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1 Specification

SILC (which stands for SImple Lightweight CFB, and is pronounced as “silk”) is a blockcipher mode of
operation for authenticated encryption with associated data (AEAD), which is also called an authenti-
cated cipher. SILC is built upon CLOC [6,7,8], and the design of SILC aims at optimizing the hardware
implementation cost of CLOC. SILC also maintains the provable security based on the pseudorandomness
of the underlying blockcipher. SILC is suitable for use within constrained hardware devices.

1.1 Notation

We use the same notation as in [8], but we repeat the notation for completeness.
Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For an integer ℓ ≥ 0,

let {0, 1}ℓ be the set of all bit strings of ℓ bits. We let B = {0, 1}8 be the set of bytes (8-bit strings),
and B∗ be the set of all finite byte strings. For X,Y ∈ {0, 1}∗, we write X ∥Y , (X,Y ), or XY to
denote their concatenation. For ℓ ≥ 0, we write 0ℓ ∈ {0, 1}ℓ to denote the bit string that consists of
ℓ zeros, and 1ℓ ∈ {0, 1}ℓ to denote the bit string that consists of ℓ ones. For X ∈ {0, 1}∗, |X| is its
length in bits, and for ℓ ≥ 1, |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit blocks. For X ∈ {0, 1}∗ and ℓ ≥ 0
such that |X| ≥ ℓ, msbℓ(X) is the most significant (the leftmost) ℓ bits of X. For instance we have
msb1(1100) = 1 and msb3(1100) = 110. For X ∈ {0, 1}∗ and ℓ ≥ 1, we write its partition into ℓ-bit

blocks as (X[1], . . . , X[x])
ℓ← X, which is defined as follows. If X = ε, then x = 1 and X[1]

ℓ← X, where
X[1] = ε. Otherwise X[1], . . . , X[x] ∈ {0, 1}∗ are unique bit strings such that X[1] ∥ · · · ∥X[x] = X,
|X[1]| = · · · = |X[x− 1]| = ℓ, and 1 ≤ |X[x]| ≤ ℓ.

In what follows, we fix a block length n and a blockcipher E : KE × {0, 1}n → {0, 1}n, where KE is a
non-empty set of keys. Let Perm(n) be the set of all permutations over {0, 1}n. We write EK ∈ Perm(n)
for the permutation specified by K ∈ KE , and C = EK(M) for the ciphertext of plaintext M ∈ {0, 1}n
under key K ∈ KE . Following the CAESAR call for submissions, we restrict all input and output variables
of SILC as byte-strings. Also we assume the big-endian format for all variables.

1.2 Algorithm and Parameters

We follow the description of CLOC [8].
SILC takes three parameters, a blockcipher E : KE ×{0, 1}n → {0, 1}n, a nonce length ℓN , and a tag

length τ , where ℓN and τ are in bits. Here, a nonce corresponds to a public message number specified
by the CAESAR call for submissions, and we may interchangeably use both names. SILC does not have
the secret message number, i.e. it is always assumed to be of length zero. We require 1 ≤ ℓN ≤ n− 1 and
1 ≤ τ ≤ n, and assume that ℓN/8 and τ/8 are integers, and n ∈ {64, 128}. We write SILC[E, ℓN , τ ] for
SILC that is parameterized by E, ℓN , and τ , and we often omit the parameters if they are irrelevant or
they are clear from the context. SILC[E, ℓN , τ ] = (SILC-E , SILC-D) consists of the encryption algorithm
SILC-E and the decryption algorithm SILC-D.

SILC-E and SILC-D have the following syntax.{
SILC-E : KSILC ×NSILC ×ASILC ×MSILC → CT SILC

SILC-D : KSILC ×NSILC ×ASILC × CT SILC →MSILC ∪ {⊥}

KSILC = KE is the key space, which is identical to the key space of the underlying blockcipher, NSILC =
BℓN/8 is the nonce space, ASILC = B∗ is the associated data space, MSILC = B∗ is the plaintext space,
CT SILC = CSILC × TSILC is the ciphertext space, where CSILC = B∗ and TSILC = Bτ/8 is the tag space,
and ⊥ ̸∈ MSILC is the distinguished reject symbol. We write (C, T ) ← SILC-EK(N,A,M) and M ←
SILC-DK(N,A,C, T ) or ⊥ ← SILC-DK(N,A,C, T ). We make a restriction that the maximum lengths of
A, M , and C are all 2n/2 − 1 bytes.

SILC-E and SILC-D are defined in Fig. 1. In these algorithms, we use four subroutines, HASH, PRF,
ENC, and DEC. They have the following syntax.

HASH : KSILC ×NSILC ×ASILC → {0, 1}n

PRF : KSILC × {0, 1}n × CSILC → TSILC
ENC : KSILC × {0, 1}n ×MSILC → CSILC
DEC : KSILC × {0, 1}n × CSILC →MSILC
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Algorithm SILC-EK(N,A,M)

1. V ← HASHK(N,A)
2. C ← ENCK(V,M)
3. T ← PRFK(V,C)
4. return (C, T )

Algorithm SILC-DK(N,A,C, T )

1. V ← HASHK(N,A)
2. T ∗ ← PRFK(V,C)
3. if T ̸= T ∗ then return ⊥
4. M ← DECK(V,C)
5. return M

Fig. 1. Pseudocode of the encryption and the decryption algorithms of SILC

Algorithm HASHK(N,A)

1. SH[0]← EK(zpp(N))
2. if |A| = 0 then
3. V ← g(SH[0]⊕ Len(A)) // Len(A) = 0n

4. return V
5. (A[1], . . . , A[a])

n← A
6. for i← 1 to a− 1 do
7. SH[i]← EK(SH[i− 1]⊕A[i])
8. SH[a]← EK(SH[a− 1]⊕ zap(A[a]))
9. V ← g(SH[a]⊕ Len(A))

10. return V

Algorithm PRFK(V,C)

1. SP[0]← EK(g(V ))
2. if |C| = 0 then
3. U ← g(SP[0]⊕ Len(C)) // Len(C) = 0n

4. T ← msbτ (EK(U))
5. return T
6. (C[1], . . . , C[m])

n← C
7. for i← 1 to m− 1 do
8. SP[i]← EK(SP[i− 1]⊕ C[i])
9. SP[m]← EK(SP[m− 1]⊕ zap(C[m]))

10. U ← g(SP[m]⊕ Len(C))
11. T ← msbτ (EK(U))
12. return T

Algorithm ENCK(V,M)

1. if |M | = 0 then
2. C ← ε
3. return C
4. (M [1], . . . ,M [m])

n←M
5. SE[1]← EK(V )
6. for i← 1 to m− 1 do
7. C[i]← SE[i]⊕M [i]
8. SE[i+ 1]← EK(fix1(C[i]))
9. C[m]← msb|M [m]|(SE[m])⊕M [m]

10. C ← (C[1], . . . , C[m])
11. return C

Algorithm DECK(V,C)

1. if |C| = 0 then
2. M ← ε
3. return M
4. (C[1], . . . , C[m])

n← C
5. SD[1]← EK(V )
6. for i← 1 to m− 1 do
7. M [i]← SD[i]⊕ C[i]
8. SD[i+ 1]← EK(fix1(C[i]))
9. M [m]← msb|C[m]|(SD[m])⊕ C[m]

10. M ← (M [1], . . . ,M [m])
11. return M

Fig. 2. Subroutines used in the encryption and decryption algorithms of SILC

These subroutines are defined in Fig. 2, and illustrated in Fig. 3, Fig. 4, and Fig. 5. We also present
equivalent figures in Fig. 6, Fig. 7, and Fig. 8. We note that ENC and DEC are the same as those in
CLOC [6]. In the figures, i is the identity function, and i(X) = X for all X ∈ {0, 1}n. In the subroutines,
we use the zero prepending function zpp : B∗ → B∗, the zero appending function zap : B∗ → B∗, the
bit-fixing function fix1 : B∗ → B∗, the tweak function g : {0, 1}n → {0, 1}n, and the length encoding
function Len : B∗ → {0, 1}n.

Both the zero prepending and appending functions are used to adjust the length of an input string
so that the total length becomes a non-negative multiple of n bits (the output is the empty string if and
only if the input is the empty string). For X ∈ B∗, zpp(X) is defined as

zpp(X) =

{
X if |X| = ℓn for some ℓ ≥ 0,

0n−(|X| mod n) ∥X otherwise,

and zap(X) is defined as

zap(X) =

{
X if |X| = ℓn for some ℓ ≥ 0,

X ∥ 0n−(|X| mod n) otherwise.
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In general, they are not invertible functions.
The bit-fixing function fix1 is used to fix the most significant bit of an input string to one. For X ∈ B∗,

fix1(X) is defined as fix1(X) = X ∨ 10|X|−1, where ∨ denotes the bit-wise OR operation.
The length encoding function Len : B∗ → {0, 1}n is used to encode the input length (in bytes) in HASH

and PRF. For X ∈ B∗, it is defined as Len(X) = strn(|X|8), where strn(|X|8) is the standard encoding of
|X|8 (the byte length of X) into an n-bit string. For example, when X = ε, we have Len(X) = 0n, and
when |X|8 = 5, we have Len(X) = 0n−4 ∥ 0101. As the maximum lengths of A, M , and C are all 2n/2− 1
bytes, the most significant n/2 bits of Len(X) in HASH and PRF are fixed to 0n/2.

The tweak function g : {0, 1}n → {0, 1}n is used in HASH and PRF. If n = 128, for X ∈ {0, 1}n, we
let (X[1], X[2], . . . , X[16])

n/16← X. Then g(X) is defined as

g(X) = (X[2], X[3], . . . , X[16], X[1, 2]),

where X[a, b] stands for X[a] ⊕X[b]. Similarly, if n = 64, we let (X[1], X[2], . . . , X[8])
n/8← X and define

g(X) as

g(X) = (X[2], X[3], . . . , X[8], X[1, 2]).

For both cases, g can be interpreted as one byte left shift with the rightmost output byte being the xor
of the leftmost two input bytes.

1.3 Parameter Spaces

As the CAESAR submission we specify the parameter spaces of SILC as follows.

– Blockcipher E: AES-128 (AES with 128-bit key), or present-80 (present with 80-bit key), or LED-80
(LED with 80-bit key).

– Nonce length ℓN : For AES-128, ℓN ∈ {8 bits (1 byte), 16 bits (2 bytes), . . . , 120 bits (15 bytes)}, and
for present-80 and LED-80, ℓN ∈ {8 bits (1 byte), 16 bits (2 bytes), . . . , 56 bits (7 bytes)}.

– Tag length τ : For AES-128, τ ∈ {32 bits (4 bytes), 40 bits (5 bytes), . . . , 128 bits (16 bytes)}, and for
present-80 and LED-80, τ ∈ {32 bits (4 bytes), 40 bits (5 bytes), . . . , 64 bits (8 bytes)}.

present is a 64-bit blockcipher proposed by Bogdanov et al. at CHES 2007 [2], and LED is a 64-bit
blockcipher proposed by Guo et al. at CHES 2011 [5]. The specification of present is described in
Appendix A, and that of LED is described in Appendix B.

1.4 Recommended Parameter Sets

We specify the recommended parameter sets as follows.

– Parameter set 1, aes128n12silcv1: E = AES-128, ℓN = 96 (12-byte nonce), τ = 64 (8-byte tag)
– Parameter set 2, aes128n8silcv1: E = AES-128, ℓN = 64 (8-byte nonce), τ = 64 (8-byte tag)
– Parameter set 3, present80n6silcv1: E = present-80, ℓN = 48 (6-byte nonce), τ = 32 (4-byte tag)
– Parameter set 4, led80n6silcv1: E = LED-80, ℓN = 48 (6-byte nonce), τ = 32 (4-byte tag)

2 Security Goals

The security goal of SILC is to provide the provable security in terms of confidentiality (or privacy)
of plaintexts under nonce-respecting adversaries, and integrity (or authenticity) of plaintext, associated
data, and nonce (public message number) under nonce-reusing adversaries. These goals are the same as
CLOC. We note that, as CLOC, SILC has no secret message number.

SILC has provable security guarantees both for confidentiality and integrity, up to the standard
birthday bound of the block length of the underlying blockcipher, based on the assumption that the
blockcipher is a pseudorandom permutation (PRP). The attack models are given in Sect. 3, which are
the same as in CLOC [8]. The exact security bounds and the corresponding proofs are in preparation,
and they will be made public once they are finalized.
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Table 1. Security goal for confidentiality (privacy)

Parameter set aes128n12silcv1 aes128n8silcv1 present80n6silcv1 led80n6silcv1

Data 64 64 32 32
Time 128 128 80 80

Table 2. Security goal for integrity (authenticity)

Parameter set aes128n12silcv1 aes128n8silcv1 present80n6silcv1 led80n6silcv1

Data 64 64 32 32
Verify 64 64 32 32
Time 128 128 80 80

Attack Workload. We confirmed that SILC has provable security bounds up to the standard birthday
bound, based on the pseudorandomness of the underlying blockcipher. Table 1 and Table 2 are obtained
from these bounds. The variables in the tables denote the required workload of an adversary to break the
cipher, in logarithm base 2. If one of the variables reaches the suggested number, then there is no security
guarantee anymore, and the cipher can be broken. In Table 1, Data denotes σpriv of our privacy theorem.
The theorem corresponds to [8, Theorem 1], and this roughly suggests the number of data blocks that
the adversary obtains. In Table 2, Data denotes σauth and Verify denotes q′ of our authenticity theorem,
which corresponds to [8, Theorem 2], where σauth roughly suggests the number of data blocks that the
adversary obtains, and q′ denotes the number of decryption queries. In both tables, Time denotes the
time complexity, which we assume to be equal to the bit length of the key of the underlying blockcipher.

As in CLOC, the nonce cannot be repeated to maintain the privacy. However, the privacy of SILC
is kept as long as the uniqueness of (A,N), a pair of associated data and a nonce, is maintained for all
encryption queries. We note that the authenticity holds in this setting as well, since it is maintained even
if the nonce is reused.

On the Use of 64-Bit Blockcipher. We emphasize that the use of 64-bit blockciphers, present or LED,
is not for general purpose applications, since the birthday bound for the block length of 64 bits is
usually unacceptable for conventional data transmission, as pointed out by McGrew [11]. However, there
are various practical applications that benefit from the low implementation cost even with the limited
security guarantee. See [8, Sect. 2] for such examples.

3 Security Analysis

In this section, we define the security notions of a blockcipher and SILC, which are the same as in [8,
Sect. 3]

PRP Notion. We assume that the blockcipher E : KE×{0, 1}n → {0, 1}n is a pseudorandom permutation,

or a PRP [10]. We say that P is a random permutation if P
$← Perm(n), and define

Advprp
E (A) def

= Pr
[
AEK(·) ⇒ 1

]
− Pr

[
AP (·) ⇒ 1

]
,

where the first probability is taken over K
$← KE and the randomness of A, and the last is over P

$←
Perm(n) and A. We write SILC[Perm(n), ℓN , τ ] for SILC that uses P as EK , and the encryption and
decryption algorithms are written as SILC-EP and SILC-DP .

Privacy Notion. We define the privacy notion for SILC[E, ℓN , τ ] = (SILC-E , SILC-D). This notion cap-
tures the indistinguishably of a nonce-respecting adversary in a chosen plaintext attack setting. We con-
sider an adversary A that has access to the SILC encryption oracle, or a random-bits oracle. The encryp-
tion oracle takes (N,A,M) ∈ NSILC×ASILC×MSILC as input and returns (C, T )← SILC-EK(N,A,M).
The random-bits oracle, $-oracle, takes (N,A,M) ∈ NSILC × ASILC ×MSILC as input and returns a

random string (C, T )
$← {0, 1}|M |+τ . We define the privacy advantage as

Advpriv
SILC[E,ℓN ,τ ](A)

def
= Pr

[
ASILC-EK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·) ⇒ 1

]
,
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where the first probability is taken over K
$← KSILC and the randomness of A, and the last is over the

random-bits oracle and A. We assume that A in the privacy game is nonce-respecting, that is, A does
not make two queries with the same nonce.

Authenticity Notion. We next define the authenticity notion, which captures the unforgeability of an
adversary in a chosen ciphertext attack setting. We consider a strong adversary that can repeat the
same nonce multiple times. Let A be an adversary that has access to the SILC encryption oracle and
the SILC decryption oracle. The encryption oracle is defined as above. The decryption oracle takes
(N,A,C, T ) ∈ NSILC × ASILC × CSILC × TSILC as input and returns M ← SILC-DK(N,A,C, T ) or
⊥ ← SILC-DK(N,A,C, T ). The authenticity advantage is defined as

Advauth
SILC[E,ℓN ,τ ](A)

def
= Pr

[
ASILC-EK(·,·,·),SILC-DK(·,·,·,·) forges

]
,

where the probability is taken over K
$← KSILC and the randomness of A, and the adversary forges

if the decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T ), but (C, T ) was
not previously returned to A from the encryption oracle for a query (N,A,M). The adversary A in
the authenticity game is not necessarily nonce-respecting, and A can make two or more queries with
the same nonce. Specifically, A can repeat using the same nonce for encryption queries, a nonce used for
encryption queries can be used for decryption queries and vice-versa, and the same nonce can be repeated
for decryption queries. Without loss of generality, we assume that A does not make trivial queries, i.e.,
if the encryption oracle returns (C, T ) for a query (N,A,M), then A does not make a query (N,A,C, T )
to the decryption oracle, and A does not repeat a query.

Bounds. We confirmed that SILC is provably secure with respect to the above two security notions up to
the standard birthday bound security having a small constant. That is, we have security bounds based
on the assumption that the underlying blockcipher is a PRP, and hence we have the security guarantee
up to about 2n/2 blocks of data. The proofs are similar to those of CLOC [7], and the exact bounds and
the corresponding proofs will be made public once they are finalized.

4 Features

SILC has the following features.

1. It uses only the encryption of the blockcipher both for encryption and decryption.
2. It carefully avoids hardware-unfriendly operations as much as possible, e.g., conditional operation

branching, which requires multiplexers in hardware, and dynamic change of data shift amount.
3. It makes ⌈|N |/n⌉+ ⌈|A|/n⌉+2⌈|M |/n⌉+2 blockcipher calls for a nonce N , associated data A, and a

plaintext M , when |A| ≥ 1. No precomputation other than the blockcipher key scheduling is needed.
As a result, no extra hardware register for storing the precomputed result is necessary. We note that
in SILC, 1 ≤ |N | ≤ n − 1 holds (hence we always have ⌈|N |/n⌉ = 1), and when |A| = 0, it needs
⌈|N |/n⌉+ 1 + 2⌈|M |/n⌉+ 2 blockcipher calls.

4. The memory cost other than the blockcipher is low. It works with two state blocks (i.e. 2n bits) to
store chaining blocks for encryption and authentication, plus a counter for storing the message length.

5. Both encryption and decryption can be processed in an online manner.
6. For security, the privacy and authenticity are proved based on the PRP assumption of the blockci-

pher, assuming standard nonce-respecting adversaries. Moreover, the authenticity is proved with even
stronger, nonce-reusing adversaries.

The first, second, and fourth features imply SILC’s suitability for small hardware. SILC essentially
consists a blockcipher encryption function EK and other functions, zpp, zap, fix1, Len, and g. These
functions are chosen by taking the hardware efficiency into account. For instance the 10∗ padding function
is commonly used in many blockcipher modes, but due to the operation branch depending on the input
length, it imposes non-negligible increase in circuit gates compared with zpp or zap. At the cost of one
additional blockcipher call for Len, the padding is significantly simplified.

The last feature implies that SILC provides standard security as a nonce-based AEAD, and in addition
a level of security (i.e. authenticity only) even when the nonce is reused.
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Advantages over AES-GCM. Compared with AES-GCM [12], the hardware implementation of SILC with
AES can be smaller, since we avoid using a full Galois-Field (GF) multiplier. In hardware, AES-GCM is
generally fast, however, a fast GF multiplier requires a rather large number of gates, in addition to those
needed for the AES encryption function. While SILC with AES can be efficiently implemented, it is also
fast if AES is fast. For SILC with present or LED, we expect even smaller implementations with reduced
power consumption, at the cost of reduced security which is reasonable for constrained hardware. The
parameter set with present or LED would be beneficial to tiny devices, such as RFID or CPLD.

With respect to the security, SILC inherits the advantages of CLOC over GCM. That is, the provable
security bound of SILC for authentication is better than that of GCM presented in [9]. In GCM, the
existence of weak keys was pointed out [14], while weak keys are not known in SILC. Also, SILC provides
some level of security even if the nonce is reused.

Justifications of Parameter Sets. For the 128-bit blockcipher, we select AES for its excellent performance
and extensively studied security. For the 64-bit blockcipher, we select present and LED. Both ciphers
can be implemented with small gate size, and in particular, present is selected for its high throughput,
and LED is selected for its high security margin against various cryptanalysis.

For aes128n12silcv1, we select ℓN = 96 from the current trend on the length of the nonce, and
this is suitable, for instance, if a part of the nonce is randomly chosen and the other part consists of
a counter. For aes128n8silcv1, we select ℓN = 64 considering the data overhead, and this is suitable
for applications where the nonce consists of a counter. For present80n6silcv1 and led80n6silcv1, we
select ℓN = 48 by taking the half of 96 in aes128n12silcv1. For all cases, the tag length was chosen by
taking the balance between the security and the data overhead.

Limitations. We list several limitations of SILC. SILC is designed to reduce the hardware gates of CLOC
as much as possible, while maintaining the provable security based on the pseudorandomness of the
underlying blockcipher, at the cost of constant increase in the number of blockcipher calls. Also, it does
not handle static associated data efficiently, as we first process a nonce and then associated data. We
chose this order as the small hardware is the main target of SILC, and hence it is unlikely that we keep the
intermediate state block to improve the efficiency. SILC also inherits limitations of CLOC. For long input
data, SILC is not efficient as it needs two blockcipher calls per one plaintext block. The nonce length
is fixed, which may be problematic in some applications. The four functions used in SILC, HASH, ENC,
DEC, and HASH, are all sequential, but the blockcipher calls in ENC and PRF can be done in parallel.
We also note that the parallelization is always possible for multiple messages [4,3].

5 Design Rationale

The designers have not hidden any weaknesses in this cipher.
Our goal is to provide an AEAD particularly efficient for hardware, requiring a small number of gates

other than the blockcipher implementation, that is, a small implementation overhead. For achieving
hardware efficiency, we set our design strategy as follows.

– Construct data flow with minimized kinds/amount of functions, minimized flow branching and merg-
ing, which implies extra multiplexers and registers, and the use of same ordering of functions in
different steps, which makes hardware sharing easy.

– Avoid functions not suitable to hardware, such as dynamic data shifting, which requires a barrel
shifter, and integer operations etc.

– Avoid to use many pre-computed values, which consumes extra registers.

SILC is built upon CLOC, and inherits the overall structure. Basically, SILC is a combination of
CFB and CBC MAC, where CBC MAC is called twice for processing associated data and a ciphertext,
and CFB is called once to generate a ciphertext. In order to keep implementation overhead as small as
possible, we choose CFB, since CBC needs the decryption of the blockcipher, and CTR or OFB requires
additional state for counter or intermediate output block. Since a naive combination of CFB and CBC
MAC does not work, and we do not want to use precomputed blockcipher outputs such as L = EK(0n)
used in EAX, as this requires additional memory state, we use fix1 and zpp functions to logically separate
CFB and CBC MAC. Here, instead of zpp, any function that forces the first input bit to CBC MAC
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to zero would work, however, we choose zpp for its simplicity in hardware. This loses the capability of
efficient handling of static associated data, but we think this is the right treading-off between the size
and simplicity, considering our target (e.g. it is unlikely for small hardware to have a memory block and
a control logic for caching static associated data).

For the tweak function, as in CLOC, we avoid using GF doubling (a multiplication by two over
GF(2n)), a common operation for many blockcipher modes [1,15]. Instead, we have adopted the g function
to reduce the hardware logic size. When implemented as combinational circuits, the g function is much
simpler than the GF doubling because it consists of a static amount of shifting, which consumes no
hardware resources, and a minimum amount of xors. The role of the g function is to tweak an input value
of the blockcipher, and a similar technique can be found in the context of MAC [13,16]. There is only one
tweak function in SILC, which is different from CLOC [6] that has five tweak functions. This means the
hardware implementation of SILC does not need many selectors. The tweak function is selected so that
it satisfies the following conditions, which is needed for provable security. First, it is linear with respect
to xor (i.e. g(X ⊕X ′) = g(X) ⊕ g(X ′) holds for all X,X ′ ∈ {0, 1}n). Next, it is invertible over {0, 1}n.
Finally, let K ∈ {0, 1}n be uniform over {0, 1}n. Then, we require that the following functions are (close
to) uniform over {0, 1}n. 

g(K)

g(K)⊕K

g(g(K))

g(g(K))⊕K

g(g(K))⊕ g(K)

It can be easily confirmed that our g function fulfills these conditions for both n = 64 and n = 128 by
computing the corresponding matrix ranks over GF(2) as was done in [6].

At the end of HASH and PRF, we use a simple padding function with additional length encoding.
Though this always requires one additional blockcipher call compared to popular 10∗ padding used by
many blockcipher modes, the former is much more efficient in terms of the gate size. We remark that our
padding scheme here is similar to the one used in GCM.

Selection of Blockciphers. For 128-bit block size we choose AES as the underlying blockcipher, because
the security of AES has been extensively studied. For 64-bit block size we choose present and LED as
the underlying blockcipher. As explained in Sect. 4, both ciphers are chosen for their small hardware size,
and we think present is useful when the application requires high throughput, and LED is useful when
long-term security is required, where LED’s high security margin will help.

6 Intellectual Property

We claim no intellectual property (IP) rights associated to SILC, and are unaware of any relevant IP held
by others. We note that the statement does not cover the internal blockcipher. Nanyang Technological
University has a patent related to LED blockcipher: WO2012154129 A1.

If any of this information changes, the submitter will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitters
understand that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitters acknowledge that
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the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitters understand that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.
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A present [2]

present is a blockcipher with 80-bit or 128-bit keys, and employs the SP-network. We describe the 80-bit
key version, which we write present-80, using the materials in [2].

It consists of 31 rounds, and each of the 31 rounds consists of an xor operation of a round key Ki

for 1 ≤ i ≤ 32, where K32 is used for post-whitening, a linear bitwise permutation, and a non-linear
substitution layer. The non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel
in each round. The cipher is described in the following pseudocode.

1. generateRoundKeys()
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2. for i← 1 to 31 do

3. addRoundKey(state,Ki)

4. sBoxLayer(state)

5. pLayer(state)

6. end for

7. addRoundKey(state,K32)

Throughout this section, we number bits from zero with bit zero on the right of a block or word. Each
stage is specified below.

addRoundKey. Given round key Ki = κi
63 . . . κ

i
0 for 1 ≤ i ≤ 32 and current state b63 . . . b0, addRound-

Key consists of the operation for 0 ≤ j ≤ 63,

bj → bj ⊕ κi
j .

sBoxlayer. The S-box used in present is a 4-bit to 4-bit S-box S : {0, 1}4 → {0, 1}4. The following
table shows the input and output of the S-box in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

For sBoxLayer the current state b63 . . . b0 is considered as sixteen 4-bit words w15 . . . w0 where wi =
b4∗i+3 ∥ b4∗i+2 ∥ b4∗i+1 ∥ b4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi] provides the update state values
in the obvious way.

pLayer. The bit permutation used in present is given by the following table. Bit i of state is moved
to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The key schedule. present can take keys of either 80 or 128 bits. In the 80-bit key version, the
user-supplied key is stored in a key register K and represented as k79k78 . . . k0. At round i the 64-bit
round key Ki = κ63κ62 . . . κ0 consists of the 64 leftmost bits of the current contents of register K. Thus
at round i we have that:

Ki = κ63κ62 . . . κ0 = k79k78 . . . k16.

After extracting the round key Ki, the key register K = k79k78 . . . k0 is updated as follows.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]

2. [k79k78k77k76] = S[k79k78k77k76]

3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most four bits are passed through
the present S-box, and the round counter value i is xor’ed with bits k19k18k17k16k15 of K with the
least significant bit of round counter on the right.
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B LED [5]

LED [5] is a 64-bit lightweight blockcipher family designed by Guo et al. in 2011, consists of mainly two
variants of 64-bit and 128-bit key, denoted as LED-64 and LED-128, respectively. The 64-bit plaintext m
is split into 16 4-bit nibbles m0∥m1∥ . . . ∥m15, and can be represented in a square array as:

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


LED is AES like, and every round function consists of 4 operations: SubByte, ShiftRow, MixColumn,
and AddConstant.

SubByte applies the present S-box, as already described in Appendix A, to every nibble, i.e., mi =
S(mi) for i = 0, . . . , 15.

ShiftRow shifts the i-th row to the left by i positions for i = 0, . . . , 3, and the resulted matrix becomes
m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

←


m0 m1 m2 m3

m5 m6 m7 m4

m10 m11 m8 m9

m15 m12 m13 m14


MixColumn applies Galois-Field multiplication, with irreducible polynomial f(x) = x4+x+1, of MDS

matrix to each column. The MDS matrix is defined as

M = (A)4 =


0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2


4

=


4 1 2 2

8 6 5 6

B E A 9

2 2 F B

 .

Then for i = 0, 1, 2, 3, 
mi+0

mi+4

mi+8

mi+12

 = M ×


mi+0

mi+4

mi+8

mi+12

 .

AddConstant adds a round-dependent value rc and key-size dependent value ks (ks is an 8-bit repre-
sentation of the master key size) to the state. The constant format is as follows.

0⊕ (ks7∥ks6∥ks5∥ks4) (rc5∥rc4∥rc3) 0 0
1⊕ (ks7∥ks6∥ks5∥ks4) (rc2∥rc1∥rc0) 0 0
2⊕ (ks3∥ks2∥ks1∥ks0) (rc5∥rc4∥rc3) 0 0
3⊕ (ks3∥ks2∥ks1∥ks0) (rc2∥rc1∥rc0) 0 0


The values of (rc5, rc4, rc3, rc2, rc1, rc0) for rounds r = 1, . . . , 48 are shown below:

Rounds Constants

1–24 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25–48 21,02,05,0B,17,2E,1C,38,31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Every 4 rounds are then grouped together to form a Step, and the key material is added in every
step. In this proposal, we make use of LED-80, which follows LED-128. The 80-bit key is padded with
‘0’s and then split into two 64-bit subkeys K1 and K2 (note K1 and K2 can be encoded in the same
way as for plaintext), which are then added into the state alternatively in every one of the 12 steps,
as shown in Fig. 9.
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Fig. 9. Encryption of LED-80
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