 1)x2 + αx+ 1.

3) The minimal polynomial of A over F264 should have coefficients not all vanishing at every level (See

section 4.1). This seems sufficient so that PANDA is secure.

These considerations lead to our choice of A in PANDA.

6.4 Assumptions

The main assumptions during our design and security analysis are all related to the problem of finding

the minimal “weight” of non-zero code words in some linear code. The simplest form of the problem is as

follows:

Let fi : {0, 1}r → {0, 1}b, i = 1, · · · , n be n given linear maps. For a code-word x ∈ {0, 1}r, define its

weight wt(x) = #{i : fi(x) 6= 0}. Here b = 4 is the S-box size, n is the number of S-boxes involved and r

is the dimension of a linear code.

If {fi} seems independent, we estimate the lower bound for the minimal weight as

(n− r/b)(1− 2−b).

If n� r/b, we assume this estimation is quite close to the real bound; If n < 2r/b, we lower the estimation

by log2
(
n
r/b

)
/b.

More general “weight” functions can be defined, in order to treat the case that there are S-boxes not

included in the linear code.

In this case, we remove r/b + n · 2−b S-boxes which are most significant in weight counting, and

summing the remained weight as the lower bound of active S-boxes.

This kind of estimations makes us to believe that the more rounds involved in the linear (differential)

analysis of PANDA, the larger lower bound of the number of active S-boxes. This indicates that the analysis

given in sections 4.2 and 4.3 is enough for assuring security of PANDA against differential and linear

cryptanalysis.

The designers have not hidden any weaknesses in PANDA.
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Chapter 7

Intellectual property

We have not applied for any patents on PANDA. We explicitly release any intellectual property rights to

PANDA into the public domain. If any of this information changes, the submitters will promptly (and

within at most one month) announce these changes on the crypto-competitions mailing list.
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Chapter 8

Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selection

or non selection of this submission as a second-round candidate, a third-round candidate, a finalist, a

member of the final portfolio, or any other designation provided by the committee. The submitters under-

stand that the committee will not comment on the algorithms, except that for each selected algorithm the

committee will simply cite the previously published analyses that led to the selection of the algorithm. The

submitters understand that the selection of some algorithms is not a negative comment regarding other

algorithms, and that an excellent algorithm might fail to be selected simply because not enough analysis

was available at the time of the committee decision. The submitters acknowledge that the committee deci-

sions reflect the collective expert judgments of the committee members and are not subject to appeal. The

submitter understands that if he disagrees with published analyses then he is expected to promptly and

publicly respond to those analyses, not to wait for subsequent committee decisions. The submitters un-

derstand that this statement is required as a condition of consideration of this submission by the CAESAR

selection committee.
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