
Raviyoyla v1

submitter / designer: Rade Vuckovac, rade_vuckovac@yahoo.com

14th March 2014



Chapter 1

Introduction

Raviyoyla is a proposed scheme for CAESAR competition. CAESAR is Competition for Authenticated Encryption:
Security, Applicability, and Robustness. Raviyoyla scheme is a combination of a stream cipher and keyed hash
function designed around CAESAR call requirements. This document contains scheme speci�cation, security goals,
security analysis, features, design rationale and various statements. On the end is the source code encrypt part and
a paper supporting theoretical side of the proposed scheme.

1



Chapter 2

Scheme speci�cation

Stream cipher part of the scheme is a evolution of MAG v21 . It combines three independent streams xored together
to form one random stream (MAG v2 combines two to one). The random stream is xored with plain text to produce
cipher text. See �gure 2.1.

Fourth independent stream is processed with cipher text and additional data to get a tag which is appended to
cipher text. See �gure 2.2.

2.1 Raviyoyla scheme details

First, there is some de�nitions as prescribed in the call.

#de f i n e CRYPTO_KEYBYTES 32
#de f i n e CRYPTO_NPRIVBYTES 0
#de f i n e CRYPTO_NPUBBYTES 32
#de f i n e CRYPTO_ABYTES 64

The base of the scheme is an unsigned 64 bit array. The array has 1028 elements (statelen) initialised to zero.

uint64_t i g n i t e [ 1 0 2 8 ] = {0} ;

After array initialisation a key, a public message, a message length and additional data length are copied to
ignite array as follows.

memmove(& i g n i t e [ 0 ] , k , CRYPTO_KEYBYTES ) ;
memmove(& i g n i t e [CRYPTO_KEYBYTES / 8 ] , npub , CRYPTO_NPUBBYTES) ;
i g n i t e [ s t a t e l e n − 1 ] = mlen ;
i g n i t e [ s t a t e l e n − 2 ] = adlen ;

The ignite array is then processed with function stir section 2.2. When the array is modi�ed by stir, it is send
with a char array to produce a random stream. The char array is the same length as a message length and it is set
to zero.

stream_random = c a l l o c (mlen , s i z e o f ( unsigned char ) ) ;

The arrays with array corresponding lengths are processed with get_stream function. That function is detailed in
section 2.3. That way formed random stream char array is xored with message to produce cipher text. See �gure
2.1.

The next step is to authenticate additional data and created cipher text (�gure 2.2). The fourth part of ignite
array is used to process additional data and cipher text. That part (song) is initialised in this way:

song = &i g n i t e [ 7 6 8 ] ;
song_carry = i g n i t e [ s t a t e l e n − 1 ] ;

Additional data and cipher text char arrays are xored to song array. Again, song array is treated as circular
array to accommodate arbitrary size of additional data and cipher text. The song array is modi�ed by revolve_all

1eSTREAM stream cipher competition; overview with latest cryptanalysis can be found here http://dakhilalian.iut.ac.ir/pdff/

C26.pdf

2



CHAPTER 2. SCHEME SPECIFICATION 3

Figure 2.1: Ignite array transformation (cipher part)

function section 2.4 every time when the end of song array is reached. The same apply on the end of additional
data and cipher text xoring if the end of song array is not reached.

Finally, the song array is processed with evolve function section 2.5. The tag is extracted from evolved song
array and appended to cipher text.

memmove(&c [ mlen ] , &song [256 / 2 ] , CRYPTO_ABYTES) ;

The above procedure is for encryption part of the scheme. Decryption part is almost identical to the encryption
part. Di�erence is:

• After initialisation additional data and cipher text are authenticated �rst and compared with provided tag.
See �gure 2.2.

• If calculated and provided tags are matched, message is produced by xoring cipher text and random stream.
See �gure 2.1.

The functions relationship is shown in �gure 2.3. The C source code for encryption part is attached to Appendix A
as a complement to the speci�cation. The attached C source code alone can be considered as an algorithm formal
description as well.

2.2 Function stir

Function stir has two input parameters:

• First is a pointer to unsigned 64 bit array

• Second is an integer array length (in this case 1028)

In C:

void s t i r ( uint64_t ∗ s ta te , uint64_t s t a t e l e n ){}

Inside the function there is two additional variables:

• An unsigned 64 bit mixer with initial value 6148914691236517205 which is binary 010101... . This value is a
part of a cryptanalysis controversy see http://dakhilalian.iut.ac.ir/pdff/C26.pdf. In short, one argu-
mentation party took mixer initial value to zero rendering all adding operation to nothing and consequentially
showing weakness of the scheme.



CHAPTER 2. SCHEME SPECIFICATION 4

Figure 2.2: Authentication part

• An unsigned 64 bit carry with initial value 1234567890123456789. Both values are arbitrary but above values
shall be used in proposed scheme, in C:

const uint64_t mixer = 6148914691236517205 ;//010101 . . .
uint64_t carry = 1234567890123456789;

Another three variables are counters and number of rounds (eight rounds); in C:

i n t i , j , rounds = 8 ;

After initialisation, a nested loop is used to modify content of passed array. Outer loop iterate via rounds and
i. Inner loop iterates via array length and j. Inner loop mimic circular list via modulo operator in indexing; for
example, if index exceeds array length the next access element is the �rst element of the array. In C that looks like:

s t a t e [ ( j+2)%s t a t e l e n ]

Inner loop goes through each element in array and modi�es it by following rule. Second and third elements
from right hand side of the element are compared. If second element is bigger than third, carry variable is updated



CHAPTER 2. SCHEME SPECIFICATION 5

by xoring carry with �rst element from right hand side. If not carry is xored with �rst element �ipped state. The
element is modi�ed by xoring the element with carry. Carry is then updated with addition of mixer. C code:

i f ( s t a t e [ ( j+2)%s t a t e l e n ]> s t a t e [ ( j+3)%s t a t e l e n ] )
car ry ^= s t a t e [ ( j+1)%s t a t e l e n ] ;

e l s e
car ry ^= ~s t a t e [ ( j+1)%s t a t e l e n ] ;

s t a t e [ j ] ^= carry ;
car ry += mixer ;

The function does not have return value, it only modi�es pointed array.

2.3 Function get_stream

The function de�nition is:

void get_stream ( uint64_t ∗ i g n i t e , i n t s t a t e l en ,
char ∗ stream_random , unsigned long long mlen )

The base array is split in four parts. First three parts (ping, pong and sing) are used to form random stream.
Each part is an array of 256 elements (uint64_t) and a corresponding carry element. Split is done as follows:

ping = &i g n i t e [ 0 ] ;
pong = &i g n i t e [ 2 5 6 ] ;
s i ng = &i g n i t e [ 5 1 2 ] ;
ping_carry = i g n i t e [ s t a t e l e n − 4 ] ;
pong_carry = i g n i t e [ s t a t e l e n − 3 ] ;
s ing_carry = i g n i t e [ s t a t e l e n − 2 ] ;

Each part element with corresponding carry is processed with revolve_step function section 2.4 and xored
together to produce eight bytes of random stream.

three = revo lve_step ( ping , i , ( s t a t e l e n / 4) −1, &ping_carry )
^ revo lve_step ( pong , i , ( s t a t e l e n / 4) −1, &pong_carry )
^ revo lve_step ( s ing , i , ( s t a t e l e n / 4) −1, &sing_carry ) ;
memmove( stream_random + ( i / 8) , ( uint64_t ∗) &three , 8 ) ;

This procedure is repeated until stream_random char array (the same length as a message) is �lled.

2.4 Function revolve_all and revolve_step

The function revolve is very very similar to the stir.

void r evo l v e_a l l ( uint64_t ∗ s ta te , i n t s t a t e l en , uint64_t ∗ car ry ){}

The di�erence is inclusion of pointer to the current carry as a variable. Also a mixer and adding operation are
not present. There is only one loop and it goes through all elements in array once only. C code for modifying all
array elements is:

i f ( s t a t e [ ( j+2)%s t a t e l e n ]> s t a t e [ ( j+3)%s t a t e l e n ] )
car ry ^= s t a t e [ ( j+1)%s t a t e l e n ] ;

e l s e
car ry ^= ~s t a t e [ ( j+1)%s t a t e l e n ] ;

s t a t e [ j ] ^= carry ;

The function revolve_step is just one step of revolve_all function. Because of that a position of element for
modi�cation is passed as well.

uint64_t revo lve_step ( uint64_t ∗ s ta te , i n t i , i n t e len , uint64_t ∗ car ry )

Another di�erence is that function returns modi�ed element as unsigned 64-bit integer.



CHAPTER 2. SCHEME SPECIFICATION 6

Figure 2.3: Function hierarchy

i f ( s t a t e [ ( i+2)%e l en ]> s t a t e [ ( i+3)%e l en ] )
∗ car ry ^= s t a t e [ ( i+1)%e l en ] ;

e l s e
∗ car ry ^= ~s t a t e [ ( i+1)%e l en ] ;

s t a t e [ i ] ^= ∗ car ry ;
r e turn s t a t e [ i ] ;

As in stir function section 2.2 the circular list structure is used to enable arbitrary number of revolve_step steps
(modulo array length).

2.5 Function evolve

The evolve function has two inputs only. That is a pointer to the array of unsigned 64 bit integers and the array
length.

void evo lve ( uint64_t ∗ s ta te , i n t s t a t e l e n ){}

The evolve similarity with stir and revolve functions is use of circular list as means of accessing array.There is
also nested loop where outer loop length iThe di�erences are:

• Instead of using void pointer, unsigned char pointer is used for password, salt and hash.

• Parameters for the time and memory cost are 64 bit unsigned integers.

s double of array length and inner loop length is equal to array length. length.
The element for modi�cation and three array neighbour elements on right hand side are involved in three step

procedure:

1. First and third neighbour are compared. If �rst neighbour is bigger than third; element for modi�cation is
xored with �rst neighbour otherwise it is modi�ed with �rst neighbour �ipped state.

2. Second and third neighbour are compared. If second neighbour is bigger than third; element for modi�cation
is xored with second neighbour otherwise it is modi�ed with second neighbour �ipped state.

3. If third neighbour is odd; element for modi�cation is xored with third neighbour otherwise it is modi�ed with
third neighbour �ipped state.

In C:

i f ( s t a t e [ ( j + 1) % s t a t e l e n ] > s t a t e [ ( j + 3) % s t a t e l e n ] )
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 1) % s t a t e l e n ] ;

e l s e
s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 1) % s t a t e l e n ] ;



CHAPTER 2. SCHEME SPECIFICATION 7

i f ( s t a t e [ ( j + 2) % s t a t e l e n ] > s t a t e [ ( j + 3) % s t a t e l e n ] )
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 2) % s t a t e l e n ] ;

e l s e
s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 2) % s t a t e l e n ] ;

i f ( s t a t e [ ( j + 3) % s t a t e l e n ] % 2 == 1)
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 3) % s t a t e l e n ] ;

e l s e
s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 3) % s t a t e l e n ] ;

There is no return value for evolve function, only pointed array is modi�ed.



Chapter 3

Security goals

goal bits of security

con�dentiality for the plain text 256
integrity for the plain text 128

integrity for the associated data 128
integrity for the public message number 128

Table 3.1: Security goals

There is no secret message number. If the one is required, than it can be put in the message speci�c position and
treated as part of message. The whole security depends on the 256 bit key, Various integrities have 128 bit security
due to the birthday paradox. Since the proposed scheme is stream cipher oriented, the public message number is
used as a salt and shall not be reused. The public message reuse makes the proposed scheme insecure.

8



Chapter 4

Security analysis

The paper http://dakhilalian.iut.ac.ir/pdff/C26.pdf (mentioned in stir function section 2.2) provides ana-
lysis to the stir and revolve functions. The paper argues that previous attacks on stir function are super�cial.
For revolve function there is only one type of attack and apparently not applicable for all proposed schemes at
that time, particularly not relevant to the MAG v2. That attack is also not relevant for hash constructs. Third
function used in scheme evolve tries to emulate classical cellular automata (CA) with high cyclomatic complexity
(see Appendix B).

Note that MAG versions are tree alike (one primitive di�erent implementation), meaning MAG v1, v2 and v3
are totally di�erent in design. The attack to one does not automatically translate to the other versions.

Basically, the scheme is based on a new class of functions presented in the paper appended to this submission
(see Appendix B). Main attribute of that new class is: if input to the function is not fully speci�ed the function
description is exponentially complex. An obvious application of the new class is a stream cipher and hash function
modelling.

The argumentation from the paper might be interpreted that the proposed scheme is the random function
contrary to the today consensus on randomness.

9



Chapter 5

Features

• Being the random function (not just undistinguishable from the random function) argument is main feature
of the proposed scheme.

• The function descriptions used in scheme are very simple.

• The performance should be signi�cantly better than AES (at least a couple of times faster, see eSTREAM
competition MAG v3 performance for example).

• The proposed scheme can be optimised using multiple CPU cores, because quite a few processes in the scheme
can be run independently.

10



Chapter 6

Design rationale

As is mentioned in section 4, a various stream design approaches using Cyclomatic Complexity are used in the past
(MAG v0, v1, v2 and v3). The only weakness (see http://dakhilalian.iut.ac.ir/pdff/C26.pdf ) a�ecting v0
(the original submission) and v3 is the function revolve section 2.4. Easy �x is to use stir function instead revolve
function in a�ected versions of MAG.

The MAG v2 was selected as a base for proposed scheme development because:

• The Yao's XOR lemma applies to the use of multiple independent streams, providing theoretical justi�cation
for design choice.

• Use of independent streams enables e�cient parallel optimisation of the scheme (multi-core CPU future).

The revolve function in proposed scheme is still kept because it does not a�ect MAG v2 security (apparently no
weakness was found yet) which is a base for proposed scheme. The second reason of keeping revolve function is
that it is simpler than stir function. If weaknesses are found in revolve function use in the proposed scheme design
it can be easily replaced with stir function.

The evolve function is a new construct and it is used for hashing purposes. It is multicolour (64 - bit) cellular
automata with Cyclomatic Complexity of 2256. It tries to emulate Wolfram's Rule 30. The details are in appendix
B.

Since security goal is 256-bit security, all functions in the proposed scheme have at least 2256 Cyclomatic
Complexity, hence 256 elements in working arrays. The number of rounds in the stir function is set to eight. It
seems like the sweet spot. MAG v1 had only 1.5 rounds and keys with low entropy did not initialise working array
properly.

The proposed scheme is invariant to the byte order in integers used. However compatibility between big and
little endian systems needs attention.

There are no deliberately hidden weaknesses (back-door, etc.) in the proposed scheme.

11



Chapter 7

Intellectual property and consent

7.1 Patent status

The scheme is and will remain available worldwide on a royalty free basis, and the submitter/designer is unaware
of any patent of patent application that covers the use or implementation of the submitted algorithm. If any of this
information changes, the submitter will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

7.2 Consent

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selection or non-
selection of this submission as a second-round candidate, a third-round candidate, a �nalist, a member of the �nal
portfolio, or any other designation provided by the committee. The submitter understands that the committee will
not comment on the algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter understands that the selection of some
algorithms is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the committee decision. The submitter
acknowledges that the committee decisions re�ect the collective expert judgements of the committee members and
are not subject to appeal. The submitter understands that if he disagrees with published analyses then he is
expected to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions. The
submitter understands that this statement is required as a condition of consideration of this submission by the
CAESAR selection committee

12



Appendix A

Encrypt part source code

Listing A.1: cryptoaeadencrypt

#inc lude " api . h"
#inc lude <s td i o . h>
#inc lude <s td i n t . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>

void s t i r ( uint64_t ∗ s ta te , i n t s t a t e l e n )
{

uint64_t mixer = 6148914691236517205 ;//010101 . . .
uint64_t carry = 1234567890123456789;
i n t i , j , rounds = 8 ;

f o r ( i = 0 ; i < rounds ; i++)
{

f o r ( j = 0 ; j < s t a t e l e n ; j++)
{

i f ( s t a t e [ ( j+2)%s t a t e l e n ]> s t a t e [ ( j+3)%s t a t e l e n ] )
car ry ^= s t a t e [ ( j+1)%s t a t e l e n ] ;

e l s e
car ry ^= ~s t a t e [ ( j+1)%s t a t e l e n ] ;

s t a t e [ j ] ^= carry ;
car ry += mixer ;

}
}

}

uint64_t revo lve_step ( uint64_t ∗ s ta te , i n t i , i n t e len , uint64_t ∗ car ry )
{

i f ( s t a t e [ ( i+2)%e l en ]> s t a t e [ ( i+3)%e l en ] )
∗ car ry ^= s t a t e [ ( i+1)%e l en ] ;

e l s e
∗ car ry ^= ~s t a t e [ ( i+1)%e l en ] ;

s t a t e [ i ] ^= ∗ car ry ;
r e turn s t a t e [ i ] ;

}

void get_stream ( uint64_t ∗ i g n i t e , i n t s t a t e l en ,
char ∗ stream_random , unsigned long long mlen )

13



APPENDIX A. ENCRYPT PART SOURCE CODE 14

{
uint64_t ∗ ping , ∗ pong , ∗ s i ng ;
uint64_t ping_carry , pong_carry , s ing_carry ;
uint64_t three , i ;
uint64_t end = mlen / 8 ;

ping = &i g n i t e [ 0 ] ;
pong = &i g n i t e [ 2 5 6 ] ;
s i ng = &i g n i t e [ 5 1 2 ] ;
ping_carry = i g n i t e [ s t a t e l e n − 4 ] ;
pong_carry = i g n i t e [ s t a t e l e n − 3 ] ;
s ing_carry = i g n i t e [ s t a t e l e n − 2 ] ;

f o r ( i = 0 ; i < end ; i++)
{

three = revo lve_step ( ping , i , ( s t a t e l e n / 4) −1, &ping_carry )
^ revo lve_step ( pong , i , ( s t a t e l e n / 4) −1, &pong_carry )
^ revo lve_step ( s ing , i , ( s t a t e l e n / 4) −1, &sing_carry ) ;
memmove( stream_random + ( i / 8) , ( uint64_t ∗) &three , 8 ) ;

}

i f ( ( end % 8) > 0)
{

three = revo lve_step ( ping , i , ( s t a t e l e n / 4) −1, &ping_carry )
^ revo lve_step ( pong , i , ( s t a t e l e n / 4) −1, &pong_carry )
^ revo lve_step ( s ing , i , ( s t a t e l e n / 4) −1, &sing_carry ) ;
memmove( stream_random + ( i / 8) , ( uint64_t ∗) &three , end % 8 ) ;

}
}

void r evo l v e_a l l ( uint64_t ∗ s ta te , i n t e len , uint64_t ∗ car ry )
{

i n t i ;

f o r ( i = 0 ; i < e l en ; i++)
{

i f ( s t a t e [ ( i+2)%e l en ]> s t a t e [ ( i+3)%e l en ] )
∗ car ry ^= s t a t e [ ( i+1)%e l en ] ;

e l s e
∗ car ry ^= ~s t a t e [ ( i+1)%e l en ] ;

s t a t e [ i ] ^= ∗ car ry ;
}

}

void evo lve ( uint64_t ∗ s ta te , i n t s t a t e l e n )
{

i n t i , j ;

f o r ( i = 0 ; i < s t a t e l e n ; i++)
{

f o r ( j = 0 ; j < s t a t e l e n ; j++)
{

i f ( s t a t e [ ( j + 1) % s t a t e l e n ] > s t a t e [ ( j + 3) % s t a t e l e n ] )
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 1) % s t a t e l e n ] ;

e l s e



APPENDIX A. ENCRYPT PART SOURCE CODE 15

s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 1) % s t a t e l e n ] ;

i f ( s t a t e [ ( j + 2) % s t a t e l e n ] > s t a t e [ ( j + 3) % s t a t e l e n ] )
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 2) % s t a t e l e n ] ;

e l s e
s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 2) % s t a t e l e n ] ;

i f ( s t a t e [ ( j + 3) % s t a t e l e n ] % 2 == 1)
s t a t e [ j % s t a t e l e n ] ^= s t a t e [ ( j + 3) % s t a t e l e n ] ;

e l s e
s t a t e [ j % s t a t e l e n ] ^= ~s t a t e [ ( j + 3) % s t a t e l e n ] ;

}
}

}

i n t crypto_aead_encrypt
(

unsigned char ∗c , unsigned long long ∗ c len ,
const unsigned char ∗m, unsigned long long mlen ,
const unsigned char ∗ad , unsigned long long adlen ,
const unsigned char ∗nsec ,
const unsigned char ∗npub ,
const unsigned char ∗k

)
{

i n t s t a t e l e n = 1028 ;
uint64_t i g n i t e [ 1 0 2 8 ] = {0} ;
uint64_t ∗ song ;
uint64_t song_carry ;
uint64_t i , j ;
char ∗ stream_random , ∗ song_char ;

memmove(& i g n i t e [ 0 ] , k , CRYPTO_KEYBYTES ) ;
memmove(& i g n i t e [ 4 ] , npub , CRYPTO_NPUBBYTES) ;
i g n i t e [ s t a t e l e n − 1 ] = mlen ;
i g n i t e [ s t a t e l e n − 2 ] = adlen ;
s t i r ( i gn i t e , s t a t e l e n ) ;

stream_random = ( char ∗) c a l l o c ( mlen , s i z e o f ( char ) ) ;
i f ( stream_random==NULL)
{

p r i n t f (" Error a l l o c a t i n g reques ted memory " ) ;
e x i t ( 1 ) ;

}
stream_random = c a l l o c (mlen , s i z e o f ( unsigned char ) ) ;

get_stream ( i gn i t e , s t a t e l en , stream_random , mlen ) ;

f o r ( i = 0 ; i < mlen ; i++)
c [ i ] = m[ i ] ^ stream_random [ i ] ;

f r e e ( stream_random ) ;

song = &i g n i t e [ 7 6 8 ] ;
song_carry = i g n i t e [ s t a t e l e n − 1 ] ;
song_char = ( char ∗) song ;



APPENDIX A. ENCRYPT PART SOURCE CODE 16

f o r ( i = 0 ; i < adlen ; i++)
{

song_char [ i % 2048 ] ^= ad [ i ] ;
i f ( i % 2047 == 0 && i > 0) r evo l v e_a l l ( song , 256 , &song_carry ) ;

}
f o r ( i = adlen , j = 0 ; i < ( adlen + mlen ) ; i++, j++)
{

song_char [ i % 2048 ] ^= c [ j ] ;
i f ( i % 2047 == 0) r evo l v e_a l l ( song , 256 , &song_carry ) ;

}
i f ( i % 2047 > 0) r evo l v e_a l l ( song , 256 , &song_carry ) ;

evo lve ( song , 256 ) ;

memmove(&c [ mlen ] , &song [256 / 2 ] , CRYPTO_ABYTES) ;

re turn 0 ;
}

i n t crypto_aead_decrypt (
unsigned char ∗m, unsigned long long ∗mlen ,
unsigned char ∗nsec ,
const unsigned char ∗c , unsigned long long c len ,
const unsigned char ∗ad , unsigned long long adlen ,
const unsigned char ∗npub ,
const unsigned char ∗k

)
{

/∗ . . .
. . . the code f o r the c iphe r implementation goes here ,
. . . g ene ra t ing a p l a i n t e x t m[ 0 ] ,m[ 1 ] , . . . ,m[∗mlen−1]
. . . and s e c r e t message number nsec [ 0 ] , nsec [ 1 ] , . . .
. . . from a c i ph e r t ex t c [ 0 ] , c [ 1 ] , . . . , c [ c len −1]
. . . and a s s o c i a t ed data ad [ 0 ] , ad [ 1 ] , . . . , ad [ adlen −1]
. . . and pub l i c message number npub [ 0 ] , npub [ 1 ] , . . .
. . . and s e c r e t key k [ 0 ] , k [ 1 ] , . . .
. . . ∗ /
return 0 ;

}



Appendix B

Supporting paper

17



A new kind of complexity

Rade Vuckovac

Abstract

A new class of functions is presented. The structure of the algorithm,
particularly the selection criteria (branching), is used to define the fun-
damental property of the new class. The most interesting property of
the new functions is that instances are easy to compute but if input to
the function is vague the description of a function is exponentially com-
plex. This property puts a new light on randomness especially on the
random oracle model with a couple of practical examples of random or-
acle implementation. Consequently, there is a new interesting viewpoint
on computational complexity in general.

1 Introduction
The structured program theorem, also known as Böhm-Jacopini theorem is one
of the premises for this paper. The theorem shows an ability of the algorithm or
a program implementing that algorithm to compute any computable function
combining only the three algorithmic structures. These structures are:

• The tasks in the program are done one after another one (sequential order
of execution)

• The program can branch to a different path of execution depending on
some statement evaluation result (selection criteria)

• Repeating some task until an evaluation of some statement is satisfied
(iteration)

The branching or selection criteria structure and its usage defines the new pro-
posed class of functions. It is assumed that structured program theorem holds
and that usage of the three structures is Turing complete. More precisely, it
is assumed that further reduction from three structures to two structures (ex-
cluding branching) is impossible. In other words the selection criteria cannot
be effectively replaced with a combination of the other two structures.

The second premise is the analysis of the branching structure in software
metrics done by McCabe [1]. The main result of McCabe’s work is the notion of
Cyclomatic Complexity (CC). The flow chart of the above mentioned structures
is used to count the individual execution paths that the program can take. The
CC is mainly used as software testing metric. It evaluates a requirement of how

1

ar
X

iv
:1

30
9.

02
96

v1
  [

cs
.C

C
] 

 2
 S

ep
 2

01
3



many testing cases are needed for a piece of software. In the majority of cases the
relation between branching and individual paths is exponential, meaning that if
the number of branching in a program increases then the number of individual
paths which the program can execute doubles for every added branching.

The combination of the two above notions can lead to an extraordinary
case. The program can be written with a non restricted number of branching
(n) implying an exponential growth of the number of paths that the program can
take through execution (2n). Additionally, the theory of algorithms demands
that the formal description of an algorithm shall include every possible case it
can take through execution.

“Typically, when an algorithm is associated with processing informa-
tion, data is read from an input source, written to an output device,
and/or stored for further processing. Stored data is regarded as
part of the internal state of the entity performing the algorithm. In
practice, the state is stored in one or more data structures.
For some such computational process, the algorithm must be rig-
orously defined: specified in the way it applies in all possible cir-
cumstances that could arise. That is, any conditional steps must
be systematically dealt with, case-by-case; the criteria for each case
must be clear (and computable) [emphasis added].
Because an algorithm is a precise list of precise steps, the order
of computation will always be critical to the functioning of the al-
gorithm. Instructions are usually assumed to be listed explicitly, and
are described as starting "from the top" and going "down to the bot-
tom", an idea that is described more formally by flow of control.”
[3]

That means that an algorithms with a high CC cannot be practically described
because the number of execution paths increases exponentially. On the other
hand, the instances of such an algorithm can be easily computed because the
increase of the number of branching in the program incurs only polynomial cost.

This extraordinary case needs more thorough clarifications:

• It is not clear what the irreducible number of branching means. There
is still a possibility that individual execution paths of an algorithm are
actually identical transformations.

• Although CC shows exponential dependency between the number of branch-
ing and the number of execution paths, a possibility remains that the re-
lationship between the selection criteria and the paths doubling numbers
can be reduced to an acceptable level. Indeed, there is a suggestion to
avoid high CC software metric: the first is to rewrite a program in ques-
tion with reduced use of branching, and the second is to split the program
in more manageable pieces [4].

These concerns and other relevant discussions are explored through 3n+1 prob-
lem (section 2) and Wolfram’s rule 30 (section 3). Section 4 summarises the

2



new function features and speculates on the impacts on randomness and P/NP
classes.

2 Programming take on 3n+1 problem

2.1 3n+1 problem
The 3n+1 problem is ideal for exploring the relationship between the algorithm’s
selection criteria and the CC. One reason for this is that the 3n+1 problem is
extensively studied and a lot of details about the problem are well established.
Another reason is that the selection criteria are essential part of the problem
description. The problem is very simple to state: take any positive integer,
if the integer is even divide that integer with 2, if the integer is odd multiply
the integer with 3 and add 1. Repeat the procedure until the result is 1. The
problem is to decide if all positive integers reach 1. One step of the 3n+1
problem is shown below in modular notation [6].

f(n) =

{
n/2 if n ≡ 0 (mod 2)
3n+ 1 if n ≡ 1 (mod 2)

It is possible to skip the evaluation if the integer is even after 3n+1 operation
and proceed with the operation n/2 because 3 times odd integer plus one is even.
That is also an example of how CC of an algorithm can be reduced. Below is
the optimised version which will be used throughout the rest of the paper.

f(n) =

{
n/2 if n ≡ 0 (mod 2)
(3n+ 1)/2 if n ≡ 1 (mod 2)

The 3n+1 problem flow chart is shown in figure 1.

2.2 3n+1 and Cyclomatic Complexity
In this section the CC of 3n+1 algorithm is explored. As mentioned in section
1 CC is software metric. That software metric measures how many paths the
program can take through the execution. It uses graph theory to count indi-
vidual execution paths. The formula for CC is as follows: ν(G) = e − n + 2
where e and n are amounts of edges and nodes contained in the algorithm flow
graph. ν is cyclomatic number and G means that the complexity is the function
of algorithm flow graph [4]. Applying this formula to a particular algorithm
is a not straight forward exercise. One of simpler ways is counting the binary
decision predicates p . The formula for this approach is ν(G) = p + 1. The
figure 2 shows the 3n+1 algorithm doing two steps. Using a simpler method
the three binary branching can be identified, therefore ν(G) = 3+1 and indeed
there are four individual paths the 3n+1 algorithm can take in two steps. It is
evident from figure 2 that every 3n+1 step will double CC. That means after
doing several 3x+1 steps the system starts to be very complex from the software
testing perspective.

3



Figure 1: 3n+1 flow chart with optimised (3n+1)/2 step

2.3 3n+1 Preliminaries
A few details about 3n+1 problem are well known and mentioned here [6], some
are listed for further discussion:

• The experimental data confirms that numbers up to ≈ 260are reaching
one[8].

• The lower bound of how many natural numbers reach one is shown by [5].
For any sequence of natural numbers in the interval [1.x] the number of
naturals reaching one in corresponding interval is > x0.84.

• A parity sequence for each natural number as an input is unique and that is
true even if not all natural numbers are reaching one. The parity sequence
is formed by putting 1 or 0 in the sequence, depending on what operation
is performed in the particular step. In other words if the branching in
figure 1 “is n odd?” is NO put 0 in the parity sequence and if it is YES
put 1.

4



Figure 2: two steps in 3n+1 algorithm (binary tree resemblance)

2.4 3n+1 as composite function
The composite function nature of 3n+1 problem comes from the parity sequence.
For example if n = 13 the parity sequence for that input will be 1, 0, 0, 1, 0, 0, 0.
In the same manner a composite function h(n) can be composed, for example
h(13) = f ◦ g ◦ g ◦ f ◦ g ◦ g ◦ g = 1 where f(n) = (3n+1)/2 and g(n) = n/2. It is
obvious that the parity sequence pattern and the composite function pattern are
identical. That should be expected because the parity sequence is the description
of how a natural number is transformed under the 3n+1 rule.

If the natural numbers and their corresponding parity sequences have the
bijective relationship, and that appears to be true even the 1 is not periodicity
revolving point [6], then the natural numbers and their corresponding composite
function are bijective as well. That is based on the fact that the pattern of the
parity sequence is identical to the pattern of the composite function for the
same natural number. Therefore every natural number has a unique composite
function h(n) to map a natural number to a number where a period occurs under
rule 3n+1.

5



2.5 3n+1 as encoding system
A parity sequence or h(n) pattern can be considered as binary encoding for
every natural number reaching 1 under 3n+1 rule. For example for the number
13 its binary representation is 1101. In 3n+1 binary world encoding for 13 is
FG string fggfggg. The decoding is done by applying the rule 3n+1 backwards
without the need for evaluating “if odd or even”. Just start from one and read
the FG string backwards. If the character is g apply function g(n) = 2n and go
to next character. If the character is f apply function f(n) = (2n − 1)/3 and
go to the next character. When all characters are read the final number is the
decoded number. From traditional binary and parity encodings two languages
can be defined:

1. The binary language L0,1 is written by {0, 1} alphabet. The members of
L0,1 set are the binary encodings of all natural numbers reaching 1 under
rule 3n+1 (n′). The ratio size of the set is = n0.84[5].

2. The parity language Lf,g is written by {f, g} alphabet. The members of
Lf,g set are the parity sequences of n′. The size of Lf,g is the same as the
size of L0,1.

Although the amounts of the words forming languages L0,1 and Lf,g are equal
the words explaining the same object differ in length between languages. For
example encodings for number 13 are:

1. In L0,1language the encoding is 1101; size of the word is 4.

2. In Lf,glanguage the encoding is fggfggg; size of the word is 7.

It is obvious that encodings from language Lf,g can be compressed, but com-
pression can not go below complexity of the language L0,1. This means that the
complexity of language Lf,g ( 3n+1 encoding) is greater or equal to complexity
of language L0,1 (optimal binary encoding).

A significant implication is that the 3n+1 function description depends on
input in an unusual way. The input is not just an ordinary variable but it
is determinant of how a particular transformation (from input towards one)
is composed. If the if else structure is used in 3n+1 rule then the composite
function description for all natural numbers has at least sub exponential growth
of n0.84.1

2.6 3n+1 as a random function?
Random oracle is an abstraction used to model security protocols and schemes.
Basically random oracle is an imaginary machine which upon an input to oracle,
randomly draws a function from a set of all function possible and with that
function an output is calculated and returned. A simple model can be used

1Note that first ≈ 258natural numbers are reaching one and even if the some numbers do
not reach one the corresponding parities are unique.

6



as an example: On input 0 flip fair coin and record the resulting tail/head
occurrences as a truly random binary string; continue with same procedure for
inputs 1, 00, 01, 10, 11, 000 . . . (see table 1).

binary input corresponding string
0 truly random string 1
1 truly random string 2
00 truly random string 3
01 truly random string 4
. . . . . .

Table 1: Mapping using random function

The table 1 is then used in proving various security systems (see [10] for
details). It is apparent that the table 1 is not practical by means of storage
and access to intended entry. In practice random oracle is replaced with crypto-
graphically secure hash with undefined security consequences. The work of [11]
argues that random oracle modelling is essentially unsound; a practical imple-
mentation of replacing a random oracle in proven secure scheme results in an
insecure scheme.

An interesting property defined in [11] is a notion of correlation intractability.
The correlation intractability is the resistance to put some relation between
inputs and outputs on some mapping. It is easy to see that random oracle
is resistant to correlation (table 1) because of flipping fair coin. For potential
replacement, and that is single functions or function assemblies, correlation
intractability property can not be guaranteed. The reasoning behind is that
mapping description is shorter than allowed input description used by adversary,
therefore the correlation between input and output must exist and that can not
be expected from efficient and fully described function or function assembly to
behave randomly. Quotes from [11]

Informal Theorem 1.1 There exist no correlation intractable function
ensembles... The proof of the above negative result relies on the fact
that the description of the function is shorter than the input used
in the attack.

Correlation Intractability. In this section we present and discuss
the difficulty of defining the intuitive requirement that a function
ensemble behaves like a random oracle even when its description is
given. We first comment that an obvious over-reaching definition,
which amounts to adopting the pseudo-random requirement of [12],
fails poorly. That is, we cannot require that an (efficient) algorithm
that is given the description of the function cannot distinguish its
input-output behaviour from the one of a random function, because
the function description determines its input-output behaviour.

Despite that 3n+1 shall apply for random oracle replacement. One line of

7



argument can go along the fact that 3n+1 is perceived as a hard problem.
Quotes from [13]p4 and p17:

The track record on the 3 x + 1 problem so far suggests that this is an
extraordinarily difficult problem, completely out of reach of present
day mathematics. Here we will only say that part of the difficulty
appears to reside in an inability to analyze the pseudorandom nature
of successive iterates of T ( x ), which could conceivably encode very
difficult computational problems.

The iterates of the shift function are completely unpredictable in the
ergodic theory sense. Given a random starting point, predicting the
parity of the n-th iterate for any n is a “coin flip” random variable.

One obvious advantage of replacing table 1with table 2is that entries in 3n+1
parity table can be produced deterministically. Finding any pattern or structure
in table 2 may open a way to attack the 3n+1 problem. A similar argument is
made with hardness of integer factoring and consequent factoring use in asym-
metric encryption.

The second line of replacing random oracle with parity sequences is com-
plexity of the 3n+1 in terms of CC and composite function model. If 3n+1 is
considered as composite function, the form without specifying input looks like
formula 1 where f♣g means depending on input use function f or g. That can
not be considered as a fully described function. Only with an input the formula
can make sense (and can be executed).

(f♣g) ◦ (f♣g) ◦ (f♣g) . . . (1)

The argumentation can also go along the line input and function description
equality. As is shown in subsection 2.5 input language and composite function
(parity) language for 3n+1 are of equal complexity. The configuration where
input description and function description are of the same length, is actually
listed as a possible case where random function can be replaced (see restricted
correlation intractability section [11]). Although that case is considered as inef-
ficient, as is table 1 for example (function description is actually input/output
description). However table 2 is practical because entries can be calculated as
is needed (full knowledge of all mappings are not necessary).

Here is how the 3n+1 implementation of the hash function (random function
replacement) may look: Let the input n be a word with at least 256 bits in
length. Treat n as an unsigned integer. Process n by the algorithm figure1.
Form the binary sequence (parity) by recording 1 when “yes” and 0 when “no”
is answered to the question “is n odd?”. Stop when parity is 128 bit long. The
game is to find n′ in the way to produce identical first 128 bits in parity sequence
as n does (a collision). The search for collision is needed for a specific input,
because the powers of two (32, 64, 128 . . .) inputs will produce parities of zeros
(collisions are trivial, see entry 8 in table 2 for example). Because there is only
formula 1 and target parity for someone who wants to find the match for that
parity, the task is impossible excluding exhaustive search.

8



n corresponding parity
. . . . . .
7 111010001000
8 000
9 10111010001000
. . . . . .

Table 2: 3n+1 parity mapping

2.7 3n+1 inherently serial problem?
An Inherently serial problem is when some algorithms can not be split into
chunks and executed concurrently to reduce execution time. The reason is that
the next execution step in such an algorithm depends on previous step result
[19]. A formal attempt to define sequential nature of algorithm with example can
be found here [18]. Because 3n+1 algorithm is essentially a composite function,
it is evident that the 3n+1 algorithm step fundamentally depends on the result
from previous step, see figures 2 and 1. That means that the 3n+1 algorithm
as is formulated in figure 1 can not be divided and executed in parallel and be
more efficient than serial execution.

Computational irreducibility (CI) notion introduced byWolfram [22]is closely
related to serial phenomena in algorithms. CI in the cellular automata (CA)
world means that the fastest way to have knowledge of what a particular CA
is doing is to run that CA. The same observation can be applied to the 3n+1
algorithm. CI is more obvious in 3n+1 than in other systems because 3n+1 is
a composite function with consequence of inherent non parallelism.

2.8 3n+1 and reductions
It was tried before to show that the 3n+1 problem is intractable. One example
is here [9]. The main argument of that work goes on showing that the 3n+1
solution has to be infinitely complex, using Solomon-Kolgomorov-Chaitin (SKC)
complexity as an argument[14]. It relies on the fact that every 3n+1 transforma-
tion is unique and if we were to represent all of them, the only remaining option
would be to list them all and consequently that option is obviously infeasible.
It is similar reasoning to the one from section 2.5. The problem with either
reasoning is the possibility that 3n+1 inquiries might be calculated by some al-
gorithm other than algorithm shown in figure 1 and furthermore that the other
algorithm can be fundamentally different. It is impossible to know how that
algorithm may look anyhow a couple of important properties can be defined:

• low CC ; Only algorithms without using branching structure can be con-
sidered as candidates.

• efficiency ; There are algorithms with low CC see figure 3 for example.
The execution time of that algorithm depends on the oracle proposing

9



the fg string (as shown in subsection 2.5). One option for getting the
answer from that algorithm is that the oracle goes through an exhaustive
search to match fg string with output 1 (if 3n+1 conjecture holds). To be
efficient it is required from the candidate algorithm to produce a matching
fg string by evaluating input n in P time.

If both above requirements are met by the candidate algorithm, then the appar-
ent CC of 3n+1 can be reduced in P time. The algorithm on presented input
n can predict the branching fg string without using branching structure. Con-
sequently selection programming structure can be replaced by a combination
of sequence and iteration without significant cost (P time). In that case the
structural programming theorem [2] needs revision.

Figure 3: 3n+1 flow chart with Do-While structure (looping)

3 About Wolfram’s rule 30

3.1 Rule 30 complexity
The Rule 30 is probably one of the most represented rules in the Wolfram’s
NKS book [20]. The definitions of rule 30 are listed below:

10



• Boolean form is [16] p Xor (q Or r)

• English description [17] :

“Look at each cell and its right-hand neighbor. If both of these
where white on the previous step, then take the new color of the
cell to be whatever the previous color of its left-hand neighbor was.
Otherwise, take the new color to be opposite of that”.

• Visual description and example is shown in figure 4.

The main features of the Rule 30 are chaotic behaviour and randomness. Both
features are accomplished by an apparently simple rule and with an input with
only one black cell - see figure 4. Quote from NKS book [20] pages 27-28.

“The picture shows what happens when one starts with just one black
cell and then applies this rule over and over again. And what one sees
is something quite startling–and probably the single most surprising
scientific discovery I have ever made. Rather than getting a simple
regular pattern as we might expect, the cellular automaton instead
produces a pattern that seems extremely irregular and complex. But
where does this complexity come from? We certainly did not put it
into the system in any direct way when we set it up. For we just
used a simple cellular automaton rule, and just started from a simple
initial condition containing a single black cell.”

That observation is mentioned numerous times and is not entirely correct on
both accounts (simple rule, one black cell as input). Let us use figure 4 for
example.

• The first row shows the input and it is 43 bits long with 42 white cells and
one black. Instead talking of only one black cell input, emphasis should
be on low entropy of that input. Also it should be explained how entropy
of the input is relevant to the rule 30 process, because the configuration
with one black cell has the same probability of occurring as any other
configuration.

• The English description of the rule already mentioned is actually the clue
to chaotic / random behaviour. The description is as follows: if some-
thing is true do that else do something different. It is exactly the same
structure already seen in the 3n+1 problem. Considering that, rule 30 can
be considered as composite function in the same fashion as 3n+1. The
difference between 3n+1 and rule 30 is that the rule 30 update of cell
depends on outputs of neighbouring cells as well. Therefore it is trickier
to calculate CC of rule 30 algorithm. A short-cut to estimating CC is
to assume one branching per row evolution. Since rule 30 (figure 4) is
iterated 21 times, the amount of possible execution paths for one cell is
221. From the software testing perspective anything over 210 is practically
non testable [4].

11



Consequently, it is not correct to brand rule 30 as a simple program while at
the same time it has an inherently high level of CC.

3.2 Rule 30 function description
Although the rule 30 algorithm is fairly simple, its function description is cer-
tainly complex. The reason for this is that a particular input and particular
number of iterations actually define which composite function is going to be
executed at the time. Unlike the 3n+1 case where input alone determines the
number of iterations and consequently CC, the rule 30 CC depends on input
and the number of iterations. Quantifying rule 30 CC is shown below.

Let ln be the length of the input (ln = 43 figure 4) and li be the number
of iterations (li = 21figure 4). If li ≤ ln CC depends on li , and the number
of paths ν(G) that the algorithm can take is ν(G) = 2li. In the case li > ln
the number of paths is ν(G) = 2ln. The reason for that is that the entropy of
the number of paths is bounded by entropy of input. Therefore the number of
paths that the rule 30 algorithm can take through execution is:

ν(G) =

{
ν(G) = 2li if li > ln

ν(G) = 2ln if ln > li

This means that if input length is smaller than number of iteration, CC
depends on input only as it is the case with 3n+1. Wolfram in his NKS [20] uses
empirical methods to argue on some rule 30 attributes. For example empirical
data shows that the period of rule 30 has an exponential growth in relation to
input, which indicates that above assertion of exponential growth is true.

Figure 4: rule 30, example of evolution and rules of transformation, image copied
from [15]

12



3.3 Rule 30 as hash function
Having the same algorithm structure as 3n+1, rule 30 is also a candidate for
the hash function. There is a proposal which appeared on sci.crypt [21]

“Let length of constant c be a desired length of a hash. Constant c
can be arbitrary chosen. For example if 128 bits hash is required the
constant c may easily be 128 zeros. The string s for hashing is then
concatenated to the constant c to form a starting row r for rule 30;
r = c + s. The row r is then evolved twice row length. For example
if c = 128 bits in length and s = 128 bits in length then evolution is
performed 512 times (column length is 512). Now the part (length
of c) of last row serves as a hash. From above example the first 128
bits of 512th row is the hash h of the string s.”

The two major points raised in the discussion are the efficiency of algorithm
and the choice of c to be string of zeros. Even though the proposed hash is not
practical (quadratic in nature) it is still in P . Constant c instead of zeros should
employ some pseudo-random string such as π number sequence to avoid short
cycle of rule 30.

3.4 Rule 30 reduction
Rule 30 apparently satisfies two requirements discussed in subsection 2.8: low
CC and efficiency. Both requirements for rule 30 are apparently satisfied by use
of boolean form instead English form (subsection 3.1).

Determining branching structure presence in CA is not an easy task. For
example, Wolfram rule 110 is Turing complete [23] and it has to accommodate
use of if/else structure somehow (the structured programming theorem [2]). On
the other hand it is not entirely clear how the 110 compiler can be employed
for usual programming tasks including branching [7]. However the branching
structure of rule 110 appears in English description [23] as well.

“The values are updated in the following way: 0s are changed to
1s at all positions where the value to the right is a 1, while 1s are
changed to 0s at all positions where the values to the left and right
are both 1.”

It is assumed that the boolean form and the English form of rule 30 are equal
when quantifying CC. Another argument for that is: a tracing of rule 30 program
execution paths produces the same binary tree structure as CC structure in
figure 2. Which path is going to be executed depends entirely on the rule 30
input. Steps through rule 30 evolution can not be skipped. Even though the
branching structure is not explicitly present in rule 30 boolean implementation,
CC structure is present.

Therefore rule 30 (and for that matter rule 110, game of life ...) shall be ana-
lysed as a composite function with exponential description complexity growth
w.t.r. to the input growth.

13



From there it is easy to argue irreducibility of rule 30 because of basic prop-
erty of composite function, the output of one function determines input to other.
Any reduction in function composition will mean reduction of branching struc-
ture. In case of rule 30, the output of the previous function determines the
input and selection of the next function in the composite function chain. That
detail prevents any short-cut execution path through algorithm.

4 Conclusion

4.1 Summary
As is noted in the introduction, the whole discussion is about three notions:

1. Structured Programming Theorem; particularly treating branching as ba-
sic structure in programming.

2. Cyclomatic Complexity; exponential dependence between branching and
number of execution paths a program can take. Basically every branching
potentially doubles number of paths.

3. Formal description of an algorithm; requirement that every branching in
algorithm shall be fully defined.

The first option is: one or more of above do not hold. The second option is: all
above notions hold and there exists a program without any knowledge of output
behaviour before input is presented. The discussion from this paper sees the
second option as a true. The main arguments for this are:

• The 3n+1 parity sequence can be used as encoding system, see subsection
2.5. The argument is that 3n+1 encoding alias function description can
not be simpler than standard binary encoding of an input.

• The 3n+1 algorithm description exponential growth can be reduced only
if branching structure can be reduced to sequential and iteration program-
ming structure in polynomial time. See subsections 2.8 and 3.4.

• The random oracle framework provides the definition of correlation in-
tractability and how that requirement can not be obtained by single func-
tion or function assembly (see quote subsection 2.6). Contrary to that no-
tion 3n+1 algorithm looks like:(selectforg) ◦ (selectforg)◦(selectforg) . . ..
It is apparent that function description without specific input is not present,
and that the input actually defines function composition. Therefore there
is the case when input description and function description have the same
complexity. That case satisfies the correlation intractability requirement
(subsection 2.6).

Other arguments are various empirical findings, for example rule 30 is used as
random number generator in Wolfram’s Mathematica.

The common features of 3n+1 and rule 30 are:

14



• Composed from two distinctive functions f and g that are not commutat-
ive f ◦ g 6= g ◦ f .

• Cyclomatic Complexity raise with every branching step see subsection 3.2

• Steps in program execution path are one of the function f or g

• Probability of executing f or g in next step is 0.5

See Appendix A for another practical implementation of above features.

4.2 Randomness and simple arithmetic?
As is discussed in subsection 2.6 the proposition is to exchange tables 1 and 2
without loosing any of the random oracle properties. The similarity between
tables is: Both tables are impractical if used in tabular form. There is a stor-
age problem (for example how to store 2128entries ? and seek time cost). It is
easy to see that random oracle table can not be compressed because the second
column is by design true random. On the opposite side of tabular representation
spectrum is binary encoding (table 3). If input is given in the left column of the
binary table it is easy to calculate corresponding entry in the right column and
vice versa. This means that the tabular form is not needed (easily calculated/-
compressed) because it is easy to calculate entries both ways.

n binary encoding
1 1
2 10
3 11
4 100
. . . . . .

Table 3: binary encoding

Because 3n+1 can be used as encoding system (subsection 2.5), the com-
pression of table 2 is not an issue.

Now it is time to see how the proposition from subsection 2.6 reflects on
parity and binary encoding table:

• Binary table is not affected if only part of the string in the right hand
column is provided. For example, if the question is to find corresponding
entries for binary string beginning with 10, just appending arbitrary suffix
to 10 and decoding that string will find entry on the left hand side column..

• The parity table in the case when only a partial string in the right hand
column is provided can not be calculated or compressed. The simple
reason is that entries can be calculated only with complete input. Any-
thing else faces the ambiguous prospect of (f♣g)◦(f♣g)◦(f♣g) . . . where
f♣g means depending on input use function f or use function g.

15



The question is: can observation of entries in parity table (table 2) provide
any means of compressing that table? The answer is no, because the branching
structure of algorithm prevents any type of Solomon-Kolgomorov-Chaitin (SKC)
reductions, even though the table is deterministic in nature. In other words the
data in the parity table ought to be random. Rule 30 sequences are in the same
category. It is remarkable that randomness can be now interpreted as inability
of reducing selection criteria programming structure. Translated to random
oracle vocabulary that is notion of correlation intractability.

4.3 P and NP
The 3n+1 proposal for collision resistance (subsection 2.6) can serve as P versus
NP discussion as well. The game is to find input x (natural number) and with
that x to produce the parity string px. Parity px = s||a is the concatenation of
given string s and arbitrary string a. Only one constraint is lx = 2ls, where lx
is the binary length of x and ls is the binary length of the given string s.

For example the given string in C language notation is char s = ”DoesPequalsNp?”
has the binary length lx = 14 ∗ 8. The task is to find natural number x with
binary length lx = 2∗14∗8 and with sequence char px = ”DoesPequalsNp?...”.

First of all, nothing guaranties that any of the natural numbers 224 bit long
will produce required parity sequence.

Secondly, because matching parity is not fully defined calculating x from s
is impossible. The reasons are:

• To compose the transformation and do the calculation full knowledge of
input is needed, because only input defines function composition.

• Trying to observe the mapping of natural numbers to corresponding par-
ities and hoping to find some pattern/reduction is futile because the se-
lection criteria programming structure can not be reduced.

(f♣g) ◦ (f♣g) ◦ (f♣g)
f ◦ f ◦ f
f ◦ f ◦ g
f ◦ g ◦ f
f ◦ g ◦ g
g ◦ f ◦ f
g ◦ f ◦ g
g ◦ g ◦ f
g ◦ g ◦ g

Table 4: The complexity of 3n+1 function composition grows exponentially;
example of function 3 steps possible outcomes

The game has all the main ingredients of P 6= NP . If complete input
(either natural number or parity) is provided it is easy to do 3n+1 encoding

16



(subsection 2.5). If input is not fully defined the only technique for finding
natural number/parity pair is exhaustive search. That exhaustive search is
exponential in nature (table 4). On the other hand if match is found it is easy
to verify that because complete input is now known.

References
[1] http://www.literateprogramming.com/mccabe.pdf (McCabe’s original pa-

per in IEEE Transactions on Software Engineering Vol. 2, No. 4, p. 308
(1976))

[2] http://en.wikipedia.org/wiki/Structured_program_theorem

[3] http://en.wikipedia.org/wiki/Algorithm

[4] http://www.mccabe.com/pdf/mccabe-nist235r.pdf

[5] ^ Krasikov, Ilia; Lagarias, Jeffrey C. (2003). "Bounds for the 3x + 1
problem using difference inequalities". Acta Arithmetica 109 (3): 237–258.
doi:10.4064/aa109-3-4. MR 1980260.

[6] http://en.wikipedia.org/wiki/Collatz_conjecture

[7] http://cs.stackexchange.com/questions/4779/how-is-the-rule-110-turing-
complete

[8] Silva, Tomás Oliveira e Silva. "Computational verification of the 3x+1
conjecture". http://www.ieeta.pt/~tos/3x+1.html. Retrieved 27 November
2011.

[9] Feinstein, Craig Alan. "The Collatz 3x+ 1 Conjecture is Unprovable." arXiv
preprint math/0312309 (2003).

[10] http://en.wikipedia.org/wiki/Random_oracle

[11] Ran Canetti, Oded Goldreich and Shai Halevi, The Random Oracle Meth-
odology Revisited, STOC 1998, pp. 209–218

[12] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33(4):210{217, 1986.

[13] http://www.ams.org/bookstore/pspdf/mbk-78-prev.pdf

[14] http://en.wikipedia.org/wiki/Kolmogorov_complexity

[15] http://en.wikipedia.org/wiki/Rule_30

[16] http://www.wolframalpha.com/input/?i=rule+30

[17] http://www.wolframscience.com/nksonline/page-27?firstview=1

17



[18] http://www.tarsnap.com/scrypt/scrypt.pdf

[19] http://en.wikipedia.org/wiki/Parallel_algorithm

[20] http://www.wolframscience.com/nksonline/toc.html

[21] https://groups.google.com/forum/?fromgroups#!searchin
/sci.crypt/rule$2030%7Csort:relevance/sci.crypt/EYtf32YUTWQ/vwudrfeYCvUJ

[22] http://mathworld.wolfram.com/ComputationalIrreducibility.html

[23] Matthew Cook, A Concrete View of Rule 110 Computation,
arXiv:0906.3248v1 [cs.CC]

[24] http://dakhilalian.iut.ac.ir/pdff/C26.pdf

A Sharatz.h listing
Here is an application of the principles argued in the paper. Using features men-
tioned in subsection 4.1 the program outputs a random stream. The program
is a variant of MAG 2. The latest known cryptanalysis of MAG family with all
details is presented here [24] including review of published pseudo attack.

The function accepts seed and desired length of the stream. The produced
stream is directed to standard output and can be piped or saved to the file.

Listing 1: sharatz.h
#inc lude <s td i o . h>
#inc lude <s td i n t . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>

typede f enum { OK = 0 , FAIL = 1} sarac_return ;

typede f char seed_sequence ; //max 8k

sarac_return sarac
( const seed_sequence ∗ sarac_seed , uint64_t sarac_byte_len )
{

i n t i , j , seed_len ;
i n t rounds = 4 ;

uint64_t mixer = 6148914691236517205;
uint64_t i g n i t e [ 1 0 2 6 ] ;
uint64_t carry = 1234567890123456789;
uint64_t ying [ 5 1 2 ] , yang [ 5 1 2 ] ;
uint64_t carry_a , carry_b ;
uint64_t data_block , k ;

18



uint64_t output ;

f o r ( i = 0 ; i < 1026 ; i++)
i g n i t e [ i ] = 0 ;

seed_len = s t r l e n ( sarac_seed ) ;

i f ( seed_len > 8 ∗ 1026)
seed_len = 8 ∗ 1026 ;

memcpy( i gn i t e , sarac_seed , seed_len ) ;

f o r ( i = 0 ; i < rounds ; i++)
{

f o r ( j = 0 ; j < 1026 ; j++)
{

i f ( i g n i t e [ ( j +2)%1026]> i g n i t e [ ( j +3)%1026])
car ry ^= i g n i t e [ ( j +1)%1026];

e l s e
car ry ^= ~ i g n i t e [ ( j +1)%1026];

i g n i t e [ j ] ^= carry ;
car ry += mixer ;

}
}

f o r ( i = 0 ; i < 512 ; i++)
ying [ i ] = i g n i t e [ i ] ;

f o r ( i = 0 ; i < 512 ; i++)
yang [ i ] = i g n i t e [ i +512] ;

carry_a = i g n i t e [ 1 0 2 4 ] ;
carry_b = i g n i t e [ 1 0 2 5 ] ;

data_block = sarac_byte_len / 8 ;
i f ( ( sarac_byte_len % 8) > 0)

data_block++;

f o r ( k = 0 ; k < data_block ; k++)
{

i f ( ying [ ( k+2)%512]>ying [ ( k+3)%512])
carry_a ^= ying [ ( k+1)%512];

e l s e
carry_a ^= ~ying [ ( k+1)%512];

19



ying [ k%512] ^= carry_a ;

i f ( yang [ ( k+2)%512]>yang [ ( k+3)%512])
carry_b ^= yang [ ( k+1)%512];

e l s e
carry_b ^= ~yang [ ( k+1)%512];

yang [ k%512] ^= carry_b ;

output = ying [ k%512] ^ yang [ k%512];

fw r i t e (&output , s i z e o f ( output ) , 1 , s tdout ) ;
}

re turn OK;

}
Listing 1: sharatz.h

20


