ProsT v1.1

Designers/Submitters

Elif Bilge Kavun!
Martin M. Lauridsen?
Gregor Leander!
Christian Rechberger?
Peter Schwabe3
Tolga Yalcin®

Affiliations

! Horst Gortz Institute for IT-Security, Ruhr University Bochum, Germany
2 DTU Compute, Technical University of Denmark, Denmark
3 Digital Security Group, Radboud University Nijmegen, The Netherlands
4 University of Information Science and Technology, Ohrid, Republic of Macedonia

Contact

proest@compute.dtu.dk

June 21, 2014

mailto:proest@compute.dtu.dk

1 Summary

The main contribution of this document is the presentation of PR@ST, a new, highly secure and
efficient permutation with strong security bounds, suitable for a wide range of platforms and modes.

The CAESAR candidates described herein use the excellent existing modes of operation COPA [3],
OTR [13] and APE [2], and instantiate them using the PR@ST permutation, either directly or
through the single-key Even-Mansour construction [8]. These candidates are called PR@ST-COPA-
n, PR@ST-OTR-n and PR@ST-APE-n.

2 Changes from v1.0 to v1.1

e Added Section 3 which introduces document-wide notation
e In the PR@ST permutation specification:

— Changed state name to s.

— Changed description to work on 2n bits rather than n bits, to avoid confusion with the
description of Section 5.

— Changed the name of AddConstant to AddConstants; to stress round number depen-
dency.

— Changed the name of ShiftPlanes to ShiftPlanes; to stress round number depen-
dency.

— Corrected S : % — F% to S : F3 — F4 in the SubRows description.

— Cleaned up the description of AddConstants;.

— Added Section 4.1 which describes the mapping of a byte stream to PR@ST state and
vice versa, and also describes the bit ordering when XORing with 2n-bit values.

e In the CAESAR candidate specification section:

— Introduced and clarified notation.

— Clarified the parameter sets for each of the six candidates, i.e. defined suggested tag
lengths, nonce lengths and specifications of finite fields Fo2se and Fosiz.

— Clarified how to handle fractional cases. Motivated by simplicity of implementation
aspects, we choose to always do ciphertext expansion by applying 10* padding to the
message stream as the first thing before encryption. For more on this choice, see Sec-
tion 7.5.

— Rewrote pseudo-code to reflect updated notation and clarifications.

— Fixed m which should say w in Figures 2, 3 and 4.
e Made consistent the use of F for finite fields rather than GF notation.

e Corrected the rotation direction in the description of design rationale for the AddConstants;
operation.

e Minor corrections to the model describing the search for lowest weight differential/linear
trails of Appendix A.

e Added Section 7.5 which motivates the choice to always do ciphertext expansion through 10*
message padding.

3 Notation

Throughout this document, in the context of the PR@ST permutation, we use n to denote the level
up to which a permutation needs to be indistinguishable from a random permutation, in order to
fit our security claims (see Section 6). For PR@sT, this happens when the state size is 2n, so in
our specification we use PR@ST-n to denote the version of PR@ST which has a state size of 2n bits,
and which fulfills this indistinguishability condition.

We use Fy to denote the finite field of size 2, and we interchangeably switch between Fj and
Fon. For example, we can write the element 22 + 2 + 1 € Fan as (0,...,0,1,1,1) € F§ or as 7 in
hexadecimal notation (typewriter font) for short. We use Z,, to denote both the additive group of
order n and the set {0,...,n —1}.

In the following, let X be a binary string. We use the convention that the rightmost bit in
any representation of X is the least significant bit. The bit length of X is denoted | X|. We use
¢ to denote the empty string, so |¢| = 0. When writing 0¥ or 1¥ we mean k repetitions of that
particular bit. We use msby(X) and Isby(X) to denote the ¢ most significant bits, respectively
least significant bits, of X. We use || to denote concatenation of strings, @ to denote XOR and ©
to denote bitwise AND. Left and right shifts by k positions of X are denoted X <« k and X > k,
respectively, while left and right rotations by k positions of X are denoted X <« k and X >> k.

An asterisk in superscript denotes the Kleene star, e.g. F5 are binary strings of non-negative
length, including €. A plus in superscript denotes “at least one”, so e.g. (F5)T is the set of binary
strings with length equal to a positive multiple of b.

4 The ProsT Permutation

This section specifies the PR@ST permutation. Section 5 presents the use of PR@ST in existing
AEAD (authenticated encryption with associated data) modes, which comprise the CAESAR
competition candidates in this document.

For the PR@ST permutation, we consider a 2n-bit state s as a three-dimensional block of
dimensions w X h x d along the axes x,y and z, respectively, c.f. Figure 1g. For PR@ST, we always
have w = h = 4, so 2n = 16d. We specify PrasT for d € {16, 32}, so effectively we specify two
permutations (see also Section 4.6).

We re-use the nomenclature of Keccak [5] when referring to the terms row, column, lane (which
we also call register), slice, plane and sheet as indicated in Figure 1. The embedding of the state
s into the (z,y)-plane results in a 4 x 4 matrix

$0,0 S0,1 S0,2 S0,3
$1,0 S1,1 S1,2 51,3
52,0 S2;1 S22 523
830 S3,1 S32 833

where each s, is a d-bit register (or lane). We use s, , . to refer to the zth bit of register s, .

579w 3

) Column c) Lane (d) Slice) Plane (f) Sheet (g) Axes

Figure 1: Nomenclature for state parts

The PR@ST permutation consists of compositions of permutations which we refer to as rounds,
borrowing from the design of iterated block cipher constructions. We denote the total number of
rounds by T. We use R; : F2" — F3" to refer to round i, 0 < i < T, which is defined as

R;(s) = (AddConstants; o ShiftPlanes; o MixSlices o SubRows) (s),

where s € F3", so PRoST-n(s) = (Ry_10--- 0 Ry)(s). We give the definition of each of the round
operations below, but first we describe how one maps a stream of bytes to a PR@ST state.

4.1 Mapping a Byte Stream to a PRosST State

Considering each register of the PR@ST state with the most significant bit placed at z = 0, one
maps a byte stream to a PR@ST state one lane at a time in little-endian convention in row order
first, column order second. As such, the first d/8 bytes go into s o, the next d/8 bytes go to so 1,
and so on.

For example, when we have d = 32, a register is 4 bytes and the first four bytes of the stream
bs are mapped to the first register of the state as

50,0,24|| - - - 1150,0,31 = bs[0],
50,0,16| - - - [150,0,23 = bs[1],
50,0,8]| - - - |50,0,15 = bs[2],
50,0, - -+ [[50,0,7 = bs[3].

More generally, when a register is £ = d/8 bytes, register s, ,, of the PR@ST state s with 0 < z,y < 3
is loaded from a byte stream bs as

Spy =bs[dlx+Lly+ L —1] || bs[Alx +Ly+L—2] | --- || bs[dlz + Ly].

The mapping of a state to a byte stream is done by the obvious inversion of this mapping.

4.1.1 Mapping a State to F3"

Let F: F3***? - F3" be defined for a state s as

F(s) = (so0lls0.1l -+ lIs3.2l53,3)-

When a PR@ST state is XORed with a 2n-bit value X, we implicitly mean that X is XORed to the
state mapped to F3" by F, i.e. X & F(s). Note that for all s, ,, we have that s, , ¢ corresponds
to the most significant (leftmost) bit, and sz, 4—1 corresponds to the least significant (rightmost)
bit.

4.2 SubRows

PROST uses a single 4-bit S-box S : F3 — F3 which is given in Table 1. The SubRows operation
substitutes each row of the state according to this S-box. More precisely, a state s will be mapped
to a state s’ where

Vy € {07 e ,3},VZ € {07] d - 1} : (sé),y,z||S,1,y,sz/2,y,z||8/3,y,z) = S (SO,y,ZHSLy,z||52,y72|‘537y-,2) .

Table 1: Action of the PR@ST S-box in hexadecimal notation

T 0123456789abcdef
S(x) 048f15e927acbd63

4.3 MixSlices

For a state s, the MixSlices operation updates each of the d slices of s by multiplying the bits of
each one, arranged in a 16-bit column vector, from the left by a 16 x 16 matrix M over Fo, i.e. we
obtain s’ = MixSlices(s) as

56,0,:: 50,0,z
56,1,z 50,1,z
56,2,z 50,2,z
36,3,z 50,3,z
vz €{0,...,d—1} 8/170’2 =M 51.0.2
sg,Q,z 53,2,z
3%,3,z 53,3,z

The matrix M used for MixSlices is given by (1). It is involutive, i.e. self-inverse, with Hamming
weight 88. The matrix is MDS, so the branch number is 5. This means that from a differential and
linear cryptanalysis perspective, for each slice, if k¥ > 0 is the number of active bits in a column,
then the corresponding column of s’ has at least 5 — k active bits.

1000100100101011
0100100000011001
0010010011001000
0001001001100100
1001100010110010
1000010010010001
0100001010001100
0010000101000110
0010101110001001
0001100101001000
1100100000100100
0110010000010010
1011001010011000
1001000110000100
1000110001000010
0100011000100001

4.4 ShiftPlanes;

The ShiftPlanes; operation rotates the registers of each plane of the state towards right by a
particular amount. In contrast to many existing designs, PR@ST uses two different shift operations,
depending on the parity of the round number i; one for even numbered rounds and one for odd
numbered rounds.

For round 7 with 0 < ¢ < T, the rotation amount for plane j with 0 < j < d is given by the
jth element of row 7 mod 2, denoted 7; mod 2,5, of @ 2 X 4 matrix 7 over Zq. We use mg and 71 to

denote the first, respectively second row of w. Thus, ShiftPlanes; applied to a state s in round
will result in a state s’ where

Spy > To. 1 €ven

vz €{0,...,3}, vy €{0,...,3} : s, = .
{ by ed) v {sm7y>>>7rl7x ,i odd

Table 2: Shift vectors m; and 7y for the ShiftPlanes; operation for d = 16 and d = 32

d) T

16 (0,2,4,6) (0,1,8,9)
32 (0,4,12,26) (1,24,26,31)

4.5 AddConstants;

In the AddConstants, operation, different round/lane-dependent constants are XORed to each
lane. Let ¢; = msby(0x75817b9d) and ¢ = msbg(0xb2c5fef0). In the following, let j = 4a + y,
with x,y € {0,...,3}, so j is the lane index with 0 < 57 < 15. In round i, 0 < i < T, we have
s’ = AddConstants;(s) with

Spy @ (a1 K (1+7)) ,jeven

vz €{0,...,3},vy€{0,...,3} : s, = Y .
t et ! Y {sm,y@(62<<<<z+j>) ,j odd

4.6 PRr@sT-128 and PrR@ST-256 permutations

We specify two permutations to be used: PR@ST-256 and PR@ST-128. These are summarized in
Table 3.

Table 3: PR@ST permutations and their parameters. The IND level n indicates the level up to
which PR@ST-n is indistinguishable from a random permutation.

Name State size 2n IND level n Rounds T
ProsT-128 256 bits 128 bits 16
PRrRoST-256 512 bits 256 bits 18

4.7 Absence of Trap-doors

We faithfully declare that we have not inserted any hidden weaknesses in the PR@ST permutation.

5 Authenticated Encryption with PRoST

Authenticated encryption (AE) with associated data (AD) is a symmetric-key cryptographic prim-
itive which combines encryption and authentication in a single algorithm, with focus on both
aspects from the design phase. This is contrary to the earlier paradigm of obtaining secrecy and
authentication by applying some combination of encryption scheme with a MAC.

AEFE schemes are most commonly based on block ciphers as the underlying primitive. Examples
of such include OCBJ[1-3] [16, 15, 11], GCM [12], CCM [20], AEGIS [21], COPA [3], COBRA [4],
FIDES [7], OTR [13], the McOE family [9] and POET [1].

With the advent of permutation-based designs, notably in the Sponge constructions, the use
of permutations as the underlying primitive in AE schemes is becoming increasingly frequent. So
far, permutation-based AE schemes include SpongeWrap [6], APE [2] and PPAE [10].

In this section we describe our proposals for the CAESAR competition, which are all specific
instantiations of AEAD schemes using the PR@ST permutation as the underlying primitive. Each
of the instantiations are based on existing AE schemes. The proposals are summarized in Table 4,
which lists the specific instantiations, while the specifications in the following sections use general
n for their descriptions.

Table 4: Our proposals, underlying PR@ST permutation and their rankings. Other columns indicate
onlineness (in encryption and decryption), parallelizability (P), nonce misuse-resistance (NMR)),
easy constant-time implementation (CT) and cheap power analysis countermeasures (CM).

Online
Rank Proposal Permutation Enc Dec P NMR CT CM
1 Pr@sT-COPA-128 PRrRosT-128 v v v v v v
2 ProsT-COPA-256 Pr@sT-256 v v v v v v
3 Pr@sT-OTR-128 ProsT-128 v v v v v
4 Pr@sT-OTR-256 PRoST-256 v v v v v
5 ProsT-APE-256[256, 256] PR@ST-256 v v v v
6 ProsT-APE-128[128,128] PR@sT-128 v v v v

5.1 Notation

Throughout our description of the proposals, we use P, as a shorthand for the PR@ST-n permu-
tation, i.e. PR@ST with n-bit security level and internal state size of 2n bits.

For each of our proposals, we define the following parameters: M denotes the space of allowed
messages; C denotes the space of allowed ciphertexts; A denotes the space of allowed associated
data; A denotes the space of allowed nonces (public message numbers). None of our proposals use
secret message numbers. We use 7 to denote the tag length. We define a block as a string of b
bits, hence b is the block size of a proposal. For a binary string X, we denote by X||10* the string
X which is padded with a 1 followed by zeroes, such that | X||10*| becomes the smallest multiple
of b larger than |X|. This means that if |X| = b, then we have |X|10*| = | X| + b, so the string
is expanded by another full block. We use the L symbol to denote the output of the decryption
algorithm when tag verification fails.

In our proposals, we always pad the message M € M using the 10* padding (see also Sec-
tion 7.5). Thus, the first thing to do when encrypting is setting M = M||10*. This also implies
that our proposals do ciphertext expansions, in the sense that the length of ciphertext will never
equal the length of the message, but will always have length equal to a positive multiple of b. The
largest expansion possible is b bits, which occurs when |M| =0 mod b. Note that this padding is
not, in general, applied to the associated data.

We use a < [|A]/b] to denote the number of blocks of associated data and w = |M|10*|/b
to denote the number of message blocks (after doing the 10* padding) throughout. Table 5 gives
the mentioned parameters for our proposals.

Table 5: Proposal parameters

Rank Proposal Block size b M C A N Taglength 7
1 PrRosST-COPA-128 256 F; (F26)t Fp F2F 956
2 Pr@sT-COPA-256 512 F3 (Fgl2)+ F% Fgm 256
3 ProsT-OTR-128 256 F3 (]F%56>+ F% F%QS 128
4 Pr@sT-OTR-256 512 F5 (F312)* Fy F300 956
5 PROST-APE-256[256, 256] 256 F; (F%)t F3 [956
6 PRoST-APE-128[128, 128] 128 Fy (Fi$)* Fp Fi 198

For a message M € M, we write M[i], 1 <4 < w, to denote the ith block of b consecutive
bits of M, starting from the most significant end. We use an equivalent indexing for a ciphertext
CeC.

When we write multiplications, we mean multiplication in a finite field Fo2» defined modulo
an irreducible polynomial fy,(z) over Fo of degree 2n. The irreducible polynomials used for our
proposals are given in Table 6. Constants in hexadecimal notation occurring in the proposal
descriptions are considered members of the respective field, where the polynomial coefficients are
given by the radix 2 representation of said constant. The least significant bit is the least significant
coefficient. For example, 2 represents x € Fozn and 7 represents z2 4+ z + 1 € Fo2n. Pseudocode
showing multiplication by 2 is given in Algorithm 1.

Table 6: Defining polynomials for finite fields used in our proposals

Field Defining polynomial fs,(x) Value added when reducing in hex

Foz2s0 2250 410 4 g5 422 41 0x425
Fosi2 22 a4 a2 41 0x125

Algorithm 1: xtime(v)
Data: z € F3"
f256 < 0x423
f512 +— 0x123
if msby(v) = 1 then
| return (v < 1) ® fon
else
‘ return v < 1
end

B =R B VU VR

5.2 Block Cipher-based AE to Permutation-based AE

It is a well-known result that any permutation can be turned into a block cipher by plugging it
into a single-key Even-Mansour construction [8]. As such, any block cipher-based AE scheme can
be turned into a permutation-based one by this construction.

For the purpose of using PR@ST-n in block cipher-based AE schemes, we define the single-key
Even-Mansour block cipher, which takes a single 2n-bit key K, as P, x : F3" x F3" — F3", defined

as B x(2) € K@ P (z® K).

With PR@ST, we have designed a permutation which has a simple design, is efficient, has strong
security bounds and is inherently timing-attack protected. With this, we next define specific
instantiations of authenticated encryption schemes based on PR@ST, both when the underlying
scheme is block cipher or permutation based, either by using it directly or through 15", K-

5.3 ProsT-COPA-n

COPA is a design by Andreeva et al. from Asiacrypt 2013 [3]. In this part, we give our specification
of PR@ST-COPA-n; the instantiation of the COPA AE scheme using]5n x as the underlying block
cipher. The resulting proposal PR@ST-COPA-n enjoys the security proofs of COPA, and in par-
ticular, COPA is resistant to nonce-misuse, leaking only the length of the common message prefix
(which is optimal for single-pass schemes) [3]. PR@ST-COPA-n is a fully parallelizable, online AE
scheme, and uses the very efficient doubling of Algorithm 1 as opposed to general multiplication
in Fo2. for the tweak values. The scheme uses two calls to PR@ST-n and two doublings in Fazn
message block.

Figure 2: Encryption of w message blocks with PR@ST-COPA-n

M [w]

2031 *% 213 *% ow—1gy, *%
Pn K

ol »é 227 »é Jw +é
Clw]

o] a2

The encryption of w message blocks is depicted in Figure 2 (processing associated data is not
shown). The complete description of encryption with authentication, decryption with verification
and processing of associated data for PR@ST-COPA-n is given by Algorithms 2 through 5.

Algorithm 2: PrRoST-COPA-n-E(M, A, N)

Data: M c M,Ac AN c N
(V, L) < PrR@ST-COPA-n-ProcessAD(A, N) /* First process A and N */
M « M||10* /* Pad M to positive multiple of b bits */
L+ P, k(0% /* Set initial values */
V«<VaolL
(Ao, Al) — (SL, 2L)
X+0
fori=1,...,w do
Ve Po(M[i]® Ag) @V /* Process message blocks */
Cli] + Pox (V) ® Ay
(Ag, A1) < (240, 2A1)
Y+ X M
12 end
13 T <« lIsb,(~n7
14 return (C,T

© 00 N O A W N

[
= O

k(P (X @2v132L) o V) @2~ 17L) /* Compute tag */
)

Algorithm 3: PrRoST-COPA-n-D(A,C,T)

Data: CeC, A€ AN e N, T €F]
(V, L) <~ ProST-COPA-n-ProcessAD(A, N) /* First process A and N */
V«VaolL
(Ao, Al) <— (BL7 QL)
240
fori=1,...,w do
V'« 15”_}((0[2] @A) /* Process ciphertext blocks */
M[i] « P (V' & V) ® Ag
VeV
(Ag, A1) < (24A0,24A,)
LYo M
end
T’ < 1sb (P i (Pox (X @ 2¥132L) @ V) @ 2%~17L) /* Compute verification tag */
if 7" =T then
| return StripPadding(M)
else
‘ return |
end

© 00 N O Gk~ W N

[T - T e T
N O Ok W N = O

10

Algorithm 4: PrR@ST-COPA-n-ProcessAD(A, N)

I = I T
U B W N = O

Data: Ac AN e N
X «+ A|N
L+ P, (0%
A« 33L
V0
€ [|X]/b]
fori=1,...,/—1do
Vi VoP,g(X[i]®A)
A+ 2A
end
if | X[¢]| = b then
|V Py (V@ X[(]®3A)
else
|V Pk (V@ X[(]]10* @ 32A)
end
return (V, L)

© O N O ok W N -

/%

/* Append N to A */
/* Set initial values */

/* Process all blocks of X except the last */

/* Process last block of X if full */

Process last block of X if partial */

Algorithm 5: StripPadding(X)

Data: X € F3

while X # ¢ and Isb1(X) =0 do
| X=X>1

end

if X # ¢ then

| XX >1

end

return X

B =N S NV R

/* Peel off zeroes in the end */

/* If X # ¢ remove the one-bit */

11

5.4 PRrosT-OTR-n

OTR is an AE scheme designed by Minematsu from Eurocrypt 2014 [13]. Here, we specify PROST-
OTR-n, which is the instantiation of OTR using 15”7 x as the underlying block cipher. OTR uses
2-round Feistel ciphers to encrypt two consecutive message blocks. It uses one call to PR@ST-n
and half a doubling in Fa2» per message block.

Figure 3: Encryption of w message blocks with PR@ST-OTR-n, when w is even

MI[1] M[2] M[3] M([4] Mlw — 1] M[w)

ol—1y7

O Pn, K

‘é P, K > ‘é Pp K > ‘é‘ Py K >
: i :
A, L Y L Y L

c[1] cl2] c[3] C[4] Clw — 1] Clw]

Pr@sT-OTR-n inherits the features of OTR. In particular, it is nonce-based, but not nonce-
misuse resistant. This means that security is lost if nonces are re-used. Comparing to schemes
which offer nonce-misuse resistance, the gain is performance. The proposal is online and completely
parallelizable. It does not require the inverse of the underlying primitive, due to the employment
of the Feistel cipher structure.

The encryption of w message blocks, for even w, with PR@ST-OTR-n is depicted in Figure 3.
In the figure, ¢ = w/2. The complete description of encryption with authentication, decryption

with verification and processing of associated data for PR@ST-OTR-n is given by Algorithms 6
through 10.

Algorithm 6: PR@ST-OTR-n-E(M, A, N)
Data: M e M,Ac AANeN
1 (C,TE) < ProsT-OTR-n-Enc(M, N)
2 if A # e then TA < ProST-OTR-n-ProcessAD(A)
3 else TA <+ (0
4 T+ msh,(TE®TA)
5 return (C,7T)

12

Algorithm 7: PR@ST-OTR-n-D(C, A, N, T)

Data: C€C, A€ A,N e N,T € F}
(M, TE) + PrRosT-OTR-n-Dec(C, N)
if A+#ethen TA <+ PrRoST-OTR-n-ProcessAD(A)
else TA<+0
T + msb, (TE®TA)
if 7" =T then
| return StripPadding(M)
else
‘ return |
end

© W N O ok W N

Algorithm 8: PrR@ST-OTR-n-ProcessAD(A)

Data: Ac A
=0 /* Set initial values */
o me(Ob)
Q < 4y
fori=1,...,a—1do
E+ 20 P, x(Qa® Al]) /* Process first a—1 blocks of A */
Q < 2Q
end
f |Ala]| = b then
E+ =Za Al
TA+ P, g(Q@2y@E)
Ise
2+ E® Alal||10*
TA<_P7L,K(Q®’Y@E)
end
return TA

e e
N R O © ® N O A W N R
[©) =

[~
(S, B]

13

Algorithm 9: PrRgST-OTR-n-Enc(M, N)

© 0 N O ks W N -

o I
© W0 N O ok W N = O

Data: M c M,Nc N/
M « M||10* /* Pad M to positive multiple of b bits
¥+ 0° /* Set initial values
§ < P, i (N]]10%) /* Set 6 to the encryption of the padded nonce
L <46
fori=1,...,|w/2] do
C[2i — 1] «+ P, k(L & M[2i — 1)) ® M|[2i] /* Process M blocks in pairs
C[2i] « Py g (L ® 6@ C[2i — 1]) @ M[2i — 1]
Y« X M[2i
L+ 2L
end
if w is even then
| L'+« Laé
else
L'+ L /* Handle last block if w is odd
Clw] + P, k(L") ® M[w]
L+ X Muw
end
TE + P, k(3L ® 3@ X) /* Compute encryption part of tag
return (C,TE)

*/
*/
*/

*/

*/

Algorithm 10: PrR@ST-OTR-n-Dec(C, N)

© O N0 A W N -

I
o N O A W N = O

Data: CeC,N e N/
Y+0 /* Set initial values
§ < P, x(N||10%) /* Set 6 to the encryption of the padded nonce
L+ 46
fori=1,...,|w/2| do
M[2i — 1) + Py (L@ 6 @ C[2i — 1]) @ C[2i] /* Process C blocks in pairs
M|[2i] < P, k(L ® M[2i — 1)) ® C[2i — 1]
L+ X M[2i]
L+ 2L
end
if w is even then
| L'+ Laé
else
L'+ L /* Handle last block if w is odd
M[w] + P, (L") & Clw]
L+ X Muw
end
TE + P, k(3L ® 3@ X) /* Compute encryption part of tag
return (M, TFE)

*/
*/

*/

*/

*/

14

5.5 ProsT-APE-n|r,c|

APE is a permutation-based AE scheme by Andreeva et al. from FSE 2014 [2]. It does not require a
block cipher, but rather a permutation as the underlying primitive. Here, we give the specification
of our instantiation of APE using PR@ST-n as the underlying permutation. The [r,c| part of the
proposal name indicates the sizes of rate and capacity, two parameters which are described in the
following.

M[1] MI2] Mw — 1] Mw]
l cnl cl2] l Clw — 1] Clw]
N N
o v, D> D A ad >
Pp Py Pp Pn| K
I v ¥
c|| Ve P> > s > T
N N

Figure 4: Encrypting and authenticating m message blocks of r bits each using PR@ST-APE-n[r, ¢|

PR@ST-APE-n[r, | is online in encryption, i.e. one does not need to know all message blocks,
and in particular the number of message blocks, before one can start encrypting. Indeed, the
ciphertext block C[i] depends only on message blocks M[1],..., M][i]. For decryption, however,
one starts decrypting the last ciphertext block first, and hence decryption is not online. The fact
that one decrypts in reverse implies the need for the inverse the underlying permutation as well.

PR@ST-APE-n|[r, ¢] has two important parameters: the rate denoted r and the capacity denoted
c. For PR@ST-APE-n|r,], the block size b equals the rate r, and we use r rather than b in our
description here. As the underlying permutation PR@ST-n has a state size of 2n bits, we have
r 4+ ¢ = 2n. It uses a single c-bit key K € 5.

In our specification, subscript r or ¢ denotes the rate, respectively capacity part of the (r+c¢)-bit
operand, with the convention that the rate part holds the most significant bits of the state, i.e.
X, = msb,(X) and X. = Isb.(X). Figure 4 illustrates the encryption and tag generation for w
message blocks of r bits each. When there is no associated data, i.e. |A| = 0, the IV is set to
IV = (IV.||IV.) = (0"||K). Nonce N is effectively considered part of the associated data, and is
prepended to this. The complete description of encryption with authentication, decryption with
verification and processing of associated data for PR@ST-APE-n[r,] is given by Algorithms 11
and 12.

APE achieves privacy and integrity up to the bound 22, both in the ideal permutation model
and the standard model. In other words, the choice of rate and capacity influence performance
and security, in the sense that increasing capacity and decreasing rate will increase security and
decrease performance, and vice versa. We refer to Table 4 for the specific parameters of our
proposals. APE is the first permutation-based AE scheme to obtain nonce-misuse resistance. In
particular, when nonces are repeated, it leaks only the XOR, of the common prefix of the message.

15

Algorithm 11: PR@ST-APE-n[r, c]-£(M, A, N)

Data: M e M,Ac AALNeN
V0K

fori=1,...,|X|/r do
| Ve Pu((X[i] @ V2)IVe)
end
Ve = Ve (0°711)
fori=1,...,w do
V Po((M[i] @ V2| Ve)
Cli) + V;
end
T+ V.o K
return (C,T)

© 00 N O s W N

[S G SOt
W N = O

M «+ M||10* /* Pad M to positive multiple of r bits

X < NJA|10* /* Prepend N to A and pad to positive multiple of 7 bits

/* Process nonce and AD

/* Process message

/* Compute tag

*/

*/

*/

Algorithm 12: PR@ST-APE-n[r, c|-D(C, A, N, T)

Data: CeC,Ae AN e N, T € F]
IV « 07| K

fori=1,...,|X|/r do

| IV « P((X[i] @ V,)|Ve)
end
IVe = IV @ (0°71|1)

Ve (07|[(K & T))
fori=w,...,1do
V < PrHCL|IVe)
MIi]| + V. & C[i — 1]
end
if IV, =V, then
| return StripPadding(M)
else
‘ return |
end

© 00 N O ks W N

I e T
N O Ok W N R O

X < NJA|10* /* Prepend N to A and pad to positive multiple of 7 bits

/* Process nonce and AD

Cl0] + IV, /* Set dummy C[0] = IV, for a smoother loop

/* Process ciphertext

*/

*/

*/

16

6 Security Goals

Table 7 summarizes our security claims for our six proposals with respect to confidentiality of
plaintext, integrity of plaintext and integrity of associated data. Note that in all cases, the claimed
security level is n/2 for a proposal using PR@ST-n. This is because the security proofs for the
modes in which we use PR@ST all give this security bound, when using a primitive which is
indistinguishable from a random permutation/block cipher up to the n-bit bound, as is the case
for PR@ST-n.

Table 7: Proposal ranks and security claims (in bits) for our proposals for plaintext confidentiality
(PTconr), plaintext integrity (PTinT) and associated data integrity (ADinT)

Rank Proposal PTCONF PTINT ADINT
1 ProsT-COPA-128 64 64 64
2 ProsT-COPA-256 128 128 128
3 Pr@sT-OTR-128 64 64 64
4 ProsT-OTR-256 128 128 128
5 ProsT-APE-256[256, 256] 128 128 128
6 ProsT-APE-128[128, 128] 64 64 64

6.1 Remarks regarding additional security

The COPA and APE proposals offer a level of resistance against nonce-misuse. For the details of
the nonce-misuse resistance of APE and COPA parameter sets, we refer to their respective mode
papers [2, 3]. Additionally, all proposals have the following additional security goals:

e Any straight-forward implementation will run in constant time, and

e Due to the choice of a lightweight 4-bit S-box as the only non-linear element, countermeasures
against power/EM side-channel attacks are much cheaper.

7 Design Rationale

In this section we discuss the design rationale for both the PR@ST permutation but also for choices
made when using PR@ST in the existing AEAD modes COPA, OTR and APE.

The main design rationale for the PR@ST permutation was efficiency and strong, easily verifiable
security arguments:

e Strong arguments are possible as we follow the wide-trail strategy. Here we modified
the usual AES-like structure by interleaving two different ShiftRows-like operations in the
ShiftPlanes; operation. This results in significantly improved bounds on the best linear
and differential characteristics.

e Efficiency is a result of mainly two efforts. First, we optimized every single component with
respect to implementation cost. Second, the strong arguments mentioned above allows to
keep the number of rounds low.

Below, we describe the design rationale behind the separate components within the PR@ST per-
mutation.

17

7.1 SubRows

For the SubRows operation, we use a very simple (in terms of hardware/software-efficiency — the
formulation is given in Appendix B), 10-instruction, 4-bit S-box S : F3 — F3. The concrete S-box
was the result of a hardware assisted search though a significant subset of all possible S-boxes.
Besides being very efficient in terms of cycle count, this S-box is also optimal with respect to linear
and differential attacks.

We chose S among all S-boxes fulfilling the following criteria.

1. S is an involution, which prevents the encryption/decryption overhead,
2. The maximal probability of a differential is 1/4,

There are exactly 24 differentials with probability 1/4,

The maximal absolute bias of a linear approximation is 1/4,

There are exactly 36 linear approximations with absolute bias 1/4, and

A A

Output bits have algebraic degrees of 2, 2, 3 and 3, respectively.

Having only one single S-box within one plane allows to implement the S-box application using
bit-slicing. On top, keeping the S-boxes identical for all planes and all rounds reduced the code
space and avoids additional overhead. The increased danger of symmetries throughout the cipher
is countered by relatively heavy round constants.

7.2 MixSlices

We had three major requirements for the MixSlices operation.
e Linear and differential branch number 5,
e Low density, and

e As a heuristic to minimize implementation characteristics, for both encryption and decryp-
tion, MixSlices is its own inverse.

We elaborate on the first two requirements below.

7.2.1 High Branch Number

The main design goal of the MixSlices transformation is to follow the wide trail strategy. Hence,
the MixSlices transformation is related to an Fa-linear error-correcting code over F§ with minimum
distance 5. Note that in our setting, linear and differential branch numbers are identical.

In other words, a difference in k& > 0 rows of a slice will result in a difference of at least 5 — k
rows after one MixSlices application. While this is a good bound for 2 rounds, only the interaction
with the ShiftPlanes; operation guarantees an overall secure design.

18

7.2.2 Low density

The density roughly corresponds to the number of XOR operations that have to be performed
when implementing the matrix. It is therefore a suitable metric when optimizing performance —
both in software and hardware.

Among all 16 x 16 binary matrices, we search through the involutive ones with branch number 5
and with a particular low Hamming weight. The optimal solution, i.e. the lowest Hamming weight
of such a matrix, we were able to find with our hardware-assisted search had Hamming weight 88.
Note that we cannot guarantee that our matrix is actually optimal (as the minimal number of ones
in such a matrix is generally unknown).

7.3 ShiftPlanes;

We had two design criteria for this transformation. Firstly, the shift values should result in full
diffusion after as few rounds as possible. Secondly, the differential/linear trails with fewest active
S-boxes over a given number of rounds, should have as many active S-boxes as possible.

The (7, 71) pairs for PR@ST (see Table 2) were found to be optimal in the sense that they give
the best diffusion, number of active S-boxes (see also Sections 8.1 and 8.2) and implementation
cost, for the specified register lengths d.

For register length d = 16 we obtain full diffusion after 2 rounds and for d = 32 after 3 rounds.
For lower bounds on the number of active S-boxes over various number of rounds, we refer to
Section 8.2.

With respect to implementation cost, we have optimized to have as many multiples of 8 as
possible, as these are free on 8-bit platforms and cheap on larger platforms. For the constants that
are not multiples of 8, we minimize their sum, as the implementation cost is proportional to the
constant. This sum, not counting multiples of 8, is 22 for the d = 16 case and 88 for the d = 32
case, which roughly translates to the implementation cost in cycles.

7.4 AddConstants;

The purpose of adding round constants is to make each round different. If the rounds are all
the same, then fixed points x such that R(xz) = z for the round function R extend to the entire
permutation. For example, if P = R0, then fixed points for R? and R® would also extend to P.
Therefore, one can expect several fixed points for P, whereas for an ideal permutation only a single
fixed point is expected. By choosing round-dependent constants for AddConstants;, we expect the
number of fixed points to be close to 1.

We use the most significant d bits of two 32-bit constants ¢; and c¢s from which all round
constants are derived through rotations. Round ¢ uses ¢; << (i + j) for even j and co < (i + j)
for odd j, where j = 4z + y is the lane number of s, ,. The two constants c; = 0x75817b9d and
co = 0xb2cbfef0 are generated from the first 64 digits after the decimal point of 7 as illustrated
by the code in Listing 1.

Listing 1: Code for generating c1, co

#include <stdint .h>
#include <stdio.h>

const uint32_t pi[64] = {

int main(void)
{

uint32_t cl1=0;

19

uint32_t c2=0;

int i;

for (i=0;i <32;i++) {
cl |= (pili]&l) << i
c2 |= (pi[i+32]&l) << i

}
printf(”cl_=_0x%08x\n”, cl);

printf(”c2_.=_0x%08x\n”, c2);
return 0;

7.5 Ciphertext Expansion in AEAD Candidates

Motivated by simplicity of implementation aspects we choose, for all proposals in this document,
to always do ciphertext expansion by applying 10" padding to the message as the first thing before
encryption. The reasoning behind this choice is that:

e This approach is less prone to implementation errors, which are frequently a source of real-
world security break-downs. By effectively eliminating the special cases an implementation
has to be able to handle, chances of introducing implementation errors are diminished,

e The choice to always do ciphertext expansion is easier to optimize in both software and
hardware, which in turn aids comparisons, and

e The impact on size of implementation can be significant. Be it code size in software or control
logic in hardware, lower complexity of padding rules leads to smaller implementations.

By allowing a minor ciphertext expansion, in comparison to average packet sizes in some corner
use-cases, we achieve the advantages mentioned above. We believe this is the right trade-off for
the vast majority of use-cases in practice, and indeed will facilitate greater ease of application.

8 Security Analysis

In this section we summarize some of our findings in the security analysis of PR@ST. A more
extensive treatment will be available from [19].

8.1 Diffusion and Strict Avalanche Criterion

The well-known concept of diffusion was first defined by Shannon in his 1949 seminal work [18]. In
its original meaning, the goal of diffusion is to lessen the short-term statistical properties from the
plaintext in the resulting ciphertext, such than an attacker would need to obtain a lot of ciphertext
to infer knowledge of the statistical properties of the plaintext. The modern definition of diffusion
slightly different, and we take diffusion to mean the extent to which output bits depend on input
bits. We say we have full diffusion when each bit of the output depends on each bit of the input.

A condition somewhat parallel to diffusion is the Strict Avalanche Criterion (SAC). A cipher
or permutation is said to satisfy the SAC when flipping any bit of the input results in flipping
each bit of the output with probability 1/2 (for a block cipher, one averages over all keys). In this
section we present our findings on diffusion and the SAC for the PR@ST permutation.

Lastly, we consider the avalanche effect, which is the property that on average, half the bits of
the output are flipped when a single input bit is flipped.

20

8.1.1 Diffusion

For our analysis, we assume that for the 4-bit S-box used, each of the 4 output bits depend on each
of the 4 input bits. Also, we assume that the MixSlices operation mixes the bits in a column, so
each of the 4 output bits depend on each of the 4 input bits.

After applying SubRows of the first round, all bits within a row are interdependent by assump-
tion. Applying MixSlices of the first round implies that we get bit interdependency between
all bits in the same slice. The ShiftPlanes; operation cyclically shifts the planes by a round-
dependent amount, essentially mixing the slices.

As SubRows and MixSlices take care of mixing bits in slices in each round, the question
becomes how many rounds are required to make the plane shifting of ShiftPlanes; create bit-
interdependency between all planes.

When determining the choice of (mg,71) vectors, we conducted an experiment trying out all
combinations of m,m C {0,...,d — 1} with 4 elements, and investigate the required number
of rounds to obtain full diffusion. For d = 16 we found that the best pairs (mp,71) require a
minimum of 2 rounds for full diffusion, and there are 4096 such pairs. For d = 32 a minimum of 3
rounds are required for full diffusion, and there are 729088 pairs (mg, 1) obtaining this minimum.
Unfortunately, there is no pair (7o, 71) which obtains the best diffusion for both d = 16 and d = 32,
hence the two parameter sets in Table 2.

8.1.2 SAC and Avalanche Effect

For the purpose of investigating the SAC and avalanche effect, we conduct randomized experiments
to measure the degree to which these two properties are obtained. For the 2n-bit permutation
PR@ST-n, the statements of the avalanche effect and SAC are given by (2) and (3), respectively,
where e; denotes 2n-bit string with a 1 on position ¢ and zeroes elsewhere, and subscript j denotes
the jth bit:

Vie{l,....2n} : 27°" Y wt(PRoST-n(z) ® PROST-n(z @ €;)) =n (2)
r€F2Z"
1
Vie{l,....2n},Vj€{l,...,2n} : Pr[ProsT-n(x); # PROST-n(z & €;),] = B (3)

To experimentally measure the extent to which PR@ST meets these two criteria, we sample a
random X C F2" and define the degree of avalanche effect deg,,, and degree of SAC degg 4 as
defined by Serf in his investigation of the AES finalists [17]. Our results show that we obtain SAC
and avalanche effect degrees of 1.0 (which is ideal) after 2-3 rounds for d = 16 and 3-4 rounds for
d=32.

8.2 Bounds on Active S-boxes

Here we give lower bounds on the number of active S-boxes for various PR@ST parameters. These
bounds are of paramount importance as, combined with the differential- and linear properties of
the S-box (see Section 7.1), provide upper bounds on the differential- and linear trail probabilities
for the full PR@ST permutation.

To lower bound the number of active S-boxes for d = 16 and d = 32, we model the propagation
of active S-boxes over a particular number of rounds as an integer programming problem (see
Appendix A). The particular choice of (7, 1) used in PR@ST arise from solving this problem for
randomly chosen subsets of the (7, m1) giving optimal diffusion (see Section 8.1.1), for d = 16 and
d = 32, and choosing those giving the best bounds.

21

The findings for the number of active S-boxes for the (m, 71) from Table 2, for various number
of rounds, are given in Table 8. The integer programming problem is modeled in Appendix A.

Table 8: Lower bounds on the number of active S-boxes for d € {16,32} for various number of
rounds. In the d = 32,7 = 8 case, the number in parenthesis was the best obtained when the
solver stopped due to memory limitations.

9

Rounds T
d 4 5 6 7 8
16 25 41 85 96 105
32 25 41 105 169 (210)

Features

All the proposed parameter sets have the following features of the permutation in common.

Designed for straight-forward bit-sliced implementations,

Even the most straight-forward implementation of the permutation leads to constant execu-
tion times,

Due to the choice of a lightweight 4-bit S-box as the only non-linear element, countermeasures
against power/EM side-channel attacks are much cheaper than ARX or AES-based designs,

Fast and compact in software on a wide range of platforms, and

Fast, compact, energy-efficient, and allows for low-latency implementations in hardware im-
plementations.

We will back up these claim in upcoming supplementary documents on implementation aspects of
ProsT.
All the proposed modes have the following features in common:

They are based on a large cryptographically secure permutation. This is arguably one of
the simplest, if not the simplest way, to build primitives for symmetric key cryptography,
including authenticated encryption primitives. In particular, this avoids complicated and
often very inelegant considerations related to key schedules for traditional block cipher based
constructions, and

They are based on a single permutation. Having a single permutation further avoids consid-
erations related to the independence of permutations.

All of the above described features are advantages over AES and AES-GCM. In addition, we
to point out the following features which is shared with AES-GCM, but other proposals are often
lacking:

A simple and clean design, and

Strong bounds against large classes of cryptanalytic attacks, like linear and differential crypt-
analysis which are among the most powerful attack vectors known. This has two advantages.
Firstly it gives assurance that these attack vectors in their basic form do not lead to attacks

22

on the proposal. On top of that we chose a number of rounds that gives a large security mar-
gin. Secondly, it saves valuable time with respect to cryptanalysis. Finding and improving
upon known statistical properties for linear and differential attacks is a very time consuming
task for cryptanalysts. Knowledge of bounds saves a lot of this time, which can instead be
spent on other attack vectors or more advanced attacks. Most of our bounds are tight, i.e.
we are able to give matching characteristics/trails [19]. This will be of independent interest
for external cryptanalysts.

Now we discuss more specific features of the parameter sets. We start with PRosT-COPA-n,
our main proposal, that comes with two security levels. On top of the advantages mentioned
above, it offers a level of nonce-misuse resistance. We feel this is an important property as in
many environments this seemingly simple task of keeping track of nonces and making sure they
are unique, e.g. by implementing a counter, can actually be very difficult. Resets in virtualized
environments, or very resource constrained environments, are examples of such situations.

For environments where respecting the requirements for unique nonces is easy to achieve, we
propose PR@ST-OTR-n, again with two security levels. This comes with improved implementation
characteristics.

Both classes of parameter sets allow for parallelization, which, together with the bit-sliced
nature of our permutation, allows for very efficient implementations on modern SIMD architectures.

As a complementary set of parameters, we propose PROST-APE-n. Its advantages are the
possibility of a very fine-grained adjustment of the security against generic attacks, by allowing
different performance/security trade-offs through rate/capacity adjustments. To focus cryptana-
lytic attention, we do, however, limit ourselves to the two main security levels. Also, in contrast
to the PR@ST-COPA-n and PR@ST-OTR-n proposals, we do not need twice the key length for the
claimed security level.

For the details of the nonce-misuse resistance of APE and COPA parameter sets, we refer to
their respective mode papers [2, 3].

10 Intellectual Property

The design team behind the PR@ST submission for the CAESAR competition are not aware of
any known patents, patent applications, planned patent applications or other intellectual-property
constraints pertaining to the use of the cipher. If any of this information changes, the submit-
ter /submitters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

11 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. The submitter /submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter/submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms, and
that an excellent algorithm might fail to be selected simply because not enough analysis was
available at the time of the committee decision. The submitter/submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are

23

not subject to appeal. The submitter/submitters understand that if they disagree with published
analyses then they are expected to promptly and publicly respond to those analyses, not to wait
for subsequent committee decisions. The submitter/submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection committee.

References

[1]

[10]

F. Abed, S. Fluhrer, C. Forler, E. List, S. Lucks, D. McGrew, and J. Wenzel. Pipelineable
On-Line Encryption. In C. Cid and C. Rechberger, editors, Fast Software Encryption, LNCS.
Springer, 2014.

E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. APE:
Authenticated Permutation-Based Encryption for Lightweight Cryptography. In C. Cid and
C. Rechberger, editors, Fast Software Encryption, LNCS. Springer, 2014. http://eprint.
iacr.org/2013/791/.

E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, and K. Yasuda. Par-
allelizable and Authenticated Online Ciphers. In K. Sako and P. Sarkar, editors, Advances
in Cryptology — ASIACRYPT 2013, volume 8269 of LNCS, pages 424-443. Springer, 2013.
eprint.iacr.org/2013/790/.

E. Andreeva, A. Luykx, B. Mennink, and K. Yasuda. COBRA: A Parallelizable Authenticated
Online Cipher Without Block Cipher Inverse. In C. Cid and C. Rechberger, editors, Fast
Software Encryption, LNCS. Springer, 2014.

G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak specifications. Submission to
NIST, 2008. http://keccak.noekeon.org/Keccak-specifications.pdf.

G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the Sponge: Single-Pass
Authenticated Encryption and Other Applications. In A. Miri and S. Vaudenay, editors,
Selected Areas in Cryptography, volume 7118 of LNCS, pages 320-337. Springer, 2012. http:
//eprint.iacr.org/2011/499.pdf.

B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and Q. Wang. Fides: Lightweight Authen-
ticated Cipher with Side-Channel Resistance for Constrained Hardware. In G. Bertoni and
J.-S. Coron, editors, Cryptographic Hardware and Embedded Systems — CHES 2013, volume
8086 of Lecture Notes in Computer Science, pages 142-158. Springer-Verlag Berlin Heidelberg,
2013.

O. Dunkelman, N. Keller, and A. Shamir. Minimalism in Cryptography: The Even-Mansour
Scheme Revisited. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology —
EUROCRYPT 2012, volume 7237 of LNCS, pages 336-354, 2012. http://eprint.iacr.
org/2011/541/.

E. Fleischmann, C. Forler, S. Lucks, and J. Wenzel. McOE: A Family of Almost Foolproof
On-Line Authenticated Encryption Schemes. Cryptology ePrint Archive, Report 2011/644,
2011. http://eprint.iacr.org/2011/644/.

D. Khovratovich. PPAE: parallelizable permutation-based authenticated encryption. Presen-
tation at Directions in Authenticated Ciphers — DIAC 2013, 2013. http://2013.diac.cr.
yp.to/slides/khovratovich.pdf.

24

http://eprint.iacr.org/2013/791/
http://eprint.iacr.org/2013/791/
eprint.iacr.org/2013/790/
http://keccak.noekeon.org/Keccak-specifications.pdf
http://eprint.iacr.org/2011/499.pdf
http://eprint.iacr.org/2011/499.pdf
http://eprint.iacr.org/2011/541/
http://eprint.iacr.org/2011/541/
http://eprint.iacr.org/2011/644/
http://2013.diac.cr.yp.to/slides/khovratovich.pdf
http://2013.diac.cr.yp.to/slides/khovratovich.pdf

[11]

[12]

[13]

[14]

[15]

T. Krovetz and P. Rogaway. The Software Performance of Authenticated-Encryption Modes.
In FSE, pages 306-327, 2011.

D. A. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM), 2004. http:
//www.cryptobarn.com/papers/gcm-spec.pdf.

K. Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Func-
tions. In FUROCRYPT, pages 275-292, 2014.

N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Cryptanalysis Using
Mixed-Integer Linear Programming. In Inscrypt, pages 5776, 2011.

P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
OCB and PMAC. In P. J. Lee, editor, Advances in Cryptology — ASIACRYPT 200/, vol-
ume 3329 of LNCS, pages 16-31. Springer, 2004. http://www.cs.ucdavis.edu/~rogaway/
papers/offsets.pdf.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-cipher Mode of Operation for
Efficient Authenticated Encryption. In ACM Conference on Computer and Communications
Security, pages 196-205, 2001.

P. Serf. The degrees of completeness, of avalanche effect, and of strict avalanche criterion for
MARS, RC6, Rijndael, Serpent, and Twofish with reduced number of rounds. 2000.

C. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal,
28:656—715, 1949. http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf.

The Prgst team. Security Analysis of Prgst, 2014 (to appear).

D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). RFC 3610
(Proposed Standard), 2008. http://www.ietf.org/rfc/rfc3610.txt.

H. Wu and B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. Cryptology
ePrint Archive, Report 2013/695, 2013. http://eprint.iacr.org/2013/695/.

25

http://www.cryptobarn.com/papers/gcm-spec.pdf
http://www.cryptobarn.com/papers/gcm-spec.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://www.ietf.org/rfc/rfc3610.txt
http://eprint.iacr.org/2013/695/

A Bounds on Active S-boxes

To determine lower bounds on the number of active S-boxes for a given number of rounds 7', we
employ the modeling of the permutation and its propagation of active S-boxes as a mixed integer
programming problem. This is similar to the approach by Mouha et al. [14].

Consider the 2n-bit state as viewed from the (y, z)-plane, which yields a two-dimensional struc-
ture of h rows and d columns (we use here the more general size of h rows in each slice). We now
let xf] be a binary variable with 0 <i < h, 0<j<dand 0 <t <7T. We let xfj =1 if and only
if row 7 in slice j is active when going into round ¢, starting from ¢ = 0.

We model the propagation of active S-boxes as the propagation of ones in x over time ¢. First,
to require at least one active S-box in the input, we use the constraint given by (4):

DIPIE RS (4)

To model a round of PR@ST, we need to make sure that

e Firstly, when a slice has k > 0 active S-boxes, then after applying MixSlices, the corre-
sponding output slice has at least 5 — k active S-boxes, and

e Secondly, the plane rotations given by the amounts indicated by mg and 71 in the ShiftPlanes;
operation are correctly modeled in the same round, i.e. using the same ¢ value.

These two requirements are modeled by the two constraints given as (5) and (6), where a? defined
for t € {0,...,T —1},5 € {0,...,d — 1} is an auxiliary binary variable equals 1 if and only if
Z?;()l xf] > 1. Here, B is the branch number, so for PR@ST we have B = 5.

vte{0,...,T—1},vje{0,...,d—1} : Z$13+th+jl+mmodzlmodd)ZB.G’? (5)

Vte{O,...7T—1}7Vje{07..., —1}7%6{07...,}1—1} Doab>a (6)

’J

Finally, (7) gives the objective variable z which we want to minimize to find the T-round trail with
fewest active S-boxes:

t—1 h—1d—1

e

= 55 (7)
t =0 j7=0

Q_
n

Il
o

B S-box Formulation

For an input (al/b||c||d) with a,b,c,d € Fq, the following is a fast implementation of (al/b||c||d) =
S(albllclld).

p=a
qg=>
a=cd(pOq)
b=d®(qOc)
c=p®(a®b)
d=q®(boc)

26

	Summary
	Changes from v1.0 to v1.1
	Notation
	The Prøst Permutation
	Mapping a Byte Stream to a Prøst State
	Mapping a State to F22n

	SubRows
	MixSlices
	ShiftPlanesi
	AddConstantsi
	Prøst-128 and Prøst-256 permutations
	Absence of Trap-doors

	Authenticated Encryption with Prøst
	Notation
	Block Cipher-based AE to Permutation-based AE
	Prøst-COPA-n
	Prøst-OTR-n
	Prøst-APE-n[r,c]

	Security Goals
	Remarks regarding additional security

	Design Rationale
	SubRows
	MixSlices
	High Branch Number
	Low density

	ShiftPlanesi
	AddConstantsi
	Ciphertext Expansion in AEAD Candidates

	Security Analysis
	Diffusion and Strict Avalanche Criterion
	Diffusion
	SAC and Avalanche Effect

	Bounds on Active S-boxes

	Features
	Intellectual Property
	Consent
	Bounds on Active S-boxes
	S-box Formulation

