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Chapter 1

Specification

SHELL is a block-cipher-based authenticated encryption mode. We recommend
AES [1] as the underlying block cipher of SHELL, since it is the most widely
used block cipher nowadays, The specific instantiation of SHELL with AES is
denoted as SHELL-AES in this report.

1.1 Parameters

SHELL uses the following parameters.

• Block cipher E : {0, 1}k × {0, 1}n → {0, 1}n.

• A set of auxiliary permutations {APi}: APi : {0, 1}ki × {0, 1}n →
{0, 1}n. Note that ki is not necessarily equal to k.

• Key length: k bits or 2k bits.

• Nonce length `nonce: a positive integer such that 1 ≤ `nonce < n.

• Tag length `tag: full size `tag = n (no truncation).

• Frame width w: a positive integer.

• Maximum plaintext block length `pt: `pt ≤ 2n−`nonce−1.

• Maximum number of plaintexts under the same key: 2`nonce

• The number of auxiliary permutations d: a positive integer.

1.2 Recommended parameter sets

We recommend the following as the default parameters.

• Block cipher E: AES-128. Thus k = 128 and n = 128.
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• A set of auxiliary permutations {APi}: all 4-round AES permutations
with independent round keys.

• Key length: 128 bits.

• Nonce length: `nonce = 64 or 80.

• Tag length: `tag = 128.

• Frame width: w = 256.

• #auxiliary permutations: 4 ≤ d ≤ 8.

1.3 Authenticated encryption mode SHELL

As an authenticated encryption mode, the encryption algorithm EK of SHELL
takes a nonce N , an associated data A and a plaintext M as input, and produces
a ciphertext C that has the same length with M and a tag value T as output.
That is (C, T )← EK(N,A,M). The decryption algorithm DK of SHELL takes
a nonce N , an associated data A, a ciphertext C and a tag T as input, and
outputs either a plaintext M that has the same length with C if the tag is valid,
or ⊥ otherwise. That is M/⊥ ← DK(N,A,C, T ).

1.3.1 Notations

Σ denotes the set {0, 1} and Σn denotes the n-bit set {0, 1}n. Moreover, (Σn)≤l

denotes the set of all binary sequences those have a bit length of a multiple of n
and have a bit length at most nl, namely (Σn)≤l =

⋃l
i=1 Σin. (Σn)+ denotes the

set of all binary sequences with a bit length of a multiple of n, and Σ∗ denotes
the set of all finite-length binary sequences.

For a finite set X , X
$← X denotes that an element X is uniformly seleted

from the set X . For X1, X2 ∈ Σ∗ and have equal length, X1 ⊕X2 denotes the
bitwise XOR. For X1, X2 ∈ Σ∗, X1‖X2 or simply X1X2, denote their concate-
nation. For X ∈ Σ∗, |X| denotes its bit length. For a finite set X , ‖X‖ denotes
its carnality.

For a bit string X and an integer s with s ≤ |X|, msbs(X) denotes the s
MSBs of X, and lsbs(X) denotes the s LSBs of X.

Throughout this report, the block sizes of permutations and block cipher are
fixed as n. Then for X ∈ Σn` with ` ≥ 1, X1 . . . X`

n← X denotes that X is
partitioned into n-bit blocks such that X1‖ · · · ‖X` = X.

1.3.2 Structure Overview of SHELL

We present a high-level overview of the structure of SHELL, which is also shown
in Figure 1.1. We will omit the description of the decryption procedure since it
can be trivially obtained from the encryption procedure.
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The nonceN is input to a Pseudo-Random-Permutation (PRP) layer CENC [11],
which maps nonce to random strings with a provable security beyond the birth-
day bound. The output consists of two values (S, F ). The first value S has the
same length with plaintext M , and is XORed to the plaintext: I ← S ⊕M .
The second value F is one-block long, and will be used in the tag generation
algorithm. Moreover, the checksum of I is computed as I1⊕ I2⊕· · ·⊕ It, where
I1I2 . . . It

n← I, and the checksum value is used in the tag generation.

The associated data A is input to a message authentication code PX-MAC,
which is newly designed by us and utilizes universal hash functions. The output
is denoted by V and V is one block long.

Then, V and I are input to an encryption layer called PX-Enc, which shares
the same basic primitives with PX-MAC and thus is also universal-hash-based.
The outputs consists of two values (U,Z). The first value U is one block long,
and is used in the tag generation. The second value Z has the same length with
I, and is used to produce the ciphertext.

Then I is input to a PRP layer that utilizes parallel XEX tweakable ci-
phers [23]. The output is the ciphertext C.

Finally, F , the checksum of I and U are input to tag generation, and a tag
T is produced.

The above structure overview also well explains why we named it SHELL
as shown in Figure 1.2. Our design consists of three layers. The upper and the
lower layers utilize strong cryptographic primitive like pseudo-random-permutations,
e.g., full-round AES. The middle layer utilizes much weaker cryptographic prim-
itive like differentially-uniform permutations, e.g., four-round AES with inde-
pendent round keys.

Moreover, we would like to regard the universal hash layer, more precisely
PX-MAC and PX-Enc, as the main novelty of this design (to our best knowl-
edge), or in other words the meat of SHELL.
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Figure 1.1: Structure Overview of SHELL

Figure 1.2: The Name “SHELL”
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In the next sections, we will describe the specification of each layer.

1.3.3 Preprocessing: Key Setup

SHELL utilizes a block cipher E, and needs to key the block cipher E twice by
using two keys K and K ′.

Recall that SHELL uses a set of d auxiliary permutations denoted as {AP1, AP2,
. . . , APd}. Throughout this report, we use Ki to denote the secret key of APi
for 1 ≤ i ≤ d. We note that |Ki| is not necessarily equal to |K|.

For PX-MAC and PX-Enc, in total dmask keys denoted as {Kmask
1 ,Kmask

2 , . . . ,
Kmask
d } are necessary in order to construct universal hash function from the

auxiliary permutations. Moreover, a subkey L is necessary for PX-MAC to dis-
tinguish messages with multiple block length from those with a length that is
not a multiple of n.

Finally, a subkey L′ is utilized to tweak ciphers following XEX method.

Key Setup. All these key materials are derived from EK as detailed below.

• K ′ = K ⊕ 0xF0F0 · · · F0, if single key K is used as recommended. We
assume that K has an integer number of bytes.

• L = EK(0).

• SK = K1‖K2‖ · · · ‖Kd is the first |SK| bits of EK(1)‖EK(2)‖ · · · ‖EK(a),
where a = d|SK|/ne.

• Kmask = Kmask
1 ‖ · · · ‖Kmask

d = EK(a+ 1)‖ · · · ‖EK(a+ d).

• L′ = EK(1n).

1.3.4 PRP layer for nonce: CENC

CENC (Cipher-based ENCryption) is a nonce-based encryption mode proposed
by Iwata [11]. It has improved the security of counter (CTR) encryption mode
beyond the birthday bound, and meanwhile has also remained most advantage
features of CTR mode including highly efficiency, fully parallel and etc.

CENC uses two parameters: a nonce length `nonce with 1 ≤ `nonce < n, and
a frame width w. Moreover, for each nonce value N , CENC(N) is restricted to
make at most 2n−`nonce block cipher calls.

Let `m denote the block length of plaintext M , which is `m = d|M |/ne.
Then CENC(N) produces `m + 1 blocks long string Q. Moreover, to produce
every w blocks of the string Q, CENC(N) needs to make w + 1 block cipher
calls to EK . So we have that

(`m + 1)(w + 1)

w
≤ 2n−`nonce =⇒ `m ≤

w2n−`nonce

w + 1
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Thus, SHELL restricts the maximum block length of plaintext `pt as

`pt ≤ 2n−`nonce−1.

The specification of CENC is described in Fig 1.4. Nonce N is firstly padded
to a full block (n bits) by adding ‘0‘s, which is denoted as ctr. To produce the
(i+1)-th frame of the string Q, where i counts from 0, CENC computes a value
Gi ← EK′(ctr

′), where ctr′ = ctr+i(w+1), and then computes the i-th frame
as Siw+1‖Siw+2‖ · · · ‖Siw+w, where Siw+j = EK′(ctr

′ + j)⊕Gi for 1 ≤ j ≤ w.
Let Q = S1‖S2‖ · · · ‖S`m+1.

Note that the last frame may not be w blocks, if `m is not a multiple of w.

Let S be the first |M | bits of Q, and F be the last n bits of Q, that is
S = msb|M |(Q) and F = lsbn(Q).

Finally CENC(N) outputs (S, F ).
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1.3.5 Universal hash layer for associated data: PX-MAC

PX-MAC is a new message authentication code (MAC) designed by us. It uti-
lizes a block cipher EK and a set of d auxiliary permutations {AP1, AP2, . . . , APd}.
Without of generality, assume that each APi is keyed, and denote its underly-
ing secret key by Ki. Denote the candidate space of Ki by Ki. APi,Ki is to

denote that APi is keyed by Ki. Define SK
def
= K1‖K2‖ · · · ‖Kd, and denote its

candidate space as SK.

Auxiliary permutations. Each auxiliary permutation should have a small
maximum expected differential probability (MEDP). Denote MEDP of the aux-
iliary permutation APi as εi for 1 ≤ i ≤ d. Let ε be max{ε1, ε2, . . . , εd}.

If an auxiliary permutation is unkeyed, then it should have a small value of
maximum differential probability (MDP).

Parallel-auxiliary-permutation-Xor (PX). We define a keyed function
called PX that maps (Σn)≤d to Σn.

PX keyed function is built based on the set of auxiliary permutations. It
uses two keys. One key is SK, which we recall is the secret keys K1‖K2 . . . ‖Kd

for the auxiliary permutations {AP1, AP2, . . . , APd}. The other key is Kmask

which is used to mask the inputs to the auxiliary permutations. More precisely,
Kmask is partitioned into n-bit blocks:

Kmask
1 Kmask

2 . . .Kmask
d

n← Kmask,

such that Kmask
1 ‖Kmask

2 ‖ . . . ‖Kmask
d = Kmask, and Kmask

i is used to mask the
input for auxiliary permutation APi for 1 ≤ i ≤ d.

The computation procedure on an input X ∈ (Σn)≤d is as follow, which is
also illustrated in Figure 1.5. It firstly partitionsX into n-bit blocks: X1X2 . . . Xt

n←
X, where |X| = tn and 1 ≤ t ≤ d. then it applies the auxiliary permutation
APi,Ki

to compute the i-th block Xi: Yi = APi,Ki
(Xi ⊕ Kmask

i ). Finally it

computes Y =
⊕t

i=1 Yi and outputs the value Y .

Arbitrary-input-length universal hash PX-UH. We define an arbitrary-
input-length universal hash function called PX-UH, which is built by using the
PX keyed function and the pseudo-random-permutation EK . The algorithm is
illustrated in Figure 1.6.

The computation procedure of PX-AU on an input X ∈ Σ∗ is as follows.

Firstly, if |X| is not a multiple of n, then X is padded to have a length
of multiple of n by pad(X) = X‖10n−1−s, where s = |X| mod n. Otherwise,
pad(X) = X.
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Figure 1.5: PX keyed function with domain (Σn)≤d. Thus 1 ≤ t ≤ d

Then pad(X) is partitioned into dn-bit frames, which is denoted as W1W2 . . .

W`f
dn← pad(X), where `f = d|pad(X)|/(dn)e. Note that the last frame W`f may

be shorter than dn bits if |pad(X)| is not a multiple of dn, that is W`f ∈ (Σn)≤d.
These frames are input to PX keyed function in a parallel manner:

Yi = PX(Wi), for 1 ≤ i ≤ `f .

Then these Yi’s are hashed in a CBC-like sequential manner (more precisely,
CMAC [8] or OMAC [12]):

J1 ←−0n;

Ji+1 ←−EK(Yi ⊕ Ji), for 1 ≤ i ≤ `f − 1.

Finally, if the original input X before padding has a length of a multiple
of n, the value J = J`f ⊕ Y`f ⊕ (2 · L) is outputted, where we recall that
L = EK(0n) and the multiplication “ · ” is over GF(2n). Otherwise, the value
J = J`f ⊕ Y`f ⊕ (22 · L) is outputted.
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Figure 1.6: The universal hash PX-UH

PX-MAC. Now we describe the completed specification of PX-MAC, which
utilizes the block cipher EK and the universal function PX-UH. We recall that
all the key materials L, SK and Kmask used in PX-UH are derived from the
block cipher EK .

Key Setup. Derive the values of L, SK and Kmask from EK , which is also
illustrated from Figure 1.7. Let a = d|SK|/ne.

• L = EK(0);

• SK = K1‖ · · · ‖Kd is the first |SK| bits of EK(1)‖ · · · ‖EK(a);

• Kmask = Kmask
1 ‖ · · · ‖Kmask

d = EK(a+ 1)‖ · · · ‖EK(a+ d).

Figure 1.7: The Key Setup of PX-MAC

Tag Computation. For an input X ∈ Σ∗, firstly apply PX-UH to hash X, and
get J =PX-UH(X). Then compute T = EK(J), and finally output T as
the tag of X.

12



In SHELL, the procedure of computing associated data A is illustrated in
Figure 1.8. The value V is outputted.

Figure 1.8: The computation procedure of associated data in SHELL

1.3.6 Universal hash layer for plaintext encryption:
PX-Enc

We note that the following three sections focus on the case that plaintext
M ∈ (Σn)+. After these three sections, we will discuss about the extension
of plaintexts to Σ∗ in Section 1.3.9.

Firstly, plaintext M is XORed with the output S of CENC(N), that is
I ←M ⊕ S. Then, I and V , which is the output of PX-MAC(A), are input to
a universal hash layer, which is very similar with PX-MAC and called PX-Enc.

PX*. We change the keyed function PX, and let the internal values be out-
putted. The new function is denoted as PX*, which also utilizes the set of
auxiliary permutations. All the notations below follows those used in the spec-
ification of the keyed function PX.

PX* takes a pair of values (H,X) as input, where H ∈ Σn and X ∈ Σdn. It
outputs a pair of values (H ′, Y ), where H is n bits long, and Y has the same
bit length with X, namely |Y | = |X|. The algorithm is depicted in Fig. 1.9.

The computation procedure on input (H,X) is as follows. Firstly, PX*
divides X into n-bit blocks: X1X2 . . . Xd

n← X. Then it computes

Y1 = H ⊕AP1,K1
(X1 ⊕Kmask

1 ),

Yi = Yi−1 ⊕APi,Ki
(Xi ⊕Kmask

i ), for 2 ≤ i ≤ d.

13



Let Y = Y1‖Y2‖ · · · ‖Yd, and H ′ = Yd. Finally PX* outputs (H ′, Y ).

Figure 1.9: The PX* algorithm.

PX-Enc. We build an encryption algorithm called PX-Enc, which utilizes
PX* and the block cipher EK .

In the structure of SHELL, PX-Enc takes (V, I) as input, and V ∈ Σn and
S ∈ (Σn)+. It outputs a pairs of values (U,Z), where U is n bits long and
Z has the same length with I, namely |Z| = |I|. The algorithm of PX-Enc is
illustrated in Fig. 1.10 and 1.11.

The computation procedure on input (V, I) is as follows. Note that I has the
same block length with the plaintext M , and thus |I| = |M |. Firstly, PX-Enc

divides I into dn-bit frames W1W2 . . .W`fm

dn← I, where `fm = d`m/(dn)e. Note
that the last frame W`fm

may be short of d blocks, if |I| is not a multiple of dn.
Then PX-Enc computes V and W1‖ · · · ‖W`fm−1 as below.

{
(U1, Z1) ← PX*(W1, V )

V1 ← EK(U1)

{
(Ui, Zi) ← PX*(Wi, Vi−1)

Vi ← EK(Ui)
for 2 ≤ i ≤ `fm − 1.

Then the computation of the value V`fm−1 and the last frame W`fm
is as

follows, which is also shown in Fig. 1.11. Let X1X2 . . . Xt
n←W`fm

. The process
is exactly the same with PX* for each block except for the last block Xt, where

14



an extra XOR is introduced. More precisely, Yt = Yt−1⊕APt,Kt(Xt⊕Kmask
t )⊕

(22 · L). Let Z`fm
= Y1‖Y2‖ · · · ‖Yt, and U = EK(Yt).

Let Z = Z1‖Z2‖ · · · ‖Z`fm
. Finally PX-Enc outputs the pair (U,Z).

Figure 1.10: The PX-Enc algorithm for computing (V, I) except the last frame

of I. W1 . . .W`fm

dn← I.

Figure 1.11: The PX-Enc algorithm for computing the last frame of I.

X1‖ · · · ‖Xt
dn←W`fm

and 1 ≤ t ≤ d.
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1.3.7 PRP layer for ciphertext: parallel XEX ciphers

This layer takes the output Z of PX-Enc as input, and produces the ciphertext
C. It utilizes a set of tweakable block ciphers in a parallel manner. These
tweakable block ciphers are constructed from EK following the doubling method
by using the subkey L′ to derive many distinct masks. Recall that L′ = EK(1n).

XEX cipher [23]. We can derive a block cipher E′K from EK by using a
secret mask ∆ as follows. Let X be any input from Σn.

E′K(X)
def
= EK(X ⊕∆)⊕∆.

Interestingly, E′K behaves like an independent block cipher from EK (up to the
birthday bound).

Rogaway has proposed an efficient approach called the doubling method [23]
to enable one to derive a large set of masks from just one secret mask. More
precisely, the masks are derived as 2α3β7γL′ by changing α, β and γ.

It is important to note that the irreducible polynomial f(x) should be chosen
carefully so that we get a large set of distinct masks. For the case n = 128, e.g.,
SHELL-AES, we choose f(x) = x128 + x7 + x2 + x + 1, which has been proven
to satisfy the requirement for α ∈ [−2108, 2108] and β, γ ∈ [−27, 27] [23].

Parallel XEX ciphers. The computation procedure for an input Z ∈ (Σn)+

is as follows, which is also illustrated in Fig. 1.12. Recall that |Z| = |M |.
Firstly, divide Z to n-bit blocks Z1‖Z2‖ · · · ‖Z`m

n← Z. Then, the i-th block of
ciphertext denoted as Ci for 1 ≤ i ≤ `m is computed as

Ci = EK(Zi ⊕ 2iL′)⊕ 2iL′,

Let C = C1‖C2‖ · · · ‖C`m . Finally this layer outputs C as the ciphertext for M .

Figure 1.12: Parallel XEX ciphers
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1.3.8 Tag generation

The tag generation algorithm takes as the checksum value of I, which we recall
is the value of XORing the output S of CENC(N) and the plaintext M , the
output F of CENC(N), and the output U of PX-Enc(V, I), where we recall that
V is the output value of PX-MAC(A). Recall that all these three inputs are n
bits long. It outputs an n-bit tag. The algorithm is illustrated in Fig. 1.13.

The computation procedure is as follows. Firstly, divide I to n-bit blocks.
I1 . . . I`m

n← I. Then compute as follows.

Y ← EK(I1 ⊕ I2 ⊕ · · · ⊕ I`m ⊕ (2`m+1 · 3L′))⊕ U,
T ← EK(Y ⊕ (2`m+1 · 7L′))⊕ (2`m+1 · 7L′)⊕ F.

Finally the tag generation algorithm outputs T as the tag.

Figure 1.13: The tag generation algorithm

1.3.9 Extension to plaintexts with arbitrary length

Let EK(·) denote previously described encryption procedure for plaintexts M ∈
(Σn)+. In this section, we extend the encryption algorithm of SHELL to handle
plaintxts M ∈ Σ∗. More precisely, we present an encryption procedure E ′K(·)
for the plaintexts M such that |M | is not a multiple of n. In the rest of this
section, we will always assume that |M | is not a multiple of n. The decryption
procedure of E ′K(·) is omitted since it can be trivially derived from E ′K(·).

E ′K uses previous proposed techniques including tag splitting [9] and XLS [20],
which has been also used in other authenticated encryption such as TC1-3 [25],
MCOE [9], COPA [2] and POET [17].
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E ′K for case |M | < n. It takes the output value V of PX-MAC(A), the
value I obtained by XORing the output value S of CENC(N) and M , and the
output value F of CENC(N) as inputs. Note that |I| is the same with the
plaintext |M |, and let s = |X|. The algorithm is illustrated in Fig. 1.14. We
omit the description of the computation procedure of (C, T ), and refer it to the
Fig. 1.14. After the pair (C, T ) is obtained, the s MSBs of C, that is msbs(C),
is outputted as the ciphertext for M . the n − s LSBs of C and the s MSBs of
T are concatenated, that is lsbn−s(C)‖msbs(T ), is outputted as the tag for M .

Figure 1.14: The encryption procedure for plaintext M with |M | < n. Let
s = |M |. msbs(C) and lsbn−s(C)‖msbs(T ) will be outputted as the ciphertext
and the tag respectively.

E ′K for case |M | > n. We construct a tweakable block cipher that accepts
inputs X with n < |X| < 2n, following the XLS method [20]. This tweakable
block cipher is denoted as XLS`m , where we recall that `m = d|M |/ne. Let
Y = XLS`m(X), and it always holds that |Y | = |X|, for any input X with
n < |X| < 2n. Let E′K be defined as follows.

E′K(X)
def
= EK(X ⊕ (2`m · 32L′))⊕ (2`m · 32L′).

18



The specification of XLS`m built from E′K is illustrated in Fig. 1.15 and 1.16.
For more details about the XLS specification, we refer to [20].

The computation procedure of E ′K is as follows. Firstly, divide M into n-bit
blocks M1M2 . . .M`m

n← M . Let M ′ = M1‖M2‖ · · · ‖M`m−1. Note that 1 ≤
|M`m−1| < n. Then apply the previously defined encryption EK for plaintexts
from (Σn)+ to process (N,A,M ′) and obtain a pair (C ′, T ′). That is

(C ′, T ′)← EK(N,A,M ′).

Then apply XLS`m to T ′‖I`m as below,

Y ← XLS`m(T ′‖I`m).

Let C = C ′‖msb|M`m |(Y ) and T = lsbn(Y ). Finally C is outputted as the
ciphertext for M , and T is outputted as the tag.

Figure 1.15: The MIX function [20]. Let input X = X1‖X2 and |X1| = |X2|.
Y = Y1‖Y2 is the output. ≪ 1 is the left bit rotation by one bit.
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Figure 1.16: The XLS method [20]. Let |X| = n+ s and 1 ≤ s < n.

20



1.4 SHELL-AES parameters

We mainly specify the auxiliary permutations in SHELL-AES. Each APi with
1 ≤ i ≤ d is a four-round AES with independent round keys, which is shown in
Fig. 1.17. SB, SR and MC are SubBytes, ShiftRows and MixColumns operations
defined in AES.

Each key Ki for APi consists of three 128-bit round keys. Thus the number
of block cipher calls in the pre-processing phase, that is the key setup, is in total
4d+ 2.

The multiplication over GF(2128) uses the the irreducible polynomial f(x) =
x128 + x7 + x2 + x + 1.

Figure 1.17: The auxiliary permutation APi for SHELL-AES. The secret key is
Ki = K1

i ‖K2
i ‖K3

i .
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Chapter 2

Security goals

SHELL uses the public message number as nonce. The secret message number
has length of 0 bits.

The security goal of SHELL is twofold. On one hand, in the nonce-respecting
environment where no nonce is repeated to the encryption algorithm, we expect
SHELL can provide a provable security beyond the birthday bound. On the
other hand, in the nonce-misuse environment where the same nonce can be
used for distinct queries to the encryption algorithm, we expect SHELL can
still provide a provable security bound, which we choose to be lower than the
birthday bound. This is because a higher security bound usually comes with an
efficiency loss. We have to take the tradeoff into consideration.

The security goal of SHELL mode is provided in Table 2.1. The definitions
of security notions are detailed in Section 3.2.

It is important to note that to our best knowledge, the privacy security bound
naturally implies (at least) the same security bound for the confidentiality of
the plaintext, and the authenticity security bound naturally implies (at least)
the same bound for the integrity of nonce and the integrity of associated data.

Table 2.1: The security goal of SHELL mode. The value ε is defined as
max{ε1, ε2, . . . , εd}, where εi denotes MEDP of APi. Note that n, w, d and
APi are parameters of SHELL.

nonce-respecting environment nonce-misuse environment

Security notions (bit security) (bit security)

Privacy (2n− log2 w)/3 1
2 log2

1
dε

Authenticity (2n− log2 w)/3 1
2 log2

1
dε

Now we discuss about SHELL-AES with recommended parameters. n = 128,
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w = 256, and 4 ≤ d ≤ 8. For four-round AES with independent round keys
as the recommended auxiliary permutations, we have that ε ≤ 2−113 [14, 15].
Thus we claim the security of SHELL-AES as shown in Table 2.2.

Table 2.2: The security goal of SHELL-AES with recommended parameters

nonce-respecting environment nonce-misuse environment

Security notions (bit security) (bit security)

Privacy 80 55

Authenticity 80 55

We point out that SHELL is not decryption-misuse resistant mode.
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Chapter 3

Security analysis

In this chapter, we provide security bound claims of SHELL. The proofs will be
put online in the webpage of SHELL soon.

3.1 Ideal Primitives

Random permutation. Let Perm(n) be the set of all n-bit permutations.
We write that a permutation P is a n-bit random permutation if it is uniformly

selected from Perm(n), namely P
$← Perm(n).

Random function. Let Func(n) be the set of all functions that take N‖A‖M
as input and output a string Y such that |Y | = |M | + n. We write that a
function R is a random function if it is uniformly selected from Func(n), namely

R $← Func(n).

Random online cipher. Let OPerm(n) be the set of all ciphers that take
N‖A‖M as input, and output a string Y such that |Y | = |M |+ n, which have
an additional feature such that the i-th block of Y only depends on N , A and
the first i blocks of M . We write that a random online cipher P if it is uniformly

selected from OPerm(n), namely P $← OPerm(n).

3.2 Security Definition

The definitions below follow previous works [16, 3, 4, 24, 22, 25]

Security for block cipher. An adversary A is an algorithm that outputs a
bit. EK is a block cipher with a secret key value K. E±K consist of both EK
and its inverse. P and P ′ are random permutations. P± consists of both P and
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its inverse. K ′ = K ⊕ 0xF0F0 · · · F0. We define

Advprp
E (A)

def
=
∣∣∣Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]∣∣∣ ,
Advsprp

E (A)
def
=
∣∣∣Pr
[
AE

±
K(·) ⇒ 1

]
− Pr

[
AP

±(·) ⇒ 1
]∣∣∣ ,

Advprp-rka
E (A)

def
=
∣∣∣Pr
[
AEK(·),EK′ (·) ⇒ 1

]
− Pr

[
AP (·),P ′(·) ⇒ 1

]∣∣∣ ,
Advsprp-rka

E (A)
def
=
∣∣∣Pr
[
AE

±
K(·),E±

K′ (·) ⇒ 1
]
− Pr

[
AP

±(·),P ′±(·) ⇒ 1
]∣∣∣ .

Then we define that

Advprp
E (t, q)

def
= max

A
Advprp

E (A),

Advsprp
E (t, q)

def
= max

A
Advsprp

E (A),

Advprp-rka
E (t, q)

def
= max

A
Advprp-rka

E (A),

Advsprp-rka
E (t, q)

def
= max

A
Advsprp-rka

E (A),

where the maximum is taken over all adversaries A whose time complexity is at
most t and whose total number of queries is at most q.

Security for authenticated encryption. Let EK and DK be the encryption
oracle and the decryption oracle of an authenticated encryption, respectively.
Let R be a random function, and P be a random online cipher. Let ⊥ be an
oracle that always outputs ⊥ for all queries.

Nonce respecting environment. We only need to consider nonce-respecting ad-
versaries. We say that an adversary is nonce-respecting if he never repeats
a nonce during the interaction with the encryption oracle EK .

In such environment, we define the privacy of the authentication encryp-
tion as below.

Advpriv
E (A) =

∣∣∣Pr
[
K

$← K : AE(·) ⇒ 1
]
− Pr

[
AR(·) ⇒ 1

]∣∣∣
Advpriv

E (t, q, `, σ) = max
A

Advpriv
E (A),

were the maximum is taken over all adversaries A whose time complex-
ity is at most t, number of queries is at most q, maximum block length of
a query is at most `, and total number of blocks in all queries is at most σ.

Next, we define the authenticity of the authenticated encryption as be-
low.

Advauth
E (A) =

∣∣∣Pr
[
K

$← K : AE(·),D(·) ⇒ 1
]
− Pr

[
AR(·),⊥ ⇒ 1

]∣∣∣
Advauth

E (t, q, `, σ) = max
A

Advauth
E (A),
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were the maximum is taken over all adversaries A whose time complexity
is at most t, number of queries at most q, maximum block length of a
query at most `, and total number of blocks in all queries at most σ.

Nonce miuse environment. The adversary is allowed to use the same nonce for
distinct queries during the interaction with the encryption oracle EK . An
extreme case is that he uses the same nonce for all his queries to EK .

In such environment, we define the privacy of the authentication encryp-
tion as below.

Advpriv
E (A) =

∣∣∣Pr
[
K

$← K : AE(·) ⇒ 1
]
− Pr

[
AP(·) ⇒ 1

]∣∣∣
Advpriv

E (t, q, `, σ) = max
A

Advpriv
E (A),

were the maximum is taken over all adversaries A whose time complexity
is at most t, number of queries at most q, maximum block length of a
query at most `, and total number of blocks in all queries at most σ.

Next, we define the authenticity of the authenticated encryption as be-
low.

Advauth
E (A) =

∣∣∣Pr
[
K

$← K : AE(·),D(·) ⇒ 1
]
− Pr

[
AP(·),⊥ ⇒ 1

]∣∣∣
Advauth

E (t, q, `, σ) = max
A

Advauth
E (A),

were the maximum is taken over all adversaries A whose time complexity
is at most t, number of queries at most q, maximum block length of a
query at most `, and total number of blocks in all queries at most σ.

3.3 Security bound claims of SHELL in nonce-
respecting environment

The security claim on the privacy of SHELL in nonce-respecting environment
is as follows. We assume that K ′ = K ⊕ 0xF0F0 · · · F0.

Theorem 3.3.1 Let E(·) be the encryption of SHELL, and E be its underlying
block cipher. Let c be the number of block cipher calls in the pre-processing phase
that is the key setup. Then we have that

Advpriv
E (t, q, `, σ) ≤ Advprp-rka

E (t′, 3σ + c+ 2q) +
O(wσ3)

22n
.

where t′ = O(t+ σ + c).
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Note that the term Advprp-rka
E (t′, 3σ+c+2q) will be replaced by Advprp

E (t′, 3σ+
c+ 2q) if SHELL uses two independent keys K and K ′.

Next, the security claim of the authenticity of SHELL in nonce-respecting
environment is as follows.

Theorem 3.3.2 Let E(·) and D(·) be the encryption and the decryption of
SHELL, and E be its underlying block cipher. Let the set of its underlying
auxiliary permutations be {AP1, AP2, . . . , APd}, where the maximum expected
differential probability of APi is denoted by εi. Let ε = max{ε1, ε2, . . . , εd}. Let
c be the number of block cipher calls in the pre-processing phase that is the key
setup. Then we have that

Advauth
E (t, q, `, σ) ≤ Advsprp-rka

E (t′, 3σ + c+ 2q) +O(
wσ3

22n
+ qε+

c`q

2n
).

where t′ = O(t+ σ + c).

Note that the term Advsprp-rka
E (t′, 3σ+c+2q) will be replaced by Advsprp

E (t′, 3σ+
c+ 2q) if SHELL uses two independent keys K and K ′.

3.4 Security bound claims of SHELL in nonce-
misuse environment

The security claim on the privacy of SHELL in nonce-misuse environment is as
follows. We assume that K ′ = K ⊕ 0xF0F0 · · · F0.

Theorem 3.4.1 Let E(·) be the encryption of SHELL, and E be its underlying
block cipher. Let the set of its underlying auxiliary permutations be {AP1, AP2, . . . ,
APd}, where the maximum expected differential probability of APi is denoted by
εi. Let ε = max{ε1, ε2, . . . , εd}. Let c be the number of block cipher calls in the
pre-processing phase that is the key setup. Then we have that

Advpriv
E (t, q, `, σ) ≤ Advprp-rka

E (t′, 3σ + c+ 2q) +O(d`q2ε+
`q2

2n
+
c`q

2n
).

where t′ = O(t+ σ + c).

Note that the term Advprp-rka
E (t′, 3σ+c+2q) will be replaced by Advprp

E (t′, 3σ+
c+ 2q) if SHELL uses two independent keys K and K ′.

Next, the security claim of the authenticity of SHELL in nonce-misuse en-
vironment is as follows.

Theorem 3.4.2 Let E(·) and D(·) be the encryption and the decryption of
SHELL, and E be its underlying block cipher. Let the set of its underlying
auxiliary permutations be {AP1, AP2, . . . , APd}, where the maximum expected
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differential probability of APi is denoted by εi. Let ε = max{ε1, ε2, . . . , εd}. Let
c be the number of block cipher calls in the key setup. Then we have that

AdvAuth
E (t, q, `, σ) ≤ Advsprp-rka

E (t′, 3σ + c+ 2q) +O(d`q2ε+
`q2

2n
+
c`q

2n
+ q2ε).

where t′ = O(t+ σ + c).

Note that the term Advsprp-rka
E (t′, 3σ+c+2q) will be replaced by Advsprp

E (t′, 3σ+
c+ 2q) if SHELL uses two independent keys K and K ′.

3.5 Security of SHELL-AES

MEDP of auxiliary permutations. For four-round AES with independent
round keys, its maximum expected differential probability has been proven up-
per bounded by 2−113 [15, 14]. Thus we have ε ≤ 2−113 for SHELL-AES.

Security of AES. Ever since the publication of the AES (or Rijndael [7])
block cipher, cryptographers have been carrying out continuous evaluation on
its security, and so many analysis result papers have been published. Partic-
ularly, attacks have been found on full AES-192 with a complexity of 2176 [5]
and on full AES-256 with a complexity of 299 [6, 5]. The best distinguisher on
AES-128 reaches 9 rounds [10], namely one round shorter than full version.
As we can easily see, these analysis results on AES are either with higher com-
plexities than our security goal, or have not even reach to full rounds yet.

Security of SHELL-AES. Let w = 256 and 4 ≤ d ≤ 8 as recommended.
Then the number of block cipher calls in pre-processing c ≤ 34.

In nonce-respecting environment, we have that both the privacy security
and the authenticity security after replacing AES by random permutations are
around 80 bits.

In nonce-reuse environment, we have that both the privacy and the authen-
ticity after replacing AES by random permutations are around 55 bits.
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Chapter 4

Features

SHELL is mainly a software-oriented design. In hardware, we should choose a
small value for d, which is the number of auxiliary permutations, in order to
reduce the memory requirement for storing the necessary subkeys. For SHELL-
AES with the largest recommended value d = 8, it takes around 0.5 KByte
memory to store the subkeys.

Advantage over GCM-AES. There are mainly two advantage features of
SHELL-AES compared to GCM-AES [18].

The first one is a higher provable security bound under the nonce-respecting
environment. SHELL-AES has a security beyond the birthday bound (up to
280), while GCM-AES has a security up to the birthday bound (that is 264) [13].
The higher security of SHELL-AES is obtained with a little loss of efficiency.
For each block of plaintext, SHELL-AES needs roughly 2.5 AES calls, while
GCM-AES needs roughly one AES call and one multiplication over GF(2128).
A detailed performance report on SHELL-AES and more accurate efficiency
comparison with GCM-AES will be put online soon in the SHELL webpage.

The second one is failure-friendly under the nonce misuse environment. It is
possible and actually has already happened that a well-designed cryptographic
protocol is later wrongly implemented by software engineers who may know
very little about cryptography. Then the security of that protocol may be
immediately and completely lost. As for nonce-based authenticated encryption
protocols, a possible failure is the so-called nonce-misuse issue, that is the same
nonce used to encrypt distinct messages. When such a failure occurs, GCM-AES
immediately loses all the security and can be seriously and trivially attacked.
On the other hand, SHELL-AES still holds a provable security bound, even
under an extreme environment where the nonce is fixed as a constant and never
changes for the encryption of all plaintexts.

Other features. Similarly with GCM [18], SHELL is an authenticated en-
cryption mode. Thus compared with dedicated authenticated encryption algo-
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rithms, SHELL provides the user with the interface of choosing his/her own
preferred underlying primitives, e.g., the block cipher.

The beyond-birthday-bound security of SHELL makes it a more suitable
choice for applications, where a block cipher with a smaller block size (say 64
bits) is used.
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Chapter 5

Design rationale

In this chapter, we write about the choices that we have made during the design
procedure of SHELL.

We start with the design of a new message authentication code, which is
expected to be provably secure and efficient in both serial implementation and
parallel implementation. From the consideration of the efficiency in the serial
implementation, we decide to utilize the auxiliary permutations, say four-round
AES, Then from the consideration of the efficiency in the parallel implementa-
tion, we decide to compute these auxiliary permutations in a parallel manner.
Finally in order to obtain provable security and meanwhile to have a small
number of block cipher calls in pre-processing phase, we decide to compute the
outputs of auxiliary permutations in a CBC-like sequential manner. Putting
everything together, we come up with PX-MAC.

After that, we move to build a provable nonce-misuse-resistant authenticated
encryption. We adopts the Encrypt-then-MAC framework. We decide to use a
two-layer structure. The upper lay is built by modifying PX-MAC, where all the
internal values of PX-MAC are outputted. This is because PX-MAC guarantees
that the internal values of distinct queries will not collide up to some bound.
Then we choose strong primitives such as pseudo-random permutations as the
lower layer in order to transform these non-colliding strings to pseudo-random
strings as the ciphertexts. Then we need to define a tag generation, and pay
attention to the security of authenticity. In the end, we get a nonce-misuse-
resistant authenticated encryption called PX-AE. PX-AE is SHELL without
the first PRP layer CENC, and the nonce N is appended to associated data
such as A← A‖N .

Finally, we move to build an authenticated encryption mode that has twofold
security goals including provable security beyond the birthday bound in nonce-
respecting environment and failure-friend in the nonce-misuse environment. We
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come up with a framework that uses a stream cipher, which is proven indis-
tinguishable from random oracle with a beyond security bound, and a nonce-
misuse-resistant authenticated encryption. 1 The idea is to send nonce to the
stream cipher and then use its output to mask the plaintext and the tag of the
nonce-misuse-resistant authenticated encryption. Thanks to CENC [11], we got
SHELL.

Remark. We tried to find an approach to avoid the operation of keying E by
another value K ′ such that CENC layer also uses EK , and the resulted mode
can yet maintain a provable security beyond the birthday bound. But we failed.
If someone can achieve it or has some interesting ideas, we are always happy
and feel honored to hear it.

Consent. The designers of SHELL faithfully declare that we have not hidden
any weaknesses in this cipher.

1It is important to note that we did not claim that this framework is always provably secure
for general combinations. Usually one must pay particular attention to the authenticity.
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Chapter 6

Intellectual property

There is no patent constraint relevant to the usage of SHELL to our best knowl-
edge. If any of this information changes, the submitter will promptly (and within
at most one month) announce these changes on the crypto-competitions mail-
ing list.
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Chapter 7

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.
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