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Introduction

Sablier v1 is a hardware-efficient stream cipher with bulit-in authentication.
Unlike the traditional LFSR-based stream ciphers and the usual nonlinear/linear
shift registers combined structure in Grain and Trivium, Sablier adopts a new
internal structure to generate the keystream from a 80-bit key and a 80-bit
IV. Only bitwise xor, bitwise logical and and bitwise intra-word rotation are
used in Sablier v1. It can be efficiently implemented in constrained hardware
environments and the encryption speed is expected to be 16 times faster than
Trivium in hardware. Compared to Grain-128a, the authentication mechanism
has the feature that the authentication process will not slow down the encryption
process by carefully leak extraction from the internal states. So far, no attack
faster than exhaustive key search has been identified.
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Chapter 1

Specification

In this section, we describe the stream cipher Sablier v1.

1.1 Parameters

Sablier v11 has three parameters: key length, nonce length and tag length. The
parameter space is as follows. The key length is 10 bytes, the nonce length is 10
bytes and the tag length is 4-byte. From a 80-bit key and a 80-bit initialization
vector, it generates keystream with length up to 264 bits.

1.2 Recommended Parameter Sets

Primary recommended parameter set Sablierv1: 10-byte (80-bit) key, 10-byte
(80-bit) nonce, 4-byte (32-bit) tag.

1.3 Authenticated Encryption

The inputs to authenticated encryption are a plaintext P , associated data A,
a public message number N , i.e., IV , and a key K. The maximum number of
bytes in P is at least 65536 = 216 bytes. The maximum number of bytes in A
is at least 65536 bytes. The number of bytes in N is the nonce length. The
number of bytes in K is the key length. There is no secret message number,
i.e., the secret message number is empty.

The output of the authenticated encryption is (C, T ), where C is an unau-
thenticated ciphertext C and a tag T . The unauthenticated ciphertext C is
obtained by the usual binary additive encryption using the keystream generat-
ed by Sablier, shown in Fig.1.1. The total ciphertext length is the number of
bytes in P plus the tag length.

The following operations are used in the description.

1We use Sablier to denote Sablier v1 hereafter.
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Figure 1.1: The authenticated encryption setting of Sablier

⊕ the 16-bit bitwise exclusive or operator.

· the 16-bit logical and operator.

≫ the 32-bit right rotation operator. x ≫ n means x being rotated to
the right over n bit positions.

∥ concatenation.

1 the 16-bit all one vector.

a[i] the i-th least significant bit of a 16-bit word a.

Five registers Li (i = 1, . . . , 5) are used in Sablier. The key and the initializa-
tion vector of Sablier are denoted by K and IV , respectively. We denote the
generated keystream by z.

L1, L5: the two largest registers, each with four 16-bit words, namely L1,i, L5,i

with 1 ≤ i ≤ 4.

L2, L4: the two second largest registers, each with two 16-bit words, namely
L2,i, L4,i with 1 ≤ i ≤ 2.

L3: the smallest register, consists of one 16-bit word.

K: the 80-bit key of Sablier, composed of 10 bytes, namely Ki with
0 ≤ i ≤ 9.

IV : the 80-bit initialization vector of Sablier, composed of 10 bytes,
namely IVi with 0 ≤ i ≤ 9.

z: the keystream generated by Sablier. The 16-bit output of the ith
step is denoted by zi. Then z = z0, z1, z2, · · · .
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1.4 The Algorithm

Now we describe the stream cipher Sablier, whose structure is depicted in
Fig.1.2. In Fig.1.2, the lane is a 16-bit word and χ is just the nonlinear function
in Keccak, restricted to 16-bit word. The operation of Sablier can be imaged
as the mixing of the sand in a sandglass, or as the shaking of the cocktail in
a shaker in the bar. We first mix or shake the container for a large number of
times, which is just the initialization phase of Sablier. After that, something
will be emitted after each mixing or shaking step as keystream, described in
Section 1.4.2.

L1

L2

L3

L4

L5

Sw
iveled 180

 

 

 

 

Figure 1.2: The structure of Sablier

1.4.1 Initialization Process (Key/IV Setup)

The initialization process of Sablier consists of loading the key and IV into the
registers Li (1 ≤ i ≤ 5) and running the cipher 64 rounds without generating
the output.

1. Key and IV loading.

L1

L2

L3

L4

L5

 =



L1,1, L1,2, L1,3, L1,4

L2,1, L2,2

L3

L4,1, L4,2

L5,1, L5.2, L5,3, L5,4



=



K0 ∥ IV0,K1 ∥ IV1,K2 ∥ IV2,K3 ∥ IV3

K4 ∥ IV4,K5 ∥ IV5

IV6 ∥ K3 ⊕ IV7

K6 ⊕ IV0 ∥ K6 ⊕ IV1,K7 ⊕ IV2 ∥ K7 ⊕ IV3

K8 ⊕ IV4 ∥ IV8,K9 ⊕ IV5 ∥ IV8,K8 ⊕ IV6 ∥ IV9,K9 ⊕ IV7 ∥ IV9
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2. State updating. Run the cipher 128 steps (64 rounds) without generating the
output, as shown below.

1 : For 0 ≤ i ≤ 127 do

2 : L5 ← (L5,1 ⊕ L5,2 ⊕ L5,3 ⊕ L4,2, L5,1 ⊕ L5,2, L5,3 ⊕ L5,4,

L5,2 ⊕ L5,3 ⊕ L5,4 ⊕ L4,1)

3 : L4 ← (L4,1 ⊕ L3 ∥ L4,2 ⊕ L3) ≫ 5

4 : L3 ← L3 ⊕ ((L2,1 ⊕ 1) · L2,2)⊕ RC(i)

5 : L2 ← (L2,1 ⊕ ((L1,1 ⊕ 1) · L1,2), L2,2 ⊕ ((L1,3 ⊕ 1) · L1,4))

6 : (L1, L2, L3, L4, L5)← (L5, L4, L3, L2, L1),

7 : end for

where RC(i) is defined as follows. As in Keccak, rc[t] ∈ GF(2) (t ≥ 0) are
defined as the output of a binary LFSR:

rc[t] =
(
xt mod x8 + x6 + x5 + x4 + 1

)
mod x in GF(2)[x].

Let RC(2k)[15] = rc[4k] for 0 ≤ k ≤ 63 and all other values of RC(2k)[s] (s ̸= 15)
are zero;

RC(2k + 1)[s] =


rc[4k + 1], if s = 7
rc[4k + 2], if s = 3
rc[4k + 3], if s = 1

0, otherwise

(1.1)

for 0 ≤ k ≤ 63.

1.4.2 The Keystream Generation Algorithm

After initialization, the cipher outputs a 16-bit word at each step, as shown
below. Here each unit is a 16-bit word.

The keystream generation

t = 0;

repeat until enough keystream bits are generated.

{
The lower half round :

1 : L5 ← (L5,1 ⊕ L5,2 ⊕ L5,3 ⊕ L4,2, L5,1 ⊕ L5,2, L5,3 ⊕ L5,4,

L5,2 ⊕ L5,3 ⊕ L5,4 ⊕ L4,1)

2 : L4 ← (L4,1 ⊕ L3 ∥ L4,2 ⊕ L3) ≫ 5

3 : L3 ← L3 ⊕ ((L2,1 ⊕ 1) · L2,2)⊕ C1

4 : L2 ← (L2,1 ⊕ ((L1,1 ⊕ 1) · L1,2) , L2,2 ⊕ ((L1,3 ⊕ 1) · L1,4))

5 : (L1, L2, L3, L4, L5)← (L5, L4, L3, L2, L1)

The upper half round :

6 : L5 ← (L5,1 ⊕ L5,2 ⊕ L5,3 ⊕ L4,2, L5,1 ⊕ L5,2, L5,3 ⊕ L5,4,

L5,2 ⊕ L5,3 ⊕ L5,4 ⊕ L4,1)
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Figure 1.3: The authentication mechanism

7 : L4 ← (L4,1 ⊕ L3 ∥ L4,2 ⊕ L3) ≫ 5

8 : L3 ← L3 ⊕ ((L2,1 ⊕ 1) · L2,2)⊕ C2

9 : L2 ← (L2,1 ⊕ ((L1,1 ⊕ 1) · L1,2) , L2,2 ⊕ ((L1,3 ⊕ 1) · L1,4))

10 : (L1, L2, L3, L4, L5)← (L5, L4, L3, L2, L1)

Output the keystream :

11 : zt = L2,2 ⊕ L3 ⊕ L5,3

12 : t = t+ 1;

}
end-repeat

where C1 = 0x1735 and C2 = 0x9cb6 are the hexadecimal expression of the
second ten decimals of π.

1.4.3 Authentication

Sablier supports two different modes of operation: with and without authenti-
cation. If IV0[0] = 1, then the authentication is activated; if IV0[0] = 0, there
is no authentication. The authentication mechanism in our cipher is similar
to the one used in Grain-128a [4], but we made some modifications to make
it more efficient without a penalty in security. The masking sequence used for
authentication is different from those used for encryption, which makes the w-
hole mechanism more efficient, i.e., the authentication will not slow down the
encryption process. Here we adopt the leak extraction in [3] to constitute the
masking sequence.

Assume that the length of the plaintext P is l1, denoted by P = (p0, p1, ...,
pl1−1) and the length of the associated data A is l2, denoted by A = (a1, a2, ...,
al2−1). The whole message used in the authentication is M = A ∥ IV ∥ P ∥ 1
of length l = l1 + l2 + 80 + 1 bits, denoted by m1,m2, ...,ml−1,ml. Note that
ml = 1 is the padding, which can ensure that M and M ||0 have different tags.
This padding is crucial for the security of the authentication.

Two registers called the accumulator and the shift register are used in
Fig.1.3, each of which is 32-bit. The content of the accumulator at time i
is denoted by (r0i , r

1
i , ..., r

31
i ). The content of the shift register is denoted by
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(si, si+1, ..., si+31). The blocks of the masking sequence used for authentication
are denoted by L4

4,1, L
5
4,1, ... respectively

2, where L4,1 is just the state regis-
ter of 16-bit length in Sablier. The initialization phase of the accumulator is
ri0 = z0[i], r

i+16
0 = z1[i], 0 ≤ i ≤ 15 and the initialization phase of the shift

register is si = z2[i], si+16 = z3[i], 0 ≤ i ≤ 15, which means that the first 4
keystream blocks are used to initialize the accumulator and the shift register,
respectively. Then the accumulator is updated as rji+1 = rji ⊕ misi+j , where

0 ≤ j ≤ 31 and 0 ≤ i ≤ l. The shift register is updated as si+32 = L
4+i/16
4,1 [i

mod 16].
The final content of the accumulator r0l+1, r

1
l+1, ..., r

31
l+1 is the tag which can

be used for authentication. The tag bit is denoted by ti = ail+1, 0 ≤ i ≤
31. Please refer to Fig.1.3 for a graphical representation of the authentication
mechanism. We also support the use of shorter tags of length w (1 ≤ w ≤ 31),

defined as t
(w)
i = t32−w+i, 0 ≤ i ≤ w − 1. t

(w)
i means the right-most part of the

tag in Fig.1.3.

2The superscript of the state register represents the time instant in the encryption process
hereafter.
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Chapter 2

Security Goals

Security Sablierv1

Goal bits of secuirty
confidentiality for the plaintext 80

integrity for the plaintext 32
integrity for the associated data 32

integrity for the public message number 32

There is no secret message number in Sablier. The public message number is
a nonce, i.e., the IV. The cipher does not promise any integrity or confidentiality
if the legitimate key holder uses the same nonce (IV) to encrypt two different
(plaintext, associated data) pairs under the same key.

The numbers in the table are actually on different scales: 232 is the expected
number of online forgery attempts for a successful forgery, while 280 is the
expected number of key guesses to find the secret key. Any successful forgery or
successful key guess should be assumed to completely compromise confidentiality
and integrity of all messages.

The table also assumes that the legitimate key holder does not approach 264

message bits encrypted under a single key.
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Chapter 3

Security Analysis

In this section, we will analyze the security of Sablier with respect to several
attacks.

3.1 Period and Time/Memory/Data Tradeoffs

The 208-bit state of Sablier ensures that the period of the keystream is large
enough for any practical applications, but the exact value of the keystream
period of Sablier is difficult to predict in theory. The average period of the
keystream is estimated to be larger than 2104, if we assume that the invertible
state updating function of Sablier is random. Besides, the 208-bit size internal
state also eliminates the threat of the known form of the time/memory/data
tradeoff attacks with respect to 80-bit secuirty.

3.2 Linear Distinguishing Attacks

Here we use the linear sequential circuit approximation (LSCA) method [9] to
evaluate the strength of Sablier against linear distinguishing attacks.

3.2.1 Basic Linear Sequential Circuit Approximation

Golić has shown that for a binary keystream generator with M bits of memory
whose initial state is chosen uniformly at random, there exists a linear function
of at most M+1 consecutive output bits which is an unbalanced function of the
initial state variables. An effective method is also developed for the linear model
determination based on linear sequential circuit approximation of autonomous
finite state machines. Some linear function of consecutive output bits exhibits an
unbalance to which the adversary can apply the standard chi-square frequency
statistical test. The test is successful if and only if the length of the sequence is
chosen to be inversely proportional to the square of the correlation coefficient.
If the key length is k-bit, the statistical weakness is effective if and only if the
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correlation coefficient is greater than 2−k/2. Next, we use Golić’s method to
extract the linear sequential circuit approximation of Sablier step by step.

In [9], the output function is a boolean function in the linear sequential
circuit approximation method, while our algorithm is 16-bit word-oriented, so
we introduce a output mask ω to transform the vectorial output function into
a boolean function. Let St = (st,1, st,2, · · · , st,208)T be the state vector at time
t, and ω · zt be the bitwise output sequence after the inner product between the
output mask ω and zt. Now Sablier can be regarded as an autonomous finite
state machine defined by

St = F (St−1), t ≥ 1

ω · zt = fω(St), t ≥ 1

We first decomposes the output boolean function and each of the boolean func-
tions in the next-state function of the keystream generator into the sum of linear
functions and an unbalanced boolean function. Thus we have

St = ASt−1 +∆(St−1), t ≥ 1 (1)

ω · zt = BωSt, t ≥ 1

where St is a 208×1 column vector, A is an 208×208 matrix and Bω is a 1×208
row vector and ∆ is a 208× 1 noise vector. In order to acquire the parameters
of the above the equations, we study the update function in details. We denote
the state at time t in 16-bit word as

(Lt
1,1, L

t
1,2, L

t
1,3, L

t
1,4, L

t
2,1, L

t
2,2, L

t
3, L

t
4,1, L

t
4,2, L

t
5,1, L

t
5,2, L

t
5,3, L

t
5,4)

T .

After the state updating, the new state at time t+ 1 is as follow.

Lt+1
1,1

Lt+1
1,2

Lt+1
1,3

Lt+1
1,4

Lt+1
2,1

Lt+1
2,2

Lt+1
3

Lt+1
4,1

Lt+1
4,2

Lt+1
5,1

Lt+1
5,2

Lt+1
5,3

Lt+1
5,4



=



Lt
1,1 ⊕ Lt

1,2 ⊕ Lt
1,3 ⊕ Lt

1,4 ⊕ Lt
2,2

Lt
1,1 ⊕ Lt

1,2

Lt
1,3 ⊕ Lt

1,4

Lt
1,3 ⊕ Lt

1,4 ⊕ Lt
2,1

(Lt
1,2 ⊕ Lt

2,1 ⊕ Lt
2,2 ⊕ Lt

3)≫ 5⊕ (Lt
1,4 ⊕ Lt

3)≪ 11
(Lt

1,2 ⊕ Lt
2,1 ⊕ Lt

2,2 ⊕ Lt
3)≪ 11⊕ (Lt

1,4 ⊕ Lt
3)≫ 5

Lt
3 ⊕ Lt

2,2 ⊕ (Lt
4,2 ⊕ Lt

3)≫ 5⊕ (Lt
4,1 ⊕ Lt

3)≪ 11
(Lt

4,2 ⊕ Lt
3)≪ 11⊕ (Lt

4,1 ⊕ Lt
3)≫ 5

Lt
4,1 ⊕ Lt

5,2 ⊕ (Lt
4,2 ⊕ Lt

3)≫ 5⊕ (Lt
4,1 ⊕ Lt

3)≪ 11
Lt
4,2 ⊕ Lt

5,1 ⊕ Lt
5,2 ⊕ Lt

5,3

Lt
5,1 ⊕ Lt

5,2

Lt
5,3 ⊕ Lt

5,4

Lt
4,1 ⊕ Lt

5,2 ⊕ Lt
5,3 ⊕ Lt

5,4



⊕
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Lt
1,3 · Lt

1,4

0
0

Lt
1,1 · Lt

1,2

(Lt
1,1 · Lt

1,2 ⊕ Lt
2,1 · Lt

2,2 ⊕ C1)≫ 5⊕ (Lt
1,3 · Lt

1,4 ⊕ Lt
2,1 · Lt

2,2 ⊕ C1)≪ 11
(Lt

1,1 · Lt
1,2 ⊕ Lt

2,1 · Lt
2,2 ⊕ C1)≪ 11⊕ (Lt

1,3 · Lt
1,4 ⊕ Lt

2,1 · Lt
2,2 ⊕ C1)≫ 5

Lt+1
3

(Lt
5,1 ⊕ Lt

5,2) · (Lt
4,2 ⊕ Lt

5,3)
(Lt

5,3 ⊕ Lt
5,4) · (Lt

4,1 ⊕ Lt
5,2)

0
0
0
0


(2)

where Lt+1
3 = C1 ⊕ C2 ⊕ Lt

2,1 · Lt
2,2 ⊕ ((Lt

4,2 ⊕ Lt
3) ≫ 5 ⊕ (Lt

4,1 ⊕ Lt
3) ≪ 11) ·

((Lt
4,2 ⊕ Lt

3) ≪ 11 ⊕ (Lt
4,1 ⊕ Lt

3) ≫ 5). Thus the matrices A and Bω are as
follows.1

A =



e1 ⊕ e17 ⊕ e33 ⊕ e49 ⊕ e81
e2 ⊕ e18 ⊕ e34 ⊕ e50 ⊕ e82
e3 ⊕ e19 ⊕ e35 ⊕ e51 ⊕ e83

·
·
·

e128 ⊕ e176 ⊕ e192 ⊕ e208



Bω = ω ·


e81
e82
·
·
·

e96

⊕ ω ·


e97
e98
·
·
·

e112

⊕ ω ·


e177
e178
·
·
·

e192

 .

Using the decomposition in Eq.(1), it then follows that St satisfies the following
expressions.

St = AtS0 +
t−1∑
l=0

Al∆t−l, t ≥ 1

The degree of the minimal polynomial of A is m = 208, which is denoted by

1ei denotes the ith row of the 208× 208 identity matrix.
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φ(x) =
∑m

k=0 ϕkx
k, precisely

φ(x) =x208 + x192 + x188 + x187 + x186 + x185 + x184 + x183 + x182+

x181 + x178 + x177 + x175 + x174 + x170 + x168 + x165 + x163+

x159 + x158 + x157 + x156 + x155 + x152 + x150 + x149 + x146+

x144 + x143 + x140 + x139 + x137 + x134 + x131 + x129 + x128+

x125 + x124 + x123 + x122 + x121 + x120 + x113 + x110 + x106+

x105 + x103 + x100 + x95 + x94 + x90 + x89 + x88 + x87 + x85+

x84 + x82 + x81 + x80 + x79 + x78 + x76 + x74 + x73 + x72+

x70 + x68 + x66 + x64 + x63 + x60 + x59 + x52 + x45 + x42 + x41+

x34 + x33 + x32 + x31 + x29 + x24 + x23 + x21 + x20 + x19 + 1

Since
∑m

k=0 φkA
k = 0, it follows that

m∑
k=0

φkSt+k =
m∑

k=0

φk(A
t+kS0 +

t+k−1∑
l=0

Al∆t+k−l)

=
m∑

k=0

φkA
t+kS0 +

m∑
k=0

φk

t+k−1∑
l=0

Al∆t+k−l

=

m∑
k=0

φk

t+k−1∑
l=0

Al∆t+k−l

=

m∑
τ=0

m−τ∑
r=0

φr+τA
r∆t+τ

Multiplying both the most right and the most left sides of the above equation
by Bω, we got

m∑
k=0

φkω · zt+k = φkBωSt+k =
m∑

τ=0

m−τ∑
r=0

φτ+rBωAr∆t+τ (3)

For brevity, let Cτ =
∑m−τ

r φr+τBωA
r. Thus, with A and Bω, we can easily

compute the vectors Cτ for τ = 0, 1, · · · , 208. Note that there are some indepen-
dence among the noise components of vector ∆t in (2), i.e., the non-balanced
parts of Lt+1

21 and Lt+1
22 do not satisfy the independent assumption, which results

in the smaller correlation coefficients. Since we just want to get the lower bound
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of (3), the noise vector is transmitted into

∆t =



Lt
1,3 · Lt

1,4

0
0

Lt
1,1 · Lt

1,2

0
0

Lt+1
3

(Lt
5,1 ⊕ Lt

5,2) · (Lt
4,2 ⊕ Lt

5,3)
(Lt

5,3 ⊕ Lt
5,4) · (Lt

4,1 ⊕ Lt
5,2)

0
0
0
0



,

where Lt+1
3 = C1⊕C2⊕Lt

2,1 ·Lt
2,2⊕((Lt

4,2⊕Lt
3)≫ 5⊕(Lt

4,1⊕Lt
3)≪ 11)·((Lt

4,2⊕
Lt
3)≪ 11⊕ (Lt

4,1⊕Lt
3)≫ 5). There are three types nonlinear expressions here,

i.e., x1x2, (x1+x3)(x2+x3), (x1+x2)(x3+x4), which have the same correlation
coefficients equal to 1/2. Then we have the correlation coefficients vector for
each bit of state St+1, i.e., 

( 12 ,
1
2 , · · · ,

1
2 )

(0, 0, · · · , 0)
(0, 0, · · · , 0)
( 12 ,

1
2 , · · · ,

1
2 )

(0, 0, · · · , 0)
(0, 0, · · · , 0)
( 14 ,

1
4 , · · · ,

1
4 )

( 12 ,
1
2 , · · · ,

1
2 )

( 12 ,
1
2 , · · · ,

1
2 )

(0, 0, · · · , 0)
(0, 0, · · · , 0)
(0, 0, · · · , 0)
(0, 0, · · · , 0)



. (4)

In order to compute the correlation coefficient of
∑208

k=0 φkω ·zt+k, we just count
the number of 1s in Cτ for τ = 0, 1, · · · , 208 corresponding to the non-zero
components of (4). In our experiments, we have searched all the output masks
ω ∈ GF(216) and found that when ω = 0x4008, we have the best correlation
coefficient 2−9493.

3.2.2 Linear Equation with Greater Correlation Coeffi-
cient

Given a linear equation of consecutive output bits of the form in (3), linear
equations with greater correlation coefficients may be found using the generating
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Table 3.1: A sample result of differential cryptanalysis

rounds t p rounds t p

1 206 0 13 118 2−704

2 204 0 14 114 2−672

3 205 0 15 101 2−571

4 206 0 16 86 2−461

5 202 0 17 73 2−370

6 201 0 18 62 2−297

7 197 0 19 48 2−211

8 186 0 20 27 2−96

9 179 0 21 18 2−54

10 163 0 22 2 0.188382
11 147 2−950 23 6 0.000543607
12 136 2−854 24 1 0.368679

function method. For the minimal polynomial φ(x), which has the hamming
weight 87, we need to find the low weight multiple polynomial h(x) = f(x)φ(x).
Therefore, we should multiply both sides of (3) by an appropriate polynomial
f(x) to obtain a new linear approximation. We have made a thorough search
over all the polynomials f(x) with non-zero constant term and with the degree
up to 29. The maximum correlation coefficient, among all those polynomials, is
smaller then the original correlation coefficient. In the experiments, we found
that the lowest weight of h(x) is 75, but the total correlation is smaller than
2−10000. In summary, it is safe to conclude that Sablier is extremely strong
against linear distinguishing attacks.

3.3 Differential Cryptanalysis

In order to investigate the immunity of Sablier against differential attacks, we
introduce a single bit difference at each internal state position and try to trace
the propagation of this difference. We gather the difference biases after sev-
eral number of initialization rounds and try to distinguish it from the purely
random case. We statistically test whether a output difference bit is uniformly
distributed or not, i.e., the null hypothesis H0 is that the considered bit is in-
deed uniformly distributed and the alternative hypothesis H1 is the opposite.
Table 3.1 is a sample result when n = 210 and when the difference is introduced
at (L1,1)[0]. Precisely, let n be the number of samples, m be the number of
times a random output bit is 1 and θ be the event that m < ml or m > mh for
the given thresholds ml and mh. If H0 is true, then p0 = 1 −

∑mh

i=ml

(
n
i

)
( 12 )

n,
thus the expected occurrences of θ during 208, which is the size of Sablier’s
state, experiments is t0 = 208 · p0. Thus, ml and mh can be determined by
the relation t0 ≤ 1, i.e., only one output difference bit would be considered as
non-random on average when H0 is true. Assume that θ occurs t times during
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the experiments and p =
∑208

i=t

(
n
t

)
pt0(1−p0)

208−t ≤ 0.05, then we detect a small
probability event and conclude that Sablier is non-random.

Our experiments show that the probability p is never smaller than 0.05 after
23 rounds of initialization for any position of the internal state. In other words,
Sablier is non-distinguishable with the purely random case after 23 rounds of
initialization with respect to the single bit differential cryptanalysis.

3.4 Cube Attacks and Variants

Cube attacks, formally introduced by Dinur and Shamir [6], is a generic key
extraction technique exploiting the simple algebraic structure of some out-
put bits after a reasonable size of cube summation. The success of cube at-
tacks highly depends on the sparsity of the superpoly. Accordingly, we esti-
mate the degree, the referenced variables and the monomial density for each
keystream bit and each internal state bit, and take them as the immunity
indices against cube type attacks [1, 6, 7]. Since a fully symbolic calcula-
tion of the algebraic normal form (ANF) is impossible after a few number
of rounds, here we ignore the possible cancellations between the monomial-
s. Denote the three quantity by deg(t), ref(t) and den(t) for a monomial term
t respectively, then ref(t1 · t2), deg(t1 · t2) and den(t1 · t2) are estimated as
ref(t1)∪ ref(t2), min(|ref(t1t2)|, deg(t1)+deg(t2)) and den(t1)den(t2) respective-
ly and ref(t1+ t2), deg(t1+ t2) and den(t1+ t2) are estimated as ref(t1)∪ ref(t2),
min(|ref(t1t2)|,max(deg(t1), deg(t2))) and den(t1) + den(t2) respectively.

Our experiments show that the degree and the referenced variables of each
keystream bit reach their maximums after 16 rounds of initialization, the ref-
erenced variables of each internal state bit reach the maximum after 20 rounds
of initialization and the degree of each internal state bit reaches the maximum-
s after 21 rounds of initialization. The monomial density of each keystream
bit reaches the maximum value which can be represented by a 64-bit double
floating-point variable after 9 rounds, whereas the number is 12 for each inter-
nal state bit. Thus, we conclude that the full 64-round Sablier is secure against
the current form of cube type attacks.

3.5 Guess and Determine Attacks

First note that in Sablier, if the cipher is run from a certain state for 4 successive
rounds, we can get 5 keystream words, namely

zi = Li
2,2 ⊕ Li

3 ⊕ Li
5,3, for i = t, t+ 1, t+ 2, t+ 3, t+ 4.

Then we can recover all the state words with a complexity of 2160 following the
process shown in Table 3.2, where 0.5 represents a half round. In the guess-
and-determine path in Table 3.2, we have considered the effect of the redundant
equations, i.e., the equations which will filter out some wrong candidates and
thus reduce the complexity in the following stages, and the information leakage
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Table 3.2: A guess-and-determine path

guessed restored complexity

Lt
1,1, L

t+2
4,1 , Lt+3

5,3 ,

Lt+2
1,2 , Lt+2

5,2

Lt+3
5,4 , Lt+4

5,3 280

Lt
1,3 Lt+0.5

4,2 296

Lt
1,4 Lt

2,1, L
t+1
1,3 2112

Lt+1
1,2 Lt

1,2, L
t+0.5
4,1 , Lt+1

1,1 , Lt+1
1,4 , Lt+2

1,3 2128

Lt+1
5,2 Lt+1

5,1 , Lt+0.5
2,1 , Lt+1

4,1 2144

Lt+0.5
2,1 Lt+0.5

2,2 Lt+1
5,3 2152

Lt+1
5,3 Lt+1

5,4 Lt+1
5,4 , Lt+0.5

3 , Lt+1
2,1 , Lt+1

2,2 , Lt+1
3 , Lt+1

4,2 , Lt+4
4,2 ,

Lt+2
5,1 , Lt+2

5,3 , Lt+2
5,4 , Lt+1.5

2,1 , Lt+1.5
2,2 , Lt+1.5

3 ,

Lt+1.5
4,1 , Lt+1.5

4,2 , Lt+2
1,1 , Lt+2

1,4 , Lt+2
2,1 , Lt+2

2,2 ,

Lt+2
3 , Lt+2

4,2 , Lt+3
5,1 , Lt+3

5,2 , Lt+2.5
2,1 , Lt+2.5

2,2 ,

Lt+2.5
3 , Lt+2.5

4,1 , Lt+2.5
4,2 , Lt+3

1,1 , Lt+3
1,2 , Lt+3

1,3 ,

Lt+3
1,4 , Lt+3

2,1 , Lt+3
2,2 , Lt+3

3 , Lt+3
4,1 , Lt+3

4,2 , Lt+4
4,1 ,

Lt+4
5,1 , Lt+4

5,2 , Lt+4
5,4 , Lt+3.5

2,1 , Lt+3.5
2,2 , Lt+3.5

3 ,

Lt+3.5
4,1 , Lt+3.5

4,2 , Lt+4
1,1 , Lt+4

1,2 , Lt+4
1,3 , Lt+4

1,4 ,

Lt+4
2,1 , Lt+4

2,2 , Lt+4
3

2160

Lt+0.5
2,2 Lt

2,2, L
t
3, L

t
5,3, L

t
5,1, L

t
5,2, L

t
4,2, L

t
5,4, L

t
4,1 2160

provided by some nonlinear equations in the attack, e.g., if a = bc, then the
complexity of guessing a conditioned on b or c is 28 instead of 216 on average.

Another approach to launch a guess-and-determine attack on Sablier is to
collect sufficiently many algebraic equations which associate the internal state
words with the keystream words and try to solve these equations by some al-
gebraic methods. Here is just one try. To recover 13 internal state words at
time i, we first express the keystream words zj ’s as polynomials of those state
words, the degrees of which are listed in Table 3.3. For convenience, we ignore
the impact of the rotational shift in step 2 and 7 in the keystream generation,
which will introduce some new variables otherwise. Then we test and find out
that whatever we choose at most 5 words to be guessed, we can only get an
algebraic equation system with at least 8 unknown variables and degree of at
least 8. Meanwhile, these equations systems are not sparse, and it seems hard
to solve the system out in a reasonable time. If the impact of the rotational
shift in step 2 and 7 is considered, or we express Sablier in a bitwise way, the
equation systems will be more complex and be more difficult to solve.

Maybe what we found is not the best guess and determine attack, we feel
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Table 3.3: Degree of zj ’s

j ≤ i− 1 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4 ≥ i+ 5

Degree of zj ≥ 12 7 1 2 4 7 10 ≥ 12

that it is infeasible to launch a guess and determine attack on Sablier with a
complexity less than 280.

3.6 Rotational Cryptanalysis

In the rotational cryptanalysis, the adversary tries to investigate the propagation
of the rotational relations through the cryptographic transformations. The first
step of such an attack is to define a rotational pair of the input state. For
example, in [12], the state of the block cipher Threefish is defined as a word
I, and a rotational counterpart of I is created by bitwise rotation operation of
itself; in [13], a rotational pair of the hash function Keccak is created by bitwise
rotation operation of the corresponding lane in the internal state.

Note that Sablier is a stream cipher which have the output function to
generate the keystream and due to the impact of the bitwise rotation of the
concatenations in step 2 and 7, it seems hard to define a rotational pair of the
internal state and less possible to observe some kind of rotational difference in
the keystream word. Further, there are constants both in the initialization and
in the keystream generation phase, which will make the compensated vectors
used to facilitate the rotational attack more difficult to find than the case in a
block cipher.

Now let us consider a modified version of Sablier, where the bitwise rotations
in step 2 and 7 are applied to the two internal state words separately. Thus
we can create a rotational pair by the bitwise rotation operation of each state
word. Here we use some techniques in [13] to analyze Sablier.

We first introduce three types of rotational relations between the bits. For
a bit x and its corresponding rotational bit y, if x = y with probability 1, we
call them having an equal relation(E); if x = y with probability 0, we call
them having an opposite relation(O); if x = y with probability 1

2 , we call them
having an unknown relation(U). In Sablier, there are three basic operations:
bitwise xor(⊕), bitwise and(·) and bitwise rotation(≫). The bitwise rotation
operation preserves the rotational relations and the other two basic bitwise
operations propagate the rotational relations as follows. Another impact of

⊕ E O U
E E O U
O O E U
U U U U

· E O U
E E U U
O U U U
U U U U
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rotational relation is xoring with a constant. For a bit x and its corresponding
rotational bit y, if x and y is xored with the same constant, their rotational
relation is preserved; if only x (or y) is xored with an ‘1’, their rotational
relation is changed as E → O, O → E, and U → U .

For the cryptanalysis point of view, the more rotational pairs with the ro-
tational relations of E and O exist in the internal state, the more advantages
he can gain to mount an attack. We have tested for the modified version of
Sablier and found that after 24 steps of initialization steps, far from the 128
steps, all the rotational pairs have an unknown relation. Thus, we feel that
the original full-round version of Sablier will be even more strong against the
rotational cryptanalysis.

3.7 Security of the Authenticated Mechanism

Now we consider the security of the authenticated mechanism of Sablier.

3.7.1 Toeplitz Matrices

Toeplitz matrices are characterized by having fixed diagonals. More precisely,
each left-to-right diagonal is fixed, i.e., if k− i=l−j for any indices 1 ≤ i, k ≤ n,
1 ≤ j, l ≤ m, then Ai,j = Ak,l. Note that an n × m Toeplitz matrix is fully
described by its first column and first row, i.e., by n+m− 1 elements.

Any given sequence s of n+m− 1 bits is associated with an n×m Toeplitz
matrix Ts. We map the first n elements of s into the first column of Ts starting
from the bottom, i.e., Ts(n, 1) = s1, ..., Ts(1, 1) = sn and then the last m bits
of s into the first row of Ts, i.e., Ts(1, 1) = sn, Ts(1, 2) = sn+1, ..., Ts(1,m) =
sn+m−1. We say that s generates Ts.

Toeplitz matrices of dimension n×m can be used to hash message of length
m by multiplying the message, seen as a column vector, by the matrix. The
resultant hash value has length n. See the following equation.

S1,1 S1,2 . . . S1,m

S2,1 S2,2 . . . S2,m

...
...

...
Sn,1 Sn,2 . . . Sn,m

 ·


M1

M2

...
Mm

 =


H1

H2

...
Hn

 (3.1)

Where Si,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m is the bit in Toeplitz matrix, Mj is the
bit of a message and Hi is the bit of the resultant hash value. For each Mj , if
it is zero we do nothing and if it is one we update H ← H ⊕Sj , where Sj is the
jth column of the matrix.

It is well-known that the family of Toeplitz matrices Ts with s chosen at
random constitutes a strongly universal family of hash functions [20]. This
scheme has been improved by [17] by using LFSR to construct the Toeplitz
matrix, which only requires n-bit random bits instead of n +m − 1 bits. The
resultant family is still almost universal, or ϵ-balanced.
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3.7.2 ϵ-biased Distribution Sequences

ϵ-biased distribution were introduced by Naor et.al. [21] as a tool for construct-
ing small sample spaces, or more generally as a tool for replacement of truly
random sequences which is more compact and easier to generate sequences.

Definition 1 Let S be a distribution on sequences of length l. Let ⟨α, s⟩ denote
the inner product modulo 2 between α ∈ {0, 1}l and s ∈ {0, 1}l. Then,

1. S is said to pass the linear test α with bias ϵ if |Prob(⟨α, s⟩ = 1)−1/2| ≤ ϵ
(the probability taken over the choice of s from the distribution S).

2. S is said to be an ϵ-biased distribution if it passes all linear tests α ̸= 0
with bias ϵ.

The case ϵ = 0 corresponds to the uniform distribution. Therefore, ϵ-biased dis-
tribution can be viewed as approximations to the uniform distribution. However,
even for very small ϵ, there may be significant distinctions between ϵ-biased and
uniform distributions.

3.7.3 Substitution Attacks

The substitution attack is a powerful attack [22], in which the attacker tries
to replace a legitimate message-tag pair (m, t) with another pair (m′, t′) of his
choice and the receiver cannot notice this forged pair. Here we will consider this
kind of attack as the main threat to the authentication scheme and analyze the
success probability of this attack.

The authentication scheme used in Sablier can be regarded as a L×t Toeplitz
matrix based hashing scheme [17, 18], where L is the message length and t is the
tag length. It has been proved in [18] that if the Toeplitz matrix is generated
by a sequence selected from an ϵ-biased distribution S, then the hashing scheme
that uses multiplication of the message by the Toeplitz matrix as the message
hash is ( 1

2t + ϵ)-opt-secure, where n is the length of the tag size. This means
that the probability of a successful substitution attack is lower than or equal
to 1

2t + ϵ. This bound was corrected and extended to 1
2t + 2 · ϵ in [5]. Here ϵ

can be regarded as a measurement of the randomness in the keystream sequence
used for authentication, from the previous linear cryptanalysis in Section 3.2, we
know that ϵ≪ 2−32 for Sablier. We can thus claim that the success probability
of the substitution attack is bounded by approximately 2−32 and the best attack
is to exhaustively guess the tag for each message.

Since the sequences used to construct the Toeplitz matrix are extracted
from the state L4,1 during the keystream generation phase and it is hard to
evaluate the ϵ theoretically, we have conducted a random experiment to evaluate
ϵ according to the definition of ϵ-biased distribution sequences.

From Fig 3.1, the bias ϵ decreases with the growth of the sequence length.
Note that these results are better than that in the Figure 3 of [5], e.g., give
sequence length L = 20, the bias in Fig 3.1 is lower than 2−9 while the biases
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Figure 3.1: Evaluation of ϵ

of the construction in [5] and [17] are approximately 2−4 and 2−5 respective-
ly, which demonstrates that the masking sequences used for authentication in
Sablier behave more randomness.

From the study in [5, 15], avoiding reuse of the key-IV pair is crucial to the
security of the authentication. An attacker who is able to tweak a message-tag
pair and have it accepted, this happens with probability 2−w, will be able to
perform subsequent forgeries with probability 1 if the key-IV pair is reused.

3.7.4 Comparisons

The 3GPP algorithm 128-EIA3 [10], which uses stream cipher ZUC [11], utilizes
two different keys with similar IVs or the equal ones to generate two keystream
sequences: one for encryption and one for authentication. Hence, one needs
to utilize two implementations of ZUC or an expansive buffering. While the
authentication mechanism used in Sablier is more compact from a hardware
point of view as both the authentication and encryption share a single instance
of the cipher.

The stream cipher Helix [16] and a tweaked cipher Phelix (a submission
to eSTREAM), which use the message as part of the input to the keystream
generator, allow message authentication for free. After encrypting the plaintext,
one can generate a constant number of additional stream blocks and output
those blocks as an authenticator of the plaintext. However, incorporating the
plaintext into the generator takes time for each block and the attack can have
some limited control to the keystream generator, which is a security threat.
Thus, we do not follow the design criteria of Helix to design our authentication
mechanism.
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Chapter 4

Features

Sablier has the following useful features.

4.1 A New Stream Cipher Structure

Sablier is designed according to a new internal state structure in stream cipher
design, called the Sablier structure. In general, this structure can be imaged as
a sandglass or a cocktail shaker. The 3-dimensional sandglass has two connected
vertical glass bulbs allowing a regulated trickling of the sand/material form top
to the bottom. The registers L1, L2 are the higher glass bulb and L4, L5 are
the lower glass bulb. L3 is the connected passage of the sandglass. The first
half round of our algorithm is the process of sand trickling from the top to the
bottom. For the sandglass, once the top bulb is empty, it can be turned upside
down to begin the sand trickling process again. Thus the second half round

L1

L2

L3

L4

L5

Sw
iveled 180

 

 

 

 

Figure 4.1: The Sablier structure

of Sablier just exchange the registers L1, L2 and L4, L5, then execute the same
process as in the first half round. As we can see, one round of our algorithm is
just like the process of the sandglass regulated trickling from top to the bottom
twice.
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Table 4.1: The gate count used for different functions.

Function Gate Count
D flip flop 6
NOT 0.5
AND 1.33
XOR2 2.63

This is a new internal structure in stream ciphers. Unlike the previous LFSR-
based structure and the usual linear/nonlinear combined structure in Grain and
Trivium, this new structure natively have some immunity against the previously
developed cryptanalysis methods such as the fast correlation attacks [19]. In
the linear cryptanalysis of Sablier, we find that this new structure has good
resistance against the linear cryptanalysis. Besides, a new structure also seems
good for bio-diversity in the design of stream cipher.

The structure of Sablier can be transform to a special generalized Feistel
structure, which is shown in Section 5.1. Further, from L1 to L2 and L2 to L3

we use a nonlinear function F , which consists of 16 the Keccak χ functions in
parallel. This nonlinear function χ is translation-invariant in all directions and
has algebraic degree two. It has good differential propagation and correlation
properties. We have chosen it for its simple nonlinear propagation properties,
its simple algebraic expression and its low gate count: one xor, one and and
one not operation per state bit. Moreover, we added a linear transform layer in
L5 and cyclic shift in L3 to provide the linear diffusion.

The authentication mechanism of Sablier is similar to the one used in Grain-
128a. But here we made some modifications to make it more efficient without a
penalty in security. In Grain-128a, the keystream is used to mask the message
bits which will reduce the speed of the whole algorithm when authentication is
activated. Instead, here we adopt the leak extraction strategy in [3] to avoid
this problem.

4.2 Hardware Performance

The hardware implementation of Sablier is simple and efficient due to the simple
nonlinear function and linear transformation in the design. Precisely, Sablier
uses 208-bit memory for storing the state registers L1, L2, L3, L4, L5. In one
round of the algorithm, we use three nonlinear functions, which means that we
need 48 χ functions. From the keystream generation of Sablier in Chapter 1,
there are 6 16-bit xor in L5 and 2 16-bit xor in L4 and 1 16-bit xor in L3. Thus
in total, for one round of Sablier, we need 9 16-bit xor. In the output function
we need 2 16-bit xor. We choose a gate cont of 6 for a flip flop. The following
table lists the factors chosen in our implementation. Thus in total in one round
we need 176 xor2 and 48 χ functions. The Sablier may require 224 xor2s, 48
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ands, 48 nots and 208 flip flops, i.e., about 1925GE. We feel that Sablier is
definitely more efficient than AES-GCM in constrained hardware environments.
Besides, since Sablier will output 16-bit per clock cycle, it is expected to be 16
times faster than Trivium in hardware.

4.3 Justification for the Recommended Param-
eter Sets

From the security analysis in Chapter 3, we feel that Sablier is secure with
respect to 80-bit key length and 32-bit tag size.
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Chapter 5

Design Rationale

In this section, we motivate the choices we have made in the processing of
designing Sablier. The generic criterion we follow in the design is a relatively
good tradeoff between the security, efficiency and agility in constrained hardware
environments. Of course, we put more weight on the security aspect, as we
consider the security as the most important criterion. We expect to provide
a comfortable security margin against both the known and unknown attacks.
Here we claim that the designers have not hidden any weaknesses in this cipher.

5.1 Design Strategy and Algorithm Structure

In general, we follow the leak extraction strategy in [3] in the design of Sablier,
but with some small differences. Precisely, the original leak extraction is applied
to a block cipher, while in Sablier, we expect the updating function of the
internal state to be a random permutation after sufficiently many initialization
rounds and the leak extraction is applied to the underlying permutation at a
low ratio, i.e., the ratio between the leaked state and the whole state is as small
as possible to thwart the guess-and-determine attacks. Besides, the direct leak
extraction is only applied to the authentication process, not in the encryption.
We adopt a simple linear output function in the keystream generation phase to
make the leak extraction more difficult to exploit in various attacks.

Unlike the traditional LFSR-based stream ciphers and the usual nonlin-
ear/linear shift registers combined structure in Grain and Trivium, Sablier
adopts a new internal structure to generate the keystream, only using bitwise
xor, bitwise logical and and bitwise intra-word rotation. The new internal struc-
ture is motivated by the mixing process of the sand in a sandglass, or can be
seen as the shaking of the cocktail in a container in a bar. We first mix or shake
the container for a large number of times, which is just the initialization phase
of Sablier. After that, something will be emitted after each mixing or shaking
round as keystream.

Fig.5.1 gives an equivalent high-level structure of one-round Sablier. From
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Fig.5.1, it is easy to prove that the state updating function of Sablier is a
permutation of the internal state.

L1 L2 L3 L4 L5

F

F

P

L1 L2 L3 L4 L5

F

F

P

›››5

›››5

4 42 21

Figure 5.1: The equivalent high-level structure of one-round Sablier

5.2 Choice of the Nonlinear Function χ

Since we want to only use the bitwise logical and in our new design, we adopt
the nonlinear function χ in Keccak to be the only nonlinear function in Sablier.
During the cryptanalysis of Keccak, the χ function is known to have good cryp-
tographic properties, i.e., its simple nonlinear propagation properties, simple
algebraic expression and its low gate count. For more details, please refer to [2]
for a full description.

5.3 Choice of Linear Transformation Matrix

The updating of the L5 layer can be expressed as:
L5,1

L5,2

L5,3

L5,4

 = M


L5,1

L5,2

L5,3

L5,4

+


L4,2

0
0

L4,1

 ,M =


1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

 .
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Obviously, the matrixM has a functionality of linear diffusion in L5. The branch
number of M does not reach the maximum, however, M has an advantage in
hardware implementing that the updating of states in L5 layer will not slow
down the updating of the other states. Besides, the concatenation and 32-bit
right rotation are used together to destroy the data unit boundary and provide
some linear diffusion functionality as well.

5.4 Choice of Authentication Mechanism

Since Sablier aims to be efficient in hardware implementation, we refer to the au-
thentication mechanism of Grain-128a which is cost-efficient in hardware. How-
ever, compared to Grain-128a, in which the first 64-bit pre-output keystream
bits and half of the keystream bits generated are used for authentication, we ex-
tract a different position in the internal state of Sablier as the masking sequence
for the authentication. In this way, the authentication mechanism will not slow
down the encryption process. Both the cipher with authentication and the one
without authentication have the same throughput rate, which can ensure the
encryption (decryption) speed.

Note that we could have created two keystreams: one for encryption and
one for authentication. This would in a sense allow us to double the throughput
rate, but could have disastrous drawbacks if we are not careful about the details,
and we have decided to stick with the much safer approach now adopted in the
design.

5.5 Choice of Support for Variable Tag Lengths

Since Sablier is a lightweight cipher and its potential applications are for some
resource constrained environments, we choose 32 as an upper bound of the tag
size. This bound can easily be upgrade to 64 bits if we double the size of
both the accumulator and the shift register, requiring more hardware resources.
Besides, the size of the pre-output keystream blocks for the initialization of the
authentication is raised to 8, which means a prolonged initialization rounds of
the cipher. Sablier without authentication will not output the keystream used
for the authentication. This will avoid an attack scenario mentioned in section
5.7 of [4].

5.6 The Unknown Weaknesses

In the linear cryptanalysis of Sablier, we have considered the LSCA method. In
the LSCA method, we need continuous 209 keystream words to find a bias. We
find that our algorithm is extremely strong against this type of linear cryptanal-
ysis. Maybe there exist other linear cryptanalysis methods which could find a
better correlation coefficient, we strongly feel that since the security margin in
the LSCA method is quite large, it is infeasible to find a linear distinguisher with
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the correlation coefficient greater than 2−40. Further, we expect the extremely
large security margin in Sablier with respect to the linear distinguishing attacks
will provide some resistance against the unknown attacks.
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Chapter 6

Intellectual Property

Sablier is not covered by any patent and is free for any application in practice.
If any of this information changes, the submitter will promptly (and within

at most one month) announce these changes on the crypto-competitions mailing
list.

32



Chapter 7

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.
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Chapter 8

Test Vectors

This section provides the test vectors consisting of a 80-bit key, a 80-bit initial-
ization vector, and the first 256 bytes of message.

The message is as follow.

0001 0203 0405 0607 0809 0a0b 0c0d 0e0f 1011 1213 1415 1617 1819

1a1b 1c1d 1e1f 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233

3435 3637 3839 3a3b 3c3d 3e3f 4041 4243 4445 4647 4849 4a4b 4c4d

4e4f 5051 5253 5455 5657 5859 5a5b 5c5d 5e5f 6061 6263 6465 6667

6869 6a6b 6c6d 6e6f 7071 7273 7475 7677 7879 7a7b 7c7d 7e7f 8081

8283 8485 8687 8889 8a8b 8c8d 8e8f 9091 9293 9495 9697 9899 9a9b

9c9d 9e9f a0a1 a2a3 a4a5 a6a7 a8a9 aaab acad aeaf b0b1 b2b3 b4b5

b6b7 b8b9 babb bcbd bebf c0c1 c2c3 c4c5 c6c7 c8c9 cacb cccd cecf

d0d1 d2d3 d4d5 d6d7 d8d9 dadb dcdd dedf e0e1 e2e3 e4e5 e6e7 e8e9

eaeb eced eeef f0f1 f2f3 f4f5 f6f7 f8f9 fafb fcfd feff

IV = 0000 0000 0000 0000 0000

key = 0000 0000 0000 0000 0000

ciphertext =

b05c d25c b607 004b b324 1c01 2d2b 3298 66eb 2f86 b74f 7810 a24a

5da4 268e ebe2 289e c311 a2a0 6da4 dde2 b70c 5ff4 5a22 178e 351f

5a2e d16c 31bf 15c8 d890 5a6d 72ab 2292 3dac ccbe 0023 6260 8dc3

7a62 78cb 0af1 c24c b74b 634e aaa1 9aad dcae fc13 45de 5c86 3f4c

99b4 10bc 995c 9fd5 f4a9 e45b e035 374c be89 9653 3eab 1070 4440

1821 1d85 feea 3796 ee38 9ed7 4423 ca03 2ddf e1ae ceb7 ecd2 9a50

fe4d ac85 b304 80af 1cf3 1974 8624 f102 6184 5dd4 2a13 804c 71b4

24d4 b4a1 db10 0fb3 2321 568d 0dad dd47 7ad1 702b df72 b4c4 5ae6

283d 0ebb 8fe3 7dbc f7f0 da49 897a 26a1 1c6a 59e2 6329 43cd 7492

7f5e 14d5 9f88 d734 1b4d 66ea 6570 77da 1693 e1b 15e8f

tag = 7287 db93

IV = 0001 0203 0405 0607 0809

34



key = 0001 0203 0405 0607 0809

ciphertext =

a97f 21f9 e4ad 323d 5d00 18f8 2aed 79fd 1a2e 822e 424b 8187 e0f9

6507 8534 2f8a 8f41 cc23 a7e5 a979 dfd9 cd9a 4cb3 1c25 4c0c ee6c

dbbb befe ccc0 f49d 399a 303c 1ae1 6a6c 9ee6 dbe6 28f9 2dd8 0ee9

2783 eed4 14b0 9b51 36c4 bca5 3309 3c28 b73e 64ac c124 aa76 7192

9f16 f5f5 5665 1d2b d3f7 4ee9 e0c5 fd1a 0a6f b9f1 73ae 0104 c617

7406 9dbc 7b00 681c e931 5d85 739d 4925 7e06 6798 fd90 7668 8aa2

d409 29ff 5e7c c50e db75 8e27 2a5d e657 4d47 49dc fe3e 0212 f4ce

a26c 9b12 8830 9025 24f1 21db 75e4 7a36 ef44 4173 0592 e600 2c36

e0dd 9749 873e 35fa f360 28fb 330a 5e5f df5c a799 b92d d8ba f1d5

688a 16de e070 94ef 48e8 1af1 e6f9 7cef a49c 3fd3 4fee

tag = 5706 fbdd
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