
The STRIBOBr1 Authenticated Encryption Algorithm

First Round CAESAR Competition Submission Document

Designer and Submitter

Markku-Juhani O. Saarinen
mjos@item.ntnu.no

March 15, 2014

For updates and further information:

http://www.stribob.com

N U  S  T

Contents

Preface 1

1 Specification 2
1.1 STRIBOBr1 Family and Parameters . 2
1.2 Structure of the π Permutation . 2

1.2.1 Matrix Notation and Finite Field Arithmetic . 3
1.2.2 Round Constants Ci . 4
1.2.3 Substitution m′ = S(m) . 5
1.2.4 Permutation m′ = P (m) . 5
1.2.5 Linear transform m′ = L(m) . 5
1.2.6 Example Computation of π . 6

1.3 BLNK Sponge Mode and Padding . 7
1.3.1 BLNK Block Operations . 7
1.3.2 The CAESAR encrypt() and decrypt() AEAD API . 8

1.4 Trace of stribob192r1 Computation . 9

2 Security Goals 10
2.1 Specific Goals . 10
2.2 Nonce Re-Use . 10
2.3 General Goals . 10

3 Security Analysis 11
3.1 Structure of GOST R 34.11-2012 . 11

3.1.1 S Compression Function gN (h,m) . 11
3.2 Security of LPS Against Classical Attacks . 12
3.3 Security Reduction Between SB 's π and S's g 12
3.4 Sponge Functions . 13

3.4.1 Absorbing and Squeezing . 13
3.4.2 Duplexing . 13
3.4.3 MAC-and-Continue . 14
3.4.4 Duplex, Triplex, Multiplex . 14
3.4.5 Multiplexing the Sponge . 15
3.4.6 Domain Separation and Capacity Reduction . 15

4 Features 16
4.1 Historical, Scientific, and Regulatory Context . 16
4.2 Advantages . 16
4.3 Implementation Issues . 17

4.3.1 Low-Resource Software Platforms . 17
4.3.2 Medium- to High-Resource Software Platforms . 18

5 Design Rationale 19
5.1 Parameter and Component Selection . 19
5.2 Hidden Weaknesses . 19

I

6 Intellectual Property and Consent 20
6.1 Intellectual Property . 20
6.2 Consent to CAESAR Selection Committee . 20

Bibliography 21

II

Preface

This is a specification for STRIBOBr1, a first round submission to the CAESAR competition.
The document has been written to strictly adhere to the structure suggested in the CAESAR
call for submissions:

http://competitions.cr.yp.to/caesar-call.html

Therefore this particular document may not be easily accessible to someone who is not a
professional cryptographer, even though I try to illuminate key parts with examples.
My two CAESAR submissions, CBEAM [31] and STRIBOB, utilize the same BLNK Sponge
padding mechanism, and relevant sections appear almost identical (apart from some very
important parameter selections). CAESAR submission documents need be effectively self-
contained when it comes to specifying the AEAD mode.
However, the sponge permutations themselves have almost nothing in common and are based
on entirely different design paradigms.

• CBEAM is based on rotation-invariant ϕ functions, feeble Boolean one-wayness, and
other novel ideas. CBEAM is completely original work. Its design is geared towards
limited-resource ("lightweight") medium-security applications.

• STRIBOB uses traditional S-Boxes and MDS matrices, and is therefore a close relative of
the AES Block Cipher. STRIBOB gets additional security assurance from its even closer
relationship with the new Russian hash standard, Streebog. The design is geared to-
wards general high-security applications.

Some of the material used in these submissions has recently appeared in technical conferences
or has been submitted to such [29, 30, 32].
This is the version 1.20140315200000 of this document. We urge the reader to check for up-
dates, revisions, and reference data at:

http://www.stribob.com

If you find bugs, typos, obvious security blunders, or clever cryptanalytic attacks, I would be
very interested to hear about that. My e-mail address can be found at the front page.

Cheers and have fun,
- Markku, the fjords

1

Chapter 1

Specification

1.1 STRIBOBr1 Family and Parameters
SB is an algorithm for Authenticated Encryption with Associated Data (AEAD). SB accepts
almost arbitrary ranges for its input parameters; however for CAESAR we propose a concrete parameter
set ``STRIBOB192r1'' as follows:

Secret key size 192 bits CRYPTO_KEYBYTES 24
Secret sequence number not used CRYPTO_NSECBYTES 0
Public sequence number (nonce) 128 bits CRYPTO_NPUBBYTES 16
Authentication tag (message expansion) 128 bits CRYPTO_ABYTES 16

We first give a mathematical description of the cryptographic permutation π in Section 1.2, together
with some example computations, and then describe its use to implement Authenticated Encryption in
Section 1.3, followed by a trace of full AEAD computation in 1.4.

1.2 Structure of the π Permutation
SB is uses a 512 × 512 - bit permutation π as its cryptographic foundation. π in turn is built from
twelve iterations of LPS transformation, interleaved with exclusive-or operation with round constants.
The LPS core component and round constants of SB are lifted from the Russian GOST R 34.11-2012
"S" hash standard [18], which is also specified in IETF RFC 6986 [14].

With twelve 512-bit round constants Ci (Section 1.2.2) we define the permutation π(X1) = X13 via:

Xi+1 = LPS(Xi ⊕ Ci) for 1 ≤ i ≤ 12. (1.1)

LPS consists of three steps, which are (in order of execution): S substitution, P permutation, and L
linear step; see Figure 1.1. We abbreviate the composite function L(P (S(V))) = (L ◦ P ◦ S)(V) as LPS .

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S

S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

(byte transpose)

0 8 16 24 32 40 48 56

1

2

3

4

5

6

7

9 17 25 33 41 49 57

10 18

13

14

15

26 58

59

60

61

62

63

34 42 50

55473931

22

21

30

29

38

37

46

45

54

53

23

(64× 64-bit matrix)

L

L

L

L

L

L

(8× 8-bit S-Box)

L ◦ P ◦ S

S P L

Figure 1.1: LPS consists of a byte substitution layer S, byte transpose P , and linear layer L.

2

1.2.1 Matrix Notation and Finite Field Arithmetic
We use C-style indexing for the 512-bit state as a matrix of 8 × 8 bytes (octets) m[0 · · · 7][0 · · · 7]. Here
m[i][j] indicates a byte at row i and column j, both indexed from zero:

m[0][0] m[0][1] m[0][2] . . . m[0][7]
m[1][0] m[1][1] m[1][2] . . . m[1][7]
m[2][0] m[2][1] m[2][2] . . . m[2][7]

...
...

...
. . .

...
m[7][0] m[7][1] m[7][2] . . . m[7][7]


The matrices are serialized as byte sequences for transmission in straightforward fashion:

V [i] = m[⌊i/8⌋][i mod 8] for i = 0, 1, · · · , 63. (1.2)

Implementors on mid- and high-end software target platforms will typically store each row in a 64-bit
register for computation. For storage and transmission, the big-endian (network) byte order of Equation
1.2 should be used.1

SB performs arithmetic in the finite field F8
2, where elements are binary polynomials of degree

7 (or less). Each polynomial may be encoded as a byte by their coefficient vector of 8 binary digits.
Encoding of a binary polynomial f(x) =

∑7
i=0 fix

i, fi ∈ {0, 1} as an 8-bit byte is performed with low-
order monomial on the left: 2

val(f) =
7∑

i=0

27−ifi. (1.3)

In hexadecimal we have val(x7) = 01, val(x6) = 02, · · · , val(x) = 40, val(1) = 80. Since x+x ≡ 0 (mod 2),
addition of two polynomials is equivalent to bitwise exclusive-or operation val(f + g) = val(f)⊕ val(g).

For field multiplication the irreducible polynomial basis is p(x) = x8 + x6 + x5 + x4 + 1. Polynomial
multiplication is carried out normally - but with each i-degree monomial canceling each out as this is a
binary field: (7∑

i=0

fix
i
)(7∑

i=0

gix
i
)
=

7∑
i=0

7∑
j=0

figjx
i+j (mod 2). (1.4)

The result is reduced mod p(x), limiting its degree to 7.

xi mod p(x) = xi for 0 ≤ i ≤ 7 x11 mod p(x) = x4 + x3 + x+ 1
x8 mod p(x) = x6 + x5 + x4 + 1 x12 mod p(x) = x5 + x4 + x2 + x
x9 mod p(x) = x7 + x6 + x5 + x x13 mod p(x) = x6 + x5 + x3 + x2

x10 mod p(x) = x7 + x5 + x4 + x2 + 1 x14 mod p(x) = x7 + x6 + x4 + x3.

Example. Let's multiply val(f) = 45 with val(g) = 8E. From Eqn. 1.3 we see that corresponding polyno-
mials are f = x7 + x5 + x and g = x6 + x5 + x4 + 1. Formal product fg and its equivalent in F2:

fg = x13 + x12 + 2x11 + x10 + x9 + 2x7 + x6 + x5 + x

fg ≡ x13 + x12 + x10 + x9 + x6 + x (mod 2)

Further reducing mod p(x) and converting to a byte value we have:

fg mod p(x) = x6 + x3 + x2 + x+ 1

45 ∗ 8E = val(x6 + x3 + x2 + x+ 1) = F2.

1The Streebog hash standard does not specify the byte order for transmission [18].
2This "bit-reverse" convention is carried over from the GOST standard, but is also used in other cryptographic standards such

as NIST's GCM Mode [26], but not in AES [25].

3

1.2.2 Round Constants Ci

The twelve round constants Ci are from the S specification, here given as byte matrices [14, 18]:

C1 =



B1 08 5B DA 1E CA DA E9
EB CB 2F 81 C0 65 7C 1F
2F 6A 76 43 2E 45 D0 16
71 4E B8 8D 75 85 C4 FC
4B 7C E0 91 92 67 69 01
A2 42 2A 08 A4 60 D3 15
05 76 74 36 CC 74 4D 23
DD 80 65 59 F2 A6 45 07


C7 =



F4 C7 0E 16 EE AA C5 EC
51 AC 86 FE BF 24 09 54
39 9E C6 C7 E6 BF 87 C9
D3 47 3E 33 19 7A 93 C9
09 92 AB C5 2D 82 2C 37
06 47 69 83 28 4A 05 04
35 17 45 4C A2 3C 4A F3
88 86 56 4D 3A 14 D4 93



C2 =



6F A3 B5 8A A9 9D 2F 1A
4F E3 9D 46 0F 70 B5 D7
F3 FE EA 72 0A 23 2B 98
61 D5 5E 0F 16 B5 01 31
9A B5 17 6B 12 D6 99 58
5C B5 61 C2 DB 0A A7 CA
55 DD A2 1B D7 CB CD 56
E6 79 04 70 21 B1 9B B7


C8 =



9B 1F 5B 42 4D 93 C9 A7
03 E7 AA 02 0C 6E 41 41
4E B7 F8 71 9C 36 DE 1E
89 B4 44 3B 4D DB C4 9A
F4 89 2B CB 92 9B 06 90
69 D1 8D 2B D1 A5 C4 2F
36 AC C2 35 59 51 A8 D9
A4 7F 0D D4 BF 02 E7 1E



C3 =



F5 74 DC AC 2B CE 2F C7
0A 39 FC 28 6A 3D 84 35
06 F1 5E 5F 52 9C 1F 8B
F2 EA 75 14 B1 29 7B 7B
D3 E2 0F E4 90 35 9E B1
C1 C9 3A 37 60 62 DB 09
C2 B6 F4 43 86 7A DB 31
99 1E 96 F5 0A BA 0A B2


C9 =



37 8F 5A 54 16 31 22 9B
94 4C 9A D8 EC 16 5F DE
3A 7D 3A 1B 25 89 42 24
3C D9 55 B7 E0 0D 09 84
80 0A 44 0B DB B2 CE B1
7B 2B 8A 9A A6 07 9C 54
0E 38 DC 92 CB 1F 2A 60
72 61 44 51 83 23 5A DB



C4 =



EF 1F DF B3 E8 15 66 D2
F9 48 E1 A0 5D 71 E4 DD
48 8E 85 7E 33 5C 3C 7D
9D 72 1C AD 68 5E 35 3F
A9 D7 2C 82 ED 03 D6 75
D8 B7 13 33 93 52 03 BE
34 53 EA A1 93 E8 37 F1
22 0C BE BC 84 E3 D1 2E


C10 =



AB BE DE A6 80 05 6F 52
38 2A E5 48 B2 E4 F3 F3
89 41 E7 1C FF 8A 78 DB
1F FF E1 8A 1B 33 61 03
9F E7 67 02 AF 69 33 4B
7A 1E 6C 30 3B 76 52 F4
36 98 FA D1 15 3B B6 C3
74 B4 C7 FB 98 45 9C ED



C5 =



4B EA 6B AC AD 47 47 99
9A 3F 41 0C 6C A9 23 63
7F 15 1C 1F 16 86 10 4A
35 9E 35 D7 80 0F FF BD
BF CD 17 47 25 3A F5 A3
DF FF 00 B7 23 27 1A 16
7A 56 A2 7E A9 EA 63 F5
60 17 58 FD 7C 6C FE 57


C11 =



7B CD 9E D0 EF C8 89 FB
30 02 C6 CD 63 5A FE 94
D8 FA 6B BB EB AB 07 61
20 01 80 21 14 84 66 79
8A 1D 71 EF EA 48 B9 CA
EF BA CD 1D 7D 47 6E 98
DE A2 59 4A C0 6F D8 5D
6B CA A4 CD 81 F3 2D 1B



C6 =



AE 4F AE AE 1D 3A D3 D9
6F A4 C3 3B 7A 30 39 C0
2D 66 C4 F9 51 42 A4 6C
18 7F 9A B4 9A F0 8E C6
CF FA A6 B7 1C 9A B7 B4
0A F2 1F 66 C2 BE C6 B6
BF 71 C5 72 36 90 4F 35
FA 68 40 7A 46 64 7D 6E


C12 =



37 8E E7 67 F1 16 31 BA
D2 13 80 B0 04 49 B1 7A
CD A4 3C 32 BC DF 1D 77
F8 20 12 D4 30 21 9F 9B
5D 80 EF 9D 18 91 CC 86
E7 1D A4 AA 88 E1 28 52
FA F4 17 D5 D9 B2 1B 99
48 BC 92 4A F1 1B D7 20


4

1.2.3 Substitution m′ = S(m)

In this step, a 8× 8 - bit S-Box is applied to each byte (octet) of data on vector.

m′[i][j] = S(m[i][j]) for 0 ≤ i, j ≤ 7 (1.5)

The substitute bytes S(0) = 252, S(1) = 238, · · ·S(255) = 182 are given by the following table (in hex):

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
0x FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D
1x E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1
2x F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F
3x 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F
4x EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC
5x B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87
6x 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1
7x 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57
8x DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03
9x E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A
Ax A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41
Bx AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B
Cx 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89
Dx E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61
Ex 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52
Fx 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

1.2.4 Permutation m′ = P (m)

A permutation of bytes in the state, equivalent of transposing the 8 × 8 byte matrix. Transposition is a
reflection along the main diagonal, which can also be seen as writing rows as columns:

m′[i][j] = m[j][i] for 0 ≤ i, j ≤ 7. (1.6)

00 01 02 03 04 05 06 07
08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27
28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37
38 39 3A 3B 3C 3D 3E 3F



T

=



00 08 10 18 20 28 30 38
01 09 11 19 21 29 31 39
02 0A 12 1A 22 2A 32 3A
03 0B 13 1B 23 2B 33 3B
04 0C 14 1C 24 2C 34 3C
05 0D 15 1D 25 2D 35 3D
06 0E 16 1E 26 2E 36 3E
07 0F 17 1F 27 2F 37 3F


1.2.5 Linear transform m′ = L(m)

Even though L is specified in the form of a 64× 64 - bit matrix in the Standard text [18], it is in fact built
from a matrix multiplication in the finite field F28 [19]. The mixing operation and matrix constant L are:

m′ = m · L, L =



8E 20 FA A7 2B A0 B4 70
A0 11 D3 80 81 8E 8F 40
90 DA B5 2A 38 7A E7 6F
9D 4D F0 5D 5F 66 14 51
86 27 5D F0 9C E8 AA A8
45 6C 34 88 7A 38 05 B9
E4 FA 20 54 A8 0B 32 9C
70 A6 A5 6E 24 40 59 8E


(1.7)

m′[i][j] =
7⊕

k=0

m[i][k] ∗ L[k][j]. (1.8)

5

1.2.6 Example Computation of π
We will give an example of computation of π in this section. One may also utilize pages 20-24 of RFC 6986
[14] where the computation of K[i] is mathematically equivalent to Xi iteration with π(K[1]) = K[13].
That example also computes many quantities that are specific to S and not needed in SB .

We begin iteration of Equation 1.1 with initial value set to ascending byte sequenceX1 = (0, 1, 2, · · · , 63).
First round constant addition yields:

X1 ⊕ C1 =



00 01 02 03 04 05 06 07
08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27
28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37
38 39 3A 3B 3C 3D 3E 3F


⊕



B1 08 5B DA 1E CA DA E9
EB CB 2F 81 C0 65 7C 1F
2F 6A 76 43 2E 45 D0 16
71 4E B8 8D 75 85 C4 FC
4B 7C E0 91 92 67 69 01
A2 42 2A 08 A4 60 D3 15
05 76 74 36 CC 74 4D 23
DD 80 65 59 F2 A6 45 07


=



B1 09 59 D9 1A CF DC EE
E3 C2 25 8A CC 68 72 10
3F 7B 64 50 3A 50 C6 01
69 57 A2 96 69 98 DA E3
6B 5D C2 B2 B6 42 4F 26
8A 6B 00 23 88 4D FD 3A
35 47 46 05 F8 41 7B 14
E5 B9 5F 62 CE 9B 7B 38


Applying the S-Box substitution and the transpose of P permutation we have:

S(X1 ⊕ C1) =



45 C4 72 53 F1 89 CA 6C
A4 B3 5C D6 88 F3 19 E9
1F 80 10 B5 ED B5 1D EE
91 12 60 B0 91 DC AA A4
6F B7 B3 46 55 2C CC EF
D6 6F FC 5A D7 3A 4B ED
6A AB 48 6E D1 34 80 93
2B A3 87 96 E7 50 80 06


P (S(X1 ⊕ C1) =



45 A4 1F 91 6F D6 6A 2B
C4 B3 80 12 B7 6F AB A3
72 5C 10 60 B3 FC 48 87
53 D6 B5 B0 46 5A 6E 96
F1 88 ED 91 55 D7 D1 E7
89 F3 B5 DC 2C 3A 34 50
CA 19 1D AA CC 4B 80 80
6C E9 EE A4 EF ED 93 06


.

We illustrate the finite field matrix multiplication (Eqn. 1.8) of the L step by computing one element of
m = P (S(X1 ⊕ C1)) · L. Let's consider, say, m[1][3], the byte at offset 1 ∗ 8 + 3 = 11. The value of this
byte will equal the dot product of row 1 of P (S(X1 ⊕ C1)) and column 3 of the L matrix (Eqn. 1.7):

m[1][3] = (C4 B3 80 12 B7 6F AB A3) · (A7 80 2A 5D F0 88 54 6E)T

= (C4 ∗ A7)⊕ (B3 ∗ 80)⊕ (80 ∗ 2A)⊕ (12 ∗ 5D)⊕ (B7 ∗ F0)⊕ (6F ∗ 88)⊕ (AB ∗ 54)⊕ (A3 ∗ 6E)
= 66⊕ B3⊕ 2A⊕ 2D⊕ F4⊕ D5⊕ D2⊕ 26
= 07.

The result of the L step (and the first round) is

X2 = P (S(X1 ⊕ C1)) · L = (L ◦ P ◦ S)(X1 ⊕ C1) =



35 B0 E5 15 D4 2D CC D5
72 63 04 07 96 4A E5 16
6B EA FD 00 FF E3 A6 93
96 66 64 04 BF AE 69 5D
9A 09 63 C6 04 D4 BE 0E
9C 57 21 98 7D 19 8F 27
DB 2B F6 9D 02 43 5E AB
27 A6 4E 75 07 79 F3 89


Further eleven rounds yields the final result of π:

X3 =



D3 A7 1B D2 2F 79 0D B7
DB 15 9B 6A 51 EA 8F 54
C9 FA F5 66 DC E6 C3 4B
34 74 A0 ED 5D DE E8 58
79 15 83 86 64 48 DE 68
0E 78 6F 4A 09 B6 1A D0
AF D7 5F F3 CC B6 22 D2
44 23 4C A0 AD E1 B9 C4


π(X1) = X13 =



16 8A 86 7D 30 DB 56 6D
57 D5 30 BE D9 22 08 82
37 0C E2 79 FB A4 E5 87
A3 20 E6 ED A2 A3 BA 10
17 34 62 B6 23 0E C5 67
86 7C 34 37 5E 2E 46 D9
A7 FB 06 19 27 A3 F5 49
53 19 BD F9 EC 94 1A 95


6

1.3 BLNK Sponge Mode and Padding
BLNK ("Blink") is a general and highly flexible Sponge mode of operation modified from the padding
used in the original BLINKER [29] lightweight protocol.

In this section we describe only how it is used specifically in the STRIBOB192r1 Authenticated En-
cryption with Associated Data (AEAD) algorithm, ignoring many of its more advanced features.

Sponge functions in BLNK mode are characterized by the parameters permutation size b, rate r, and
capacity c. These quantities are related by b = r + c+ δ, where:

b State size. π has b = 512 bits.

r Data rate or block size. r = 256 bits.

c Capacity, the amount of secret information in the state. c = b− δ bits.

δ Capacity consumed by padding. For STRIBOB192r1 we can bound this to δ < 2 bits.

Furthermore, we fix the key size to k = 192 bits and the authentication tag to t = 128 bits. Authentication
tags are contained in a ciphertext block.

1.3.1 BLNK Block Operations
We define four basic sponge operations for data absorption, squeezing, encryption, and decryption. Each
one performs an operation on n bytes in a data domain specified by a single-byte padding argument pad,
invoking the Sponge permutation π a total of max(⌈n/32⌉, 1) times.

The four basic operations are:

put(D[n], pad) Absorb n bytes of data D into the state.

D[n]← get(n, pad) Squeeze out n bytes of data D from the state.

C[n]← enc(P [n], pad) Encrypt n bytes of plaintext P to ciphertext C.

P [n]← dec(C[n], pad) Decrypt n bytes of data ciphertext C to plaintext C.

In the following generic pseudocode op ∈ {put, get, enc, dec} and V [0 · · · 63] is the state.

1: i← 0 state index, initialized to first byte
2: for j = 0 to n− 1 do
3: if i = 32 then
4: V [32]← V [32]⊕ BLNK_END⊕ pad full block padding with block end marker
5: V ← π(V) cryptographic permutation
6: i← 0 zero index
7: end if
8: if op = put then
9: V [i]← V [i]⊕D[j] XOR input data to the state

10: else if op = get then
11: D[j]← V [i] simply save the data
12: else if op = enc then
13: C[j]← V [i]⊕ P [j] encrypt as in a stream cipher
14: V [i]← C[j] store ciphertext in state
15: else if op = dec then
16: P [j]← V [i]⊕ C[j] decrypt as in a stream cipher
17: V [i]← C[j] store ciphertext in state
18: end if
19: i← i+ 1 advance block index
20: end for
21: V [i]← V [i]⊕ BLNK_END end marker (note: i = 32 possible)
22: V [32]← V [32]⊕ BLNK_FIN⊕ pad final padding
23: V ← π(V) final cryptographic permutation

7

The byte constants and padding argument pad made up as a combination of some of these byte values:

Flag name Value Padding bit or Domain identifier
BLNK_END 0x01 Padding marker bit
BLNK_FIN 0x02 Data element final block marker bit
BLNK_KEY 0x10 Secret key (in)
BLNK_NPUB 0x20 Public sequence number (in)
BLNK_NSEC 0x30 Secret sequence number (in / out)
BLNK_AAD 0x40 Authenticated Associated Data (in)
BLNK_MSG 0x50 Confidential Message Payload (in/out)
BLNK_MAC 0x60 Message Authentication Code (out)

1.3.2 The CAESAR encrypt() and decrypt() AEAD API
Input and output parameters to the encryption and decryption primitives are given below. Each one
of these is used as a C-style zero-indexed byte vector in the descriptions that follow. Furthermore,
V [0 · · · 63] is the 64-byte internal state of SB .

K[24] Secret key of k = 192 bits, or 24 bytes.

N [16] A 128-bit public sequence number or nonce for the message. Only integrity is protected
for this data and the contents are not part of ciphertext.

A[a] Associated Authenticated data, 0 ≤ a bytes. Only integrity is protected for this data and
the contents are not part of ciphertext. If unused, set a = 0.

P [n] Plaintext payload, 0 ≤ n bytes. Integrity and confidentiality is protected for this data.

C[n+ 16] Ciphertext, 16 ≤ n+ 16 bytes. Integrity and confidentiality is protected for this data.

Pseudocode for implementing standard AEAD API encryption:

C[n+ 16]← encrypt(K[24], N [16], A[a] , P [n])

1: V [64]← (0, 0, · · · , 0) initialize the state with zeros
2: put(K[24], BLNK_KEY) secret key, always a single π op
3: put(N [16], BLNK_NPUB) public nonce, always a single π op
4: put(A[a], BLNK_AAD) authenticated data, ⌈a/32⌉ π ops
5: C[0 · · ·n− 1]← enc(P [n], BLNK_MSG) encryption, ⌈n/32⌉ π ops
6: C[n · · ·n+ 15]← get(16 , BLNK_MAC) message authentication code, π not necessary
7: return C[n+ 16] authenticated ciphertext

Inverse operation by the recipient:

{ P [n] or FAIL } ← decrypt(K[24], N [16], A[a] , C[n+ 16])

1: V [64]← (0, 0, · · · , 0) initialize the state with zeros
2: put(K[24], BLNK_KEY) secret key, always a single π op
3: put(N [16], BLNK_NPUB) public nonce, always a single π op
4: put(A[a], BLNK_AAD) authenticated data, ⌈a/32⌉ π ops
5: P [n]← dec(P [0 · · ·n− 1], BLNK_MSG) decryption, ⌈n/32⌉ π ops
6: if C[n · · ·n+ 15] = get(16 , BLNK_MAC) then
7: return P [N] auth match: C[n · · ·n+ 15] = V [0 · · · 15]
8: else
9: return FAIL plaintext should be ignored (and cleared)

10: end if

The encryption function always returns the protected ciphertext message. Decryption either returns
the plaintext or FAIL, indicating authentication failure. It is important that the decryption routine always
performs full processing regardless of fail condition in order to minimize the risk of a timing attack. Also
the confidential state can be cleared in order to minimize leakage.

8

1.4 Trace of stribob192r1 Computation
To illustrate the operation with CAESAR parameters, we use following plain ASCII values for input to
encrypt() with n = 38:

K[24] = "192-bit Secret Key value"
N [16] = "Nonces Used Once"
A[32] = "AAD Test Vector Exact Block 32 B"
P [38] = "This is a Test Vector for stribob192r1"

Steps 1-2: Keying. After zeroing V , the first input to π is the padded secret key value K[24]:
31 39 32 2D 62 69 74 20 53 65 63 72 65 74 20 4B 65 79 20 76 61 6C 75 65 01 00 00 00 00 00 00 00
12 00

The state V [64] after key mixing π is:
08 4D 08 20 FA 4A C8 C7 E0 0D CB 0A 3E 2F 5B 20 A2 77 0B A2 D2 90 02 BB 0C F2 D8 B7 7D 4E 9F 94
B4 E4 A6 C1 0D 3E 05 7A 29 87 39 75 9E 90 0E 0B 6B 06 5D 55 92 36 89 7A C0 CA 22 30 84 8D 5D 77

Step 3: Nonce mixing. The nonce N [16] padded XOR value:
4E 6F 6E 63 65 73 20 55 73 65 64 20 4F 6E 63 65 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
22 00

The state V after nonce mixing π is:
94 09 14 15 F3 64 F7 4B 22 A9 4A BE E7 31 14 D0 5F E3 BA 4B 1D 98 51 12 0F 70 ED DA F1 F9 F5 B0
DF 6F 47 BD BF B9 F2 57 D0 B8 4A 4E DF AF 20 E5 19 FF EF 7B 6C B8 23 BE D4 FD F5 0A 5C F5 CD 43

Step 4: Associated Authenticated Data. Padded AAD A[32] XOR value. Note how the end bit is
embedded with domain indicator byte at position 32, 0x43 = BLNK_END ⊕ BLNK_FIN ⊕ BLNK_AAD.
41 41 44 20 54 65 73 74 20 56 65 63 74 6F 72 20 45 78 61 63 74 20 42 6C 6F 63 6B 20 33 32 20 42
43 00

The state V after AAD mixing π is:
39 E8 76 FD 1F A6 DB 05 FC 68 1E CA C8 03 A2 A4 8B 6C B3 0E 6B 47 D9 FE C9 4F E1 E8 CB 3E 02 D4
73 48 03 FB 16 F3 6A 56 53 DE FE BC 70 12 C2 8C 94 91 72 CA EC 12 74 E1 9A 7C 51 32 AF E5 8E AC

Step 5: Payload Encryption. First 32 bytes of plaintext P [0 · · · 31] with padding:
54 68 69 73 20 69 73 20 61 20 54 65 73 74 20 56 65 63 74 6F 72 20 66 6F 72 20 73 74 72 69 62 6F
50 00

The state V after encrypting first 32 bytes of plaintext:
CA 39 E7 1B 5D BA DA 03 2D DB 04 19 25 22 AF 27 83 73 E6 C4 2E F1 D5 7F 4B 18 F7 01 DD 03 38 F9
C7 C4 F5 A4 F7 79 AB 4F FB A1 45 FC ED 0E 74 65 9A EA 3C E3 3A 72 25 5D 97 6B F9 76 B3 CA C8 CD

Remaining 6 bytes of plaintext P [32 · · · 37] with padding:
62 31 39 32 72 31 01 00
52 00

The state V after encryption and final π:
16 5B D9 D6 2B 3C 7B 7D 6D C4 23 44 6B E7 60 82 BB 3A 5C A8 D2 50 C4 E8 3A 58 58 F0 89 94 00 95
1B ED ED 65 63 9C 41 5B 6B 90 90 51 BA CD 55 EE 8E 63 4A C7 63 A7 55 B3 77 E0 7A CE B0 FD A8 CF

Step 6: Authentication code. Authenticated ciphertext bytes C[54]. The last 16 bytes correspond to first
16 bytes of the final state above.
6D 80 1F 8E 3F CF A8 25 9D 48 4A AF BB 77 82 F2 EE 0F C7 61 19 67 BF 91 BB 6F 92 9C B9 57 60 BB
A8 08 DE 29 2F 8B 16 5B D9 D6 2B 3C 7B 7D 6D C4 23 44 6B E7 60 82

9

Chapter 2

Security Goals

2.1 Specific Goals
With the "stribob192r1" set of parameters (as specified in Sections 1.1 and 1.3) we have the following
security claims and goals:

Category Effort Attack Goal
Confidentiality for the plaintext. 2191 To recover to the plaintext from cipher-

text or vice versa.
Integrity for the plaintext. 2127 To forge plaintext payload.
Integrity for the associated data. 2127 To forge Associated Data .
Integrity for the public message number. 2127 To forge public message number.

Here we assume that the secret key is entirely unknown to the attacker. The complexities are given
for P = 0.5 success probability. Furthermore we assume that no more than 264 bits of data is processed
under any specific key / nonce pair. The "unit" for the effort is equivalent to the effort required to compute
the π permutation.

2.2 Nonce Re-Use
SB does not allow re-use of public message numbers under the same key. In other words, users are
required to use the public message number as a nonce. SB may lose all of its security if a legitimate
key holder uses the same sequence number and key to encrypt (and authenticate) two different messages.

2.3 General Goals
Our main security goals are largely compatible with those laid out for Authenticated Encryption [27] and
Duplex Sponges in particular -- proofs in [4, 7] are applicable. For the primitives of Section 1.3.2:

priv The expected effort to distinguish ciphertext C = encrypt(K, N, A, P) from random is 2k−1 for
random unknown key K and nonrepeating nonce N . Multiple (N, A, P) may be chosen by the
attacker, up to the data limit.

auth The expected effort to forge a message (N, A, C) that does not result in decrypt(K, N, A, C) =
FAIL authentication failure is 2t−1 for random unknown key K and nonrepeating nonce N . Mul-
tiple (N, A, C) may be chosen by the attacker, up to the data limit.

In general, confidentiality of plaintext will be consistent with key size k and the integrity (authenti-
cation) will be consistent with authentication tag size t if conditions for data limits and nonce re-use are
held. Secret message numbers will have the same confidentiality as other payload, if used. There should
not be any easily exploitable related-key properties.

10

Chapter 3

Security Analysis

SB is based on the new Russian GOST R 34.11-2012 "S" hash standard [18] and a variant of
Saarinen's Blinker padding for the Sponge Authenticated Encryption construct of [4, 29]

S is not a sponge-based construction and uses the LPS core in an entirely different way, yet
the similarities allow certain types of security reductions between the two algorithms.

3.1 Structure of GOST R 34.11-2012
We first recall the structure of GOST R 34.11-2012 hash function. S produces either a 256-bit or
a 512-bit hash from a bit string of arbitrary size using the Merkle-Damgård [13, 24] iterative method
without any randomization.

Figure 3.1 gives an overview of the hashing process. Padded message M is processed in 512-bit
blocks M = m0 | m1 | · · · | mn by a compression function h′ = gN (h,mi). The chaining variable h also
has 512 bits and N denotes the index bit offset of the input block. After the last message block, there are
finalization steps involving two invocations of the compression function, first on the total bit length of
input, and then on checksum ϵ, which is computed over all input blocks mod 2512.

3.1.1 S Compression Function gN(h,m)

The compression function h′ = gN (h,m) takes in a chaining variable h, message blockm, a position index
variable N , and produces a new chaining value h′. The compression function is built from a keyless 512-
bit nonlinear permutation LPS and 512-bit vector XOR operations. The compression function has 12
rounds and a performs a total of 25 invocations of LPS :

[K1, X1] = [LPS(h⊕N), m]

[Ki+1, Xi+1] = [LPS(Ki ⊕ Ci), LPS(Xi ⊕Ki)] for 1 ≤ i ≤ 12

gN (h,m) = K13 ⊕X13 ⊕ h⊕m.

Figure 3.2 shows the structure of g. We can view it as a two-track substitution-permutation network
where input value h⊕N and a set of 12 round constants Ci is used to key (via Ki) another substitution-
permutation network operating on h . The outputs of the two tracks are finally XORed together with

g0 g512 g1024 g512n

m0 m1 m2 padmn

g0

|M |

g0

total length “checksum”

h(M)

· · ·

∑n
i=0mi (mod2512)

h = 0

ε = 0

M =

Figure 3.1: Operation of S with 512-bit output. For 256-bit hashes, the initial h value is changed
to 0x010101..01 and the output h(M) is truncated to 256 bits.

11

original values of h and m. We note that h together with offset N uniquely defines all Ki subkey values
for each invocation of g.

LPS LPS

LPS

LPS

LPS

LPS

LPS

LPS

LPS

h

m

h′

C3

N

C2C1 C12

4, 5, · · · , 11

h′ = gN(h,m)

K12K3K2K1

Figure 3.2: S compression function. All data paths, inputs, and outputs are 512-bit vectors. Here
the ⊕ symbol denotes the XOR operation between two 512-bit vectors.

3.2 Security of LPS Against Classical Attacks
LPS gets all of its non-linearity from the 8-bit S-box S, which apparently has been designed to offer
resistance against classical methods of cryptanalysis. Its differential bound [10] is P = 8

256 and best
linear approximation [21] holds with P = 28

128 . There seems to be no exploitable algebraic weaknesses.
The linear transform L is not randomly constructed even though it is expressed without explanation

as a 64 × 64 binary matrix in [18]. L in fact has a byte-oriented structure as an MDS matrix with F28

arithmetic in a similar fashion as AES, even though this is not mentioned in the standard specification
[19, 25]. We use this equivalent description (Section 1.2.5). Many structural observations on AES-like
ciphers also apply to LPS : S and L are effectively mix together the bits of the eight 64-bit rows. P swaps
rows and columns and after two rounds each input bit affects each output bit of the 512-bit state. Adjusted
to its state size, LPS has similar per-round avalanche to AES (each input byte affects each output byte after
two rounds) and similar resistance to Square attacks. SB therefore has 6-round "Squarepants", as
this is the best theoretical Square attack we know of [20].

3.3 Security Reduction Between SB 's π and S's g
Only a single keyless permutation π is required in a In a sponge function. We utilize the LPS transform
and twelve round constantsCi of GOST R 34.11-2012 in our new design. For some vector of twelve 512-bit
subkeys Ci we define a 512-bit permutation πC(X1) = X13 with iteration

Xi+1 = LPS(Xi ⊕ Ci) for 1 ≤ i ≤ 12.

Structure of π is shown in Figure 3.3. One may find it helpful to compare it with Figure 3.2 while
considering the first input block which always has N = h = 0; the subkey values Ki are always the
same, regardless of the input message block m. The chaining value h after processing the first block (but
before final XORs) is h = πK(m), which is equivalent to πC , just with different random round constants.

The output truncation after the last invocation of g of S-256 indicates that collision resistance
is expected of half of the output as well, which is exactly what we need in a r = 256 Sponge mode.

x′ = π(x)

C2

LPS

C1

LPS

C3

LPS LPS

C12

x′x

Figure 3.3: The 512-bit permutation π used by SB .

12

There's a straightforward security reduction from the indistinguishably of πC to that of g. Note that
the usual rules for the "distinguishing game" apply to our proof sketches.

Theorem 1. If πC(x) can be effectively distinguished from a random permutation for any C, so can gN (h, x) for
any h and N .

Proof. If h is known, so are all of the subkeys Ki as those are a function of h alone. We have the equiva-
lence

gN (h, x)⊕ x⊕ h = πK(x⊕N).

Assuming that the round constants Ci offer no advantage over known round keys Ki, πC is as secure as
πK and any distinguisher should have the same complexity.

Theorem 1 indicates that a generic powerful attack against π is also an attack on g. A distinguishing
attack against g of course does not imply a collision attack against S as a whole. However as
the security level expected of SB is lower than that of S, Theorem 1 a significant level of
confidence for our construction.

3.4 Sponge Functions
Sponge constructions generally consist of a state S = (Sr || Sc) which has b = r + c bits and a b-bit
keyless cryptographic permutation π. The Sr component of the state has r "rate" bits which interact with
the input and the internal Sc component has c private "capacity" bits. Our selection for these parameters
is given in Section 1.3.

These components, together with suitable padding and operating rules can be used to build provable
Sponge-based hashes [1], Tree Hashes [8], Message Authentication Codes (MACs) [6], Authenticated
Encryption (AE) algorithms [4], and pseudorandom extractors (PRFs and PRNGs) [2].

3.4.1 Absorbing and Squeezing
We recall the basic Sponge hash [1] concepts of "absorbing" and "squeezing" which intuitively correspond
to insertion and extraction of data to or from the sponge. Let Si and Si+1 be b-bit input and output states.
For absorption of padded data blocks Mi (of r bits each) we iterate:

Si+1 = π(Sr
i ⊕Mi || Sc

i). (3.1)

This stage is followed by squeezing out the hash H = H(M) by consecutive iterations of:

H = H || Sr
i

Si+1 = π(Si). (3.2)

These constructions may be transformed into a keyed MAC by considering the state Si as secret
(keyed) [6]. Keying is then equivalent to initial absorption of keying material before the payload data.
MAC is squeezed out exactly like a hash.

3.4.2 Duplexing
A further development was the Duplex construction [4] which allows us to encrypt and decrypt data
while also producing a MAC in the end with a single pass.

The state is first initialized by inserting secret keying material and non-secret randomization data
to the state via the absorption mechanism of Equation 3.1. To encrypt plaintext blocks Pi to ciphertext
blocks Ci we iterate:

Ci = Sr
i ⊕ Pi

Si+1 = π(Ci || Sc
i). (3.3)

The effect on the state is the same as that of Equation 3.1. The inverse -- decryption operation -- is almost
equivalent to encryption, which in itself has significant implementation advantages:

Pi = Sr
i ⊕ Ci

13

Si+1 = π(Ci || Sc
i). (3.4)

After encryption or decryption, a message authentication code for the message may be squeezed out
as in Equation 3.2 and verified. To simplify exposition, we have left some key details regarding padding.
We will come back to these in Section 3.4.4. Figure 3.4 shows operation of a generic Sponge-based AEAD.

3.4.3 MAC-and-Continue
There is really no need to constrain the iteration to a single message. With appropriate domain-separating
padding the security proofs allow the sponge states to be used for any number of consecutive authen-
ticated messages ("MAC-and-Continue") without the need for sequence numbers, and re-keying. This
is one of the main observations which led to the present work and greatly reduces the latency of imple-
mentation as "initialization rounds" are not required for each message. This was also proposed as part of
the original SW construction. However, we are not using this as part of the CAESAR proposal.

3.4.4 Duplex, Triplex, Multiplex
The SW [4] and D [7] padding rules offer concrete Sponge-based methods for per-
forming authenticated encryption. Recent work on implementation of SW and its variants on
low-resource platforms is reported in [34].

The requirements laid out in [4] for the padding rule are that they are reversible, non-empty and that
the last block is non-zero. The padding rule in K is that a single 1 bit is added after the last bit of
the message and also at the end of the input block.

In the Duplex construction of SW additional padding is included for each input block; a
secondary information bit called frame bit is used for domain separation. S [8] uses additional
frame bits to facilitate tree hashing. It is essential that the various bits of information such as the key,
authenticated data, and authenticated ciphertext can be exactly "decoded" from the Sponge input to
avoid trivial padding collisions. We use a more explicit padding mechanism but the following priv and
auth bounds proven in [4] (Section 5.2 on Page 332) and [6] also hold for enc():

Theorem 2 (Theorem 1 from [4]). The SW and BLINKER authenticated encryption modes satisfy the
following privacy and authentication security bounds:

Advpriv
enc (A) < q2−k +

N(N + 1)

2c+1
(3.5)

Advauth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(3.6)

against any single adversary A if K $← {0, 1}k, tags of l ≥ t bits are used, π is a randomly chosen permutation, q
is the number of queries and N is the number of times π is called.

Note that even the Squeezing phase can utilize padding to mark the size of desired output (as we do
in Section 1.3). In K and SW a convention has been adopted to have a null Sr input to

π π π π π π π

r

c

IV

d0 d··· p1 c1 p··· c··· h0 h···p0 c0

squeezing phaseencryption phaseabsorbtion phase

Figure 3.4: A simplified view of a Sponge-based AEAD. First the padded Secret Key, Nonce, and Asso-
ciated Authenticated Data - all represented by du words - are "absorbed" or mixed into the Sponge state.
The π permutation is then used to also encrypt data pi into ciphertext ci (or vice versa) and finally to
"squeeze" out a Message Authentication Code hi.

14

π during squeezing in order to separate it from other phases (hence the requirement that padding rule
does not produce null blocks). However this may lead to problems in some applications where the MAC
length is not clear.

Current variants of Blinker utilize padding on MAC output, but this is not detectable on output unless
MAC-and-Continue is used 3.4.3.

3.4.5 Multiplexing the Sponge
We term our multi-purpose padding as "Multiplex padding". There are more than two different data
domains (as in Duplex padding). Input and output blocks, encrypted and authenticated data, keys, and
nonces are all different data domains and are encoded unambiguously as Sponge inputs.

Rather than using frame bits per block for domain separation as in SW, the data domains are
explicitly encoded. This allows many more data types to be entered into the sponge as well and clearer
domain separation between them. In a shared-state two-party half-duplex protocol that the originating
party of the block (Alice or Bob) is also used to mark domain separation between the two [29], but this
feature is not used in current this proposal.

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc′) with c′ = c−d. The iteration
for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(Sr
i ⊕Mi || Sd

i ⊕Di || Sc′

i). (3.7)

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕Di || Sc′

i). (3.8)

In our implementation d = 8 bits. Section 1.3.1 gives a description of padding mask byte bits (which
may be OR'ed together). Message blocks are always padded with a single "1" bit and by zeros to fill r
bits, followed by the multiplex padding byte. If full r bits are used in a block, the padding bit is the bit 0
in the multiplex word.

3.4.6 Domain Separation and Capacity Reduction
The domain indicator word is XORed with the capacity bits on all operations (Equations 3.7 and 3.8).
We do this in order to remove the requirement for additional message padding buffers (caused by frame
bits) and also to follow Horton's Principle [15, 33], "Authenticate what is being meant, not what is being said."

In CAESAR AEAD mode the different data domains follow each other in specific predetermined
order (Section 1.3.2) and hence only two bits of entropy is sufficient to encode the final bit and separation
between block and domain types. Therefore the effective c for values bounds of Theorem 2 need to
be modified only by two bits when multiplex padding is used. We estimate the effective information
theoretic capacity is reduced by the Multiplex construction to no less than c− 2 rather than c′ = c− d.

The separation of the domain mask word from main "rate" input allows later expansions of functional-
ity without breaking interface designs; for example we may adopt tree-based hashing - and by extension,
tree MACs and encryption - by utilizing additional bits of Di for this purpose rather than adding more
frame bits as in S [8]. If tree structure is used, the capacity should be reduced to c− 3 or c− 4 for
security analysis. Adding further options or even increasing d > 8 for some applications will not break
compatibility with existing implementations if these features are not used.

Since the protocol exchange can be unambiguously decoded from the sponge input and we do not
reset the state between messages, the proofs of Theorem 2 [4, 6] apply to the protocol as a whole as well
as individual messages. If one can forge an individual message authentication code or (by induction) a
multi-message exchange, one can also break the Sponge in a SHA-3 - type hash construction.

15

Chapter 4

Features

4.1 Historical, Scientific, and Regulatory Context
Since January 1, 2013, the Russian Federation has mandated the use of new GOST R 34.11-2012 hash
algorithm in digital signatures [14, 18]. This hash was designed apparently in response to cryptographic
weaknesses reported in the previous hash standard GOST R 34.11-94 [17, 23].

The 2012 standard (which has been available since 2009), dubbed S, has superficial similarities
to the old 1994 standard but also features clearly AES-inspired design elements [12, 19, 25].

In contrast to the Russian approach, the U.S. NIST selected a novel Sponge-based design, K, as
the basis of future SHA-3 hash function standard [5, 11]. Sponge hashes diverge from more traditional
Davies-Mayer [22] (SHA) and derived HAIFA [9] (S) constructions in that they are based on a
single keyless permutation π rather on a keyed permutation.

Sponge permutations can also be used to achieve provable Authenticated Encryption in straightfor-
ward manner (see Figure 3.4) [4, 7]. Here both the confidentiality and integrity of a message can be
guaranteed with a single processing pass, without the use of a separate encryption algorithm such as
GOST 28147-89 [16]. This has clear advantages for performance and implementation footprint, which
are especially useful in limited-resource applications. Even full-featured secure communications suites
can be constructed from a single permutation [29].

4.2 Advantages
The main technical advantages over AES-GCM are:

• Unlike AES-GCM, the SB authentication tags offer a level of integrity protection commensu-
rate with its length (rather than half of it [28].)

• The round function is easily implementable on 64-bit platforms. The AES design is geared towards
32-bit platforms. With 12-round structure and double rate, the throughput of Hardware imple-
mentations can be expected to be even higher than AES.

• The same core can also be used for unkeyed hashing in digital signatures and other applications.

Also, selection of SB to the CAESAR portfolio would have additional advantages over AES-GCM in
some security markets that are inclined to reject U.S. AES - based encryption monoculture:

• If SB gains community acceptance and CAESAR portfolio status, it would have potential for
widespread practical use in some markets -- such as the Russian financial sector where the use of
the GOST hash standard for digital signatures is mandatory anyway.

• The legally mandated status of GOST R 34.11-2012 in Russia means that efficient software and
hardware implementations of the LPS core are bound to be available for multiple platforms. Ap-
plications that implement both algorithms can easily share resources.

16

4.3 Implementation Issues
Since the new construct requires 12 invocations of LPS per 256 bits processed in comparison to 25 invo-
cations per 512 bits with S, we see that the new construct is faster. Furthermore, the operational
memory requirement is shrunk to approximately 25 % when compared to S.

We use the following type to access the 512-bit state as both bytes and quadwords:

typedef union {
uint8_t b[64];
uint64_t q[8];

} sbob_w512;

4.3.1 Low-Resource Software Platforms
For a software implementation on a low-resource 8- or 16-bit CPUs and SoCs (e.g. RFID, Smart Card,
Sensor, Ubiquitous / IoT category systems) it is advantageous to realize the linear layer L as a matrix
multiplication in F28 . Multiplication in a small finite field can be implemented via discrete logarithm
and exponentiation tables: AB = exp(logA+ logB). Note that S and therefore S uses a
special bit-inverted representation for field elements [19].

One can combine the S-Box lookup and discrete logarithm table into a single 8× 8 - bit lookup table
log(S(x)). The 8 × 8 matrix over F28 M (representing L) can be stored in log form. Required addition
x+ y (mod 28− 1) can be implemented by adding carry bit ⌊x+y

28 ⌋ of addition x+ y (mod28) to the 8-bit
sum itself -- set exp(255) = exp(0) in this case.

Here's the main routine of the 8-bit reference implementation 8bit/sbob_pi.c:

const uint8_t sbob_pi8log[0x100] = { .. // log of bit-rev s-box
const uint8_t sbob_rv8exp[0x100] = { .. // bit-reversed exp table
const uint8_t sbob_matlog[8][8] = { .. // logs of MDS matrix
const uint8_t sbob_rdcnst[12][64] = {.. // round constants

void sbob_pi(sbob_w512 *s512)
{

int i, j, k, r;
uint8_t x, y, t[64];

for (r = 0; r < 12; r++) {

for (i = 0; i < 64; i++) {
t[(i >> 3) ^ ((i & 7) << 3)] =

sbob_pi8log[s512->b[i] ^ sbob_rdcnst[r][i]];
s512->b[i] = 0;

}
for (k = 0; k < 64; k += 8) {

for (i = 0; i < 8; i++) {
x = t[k + i];
if (x > 0) { // balance for side channel attacks!

for (j = 0; j < 8; j++) {
y = sbob_matlog[i][j] + x;
if (y >= x) // side channel , balance!

y--;
s512->b[k + j] ^= sbob_rv8exp[y];

}
}

}
}

}
}

17

As the transpose P can be coded into the loops (switching the column and row indexes), the imple-
mentation of LPS requires a total of 256 + 256 + 8 × 8 = 576 bytes for storage. Unfortunately Ci round
constants still require 12× 64 = 768 bytes.

One may consider a variant that uses a fast pseudorandom generator such as some Fibonacci-based
sequence or linear congruential generator instead of a truly random C to further compress the imple-
mentation. (see Section 5.2 for tweak opetion).

4.3.2 Medium- to High-Resource Software Platforms
A software implementation on system with a medium- or high-performance CPUs (e.g. server, desktop,
laptop, or tablet category systems) can utilize 8×8×64 - bit lookup tables that combineS andL, requiring
a total of 16 kB and 768 B for round constants. The compression function code itself is very compact.

Here's code from our 64-bit reference implmementation ref/sbob_pi64.c and ref/sbob_tab64.c:

const uint64_t sbob_sl64[8][256] = { .. // s-box & l combined
const uint64_t sbob_rc64[12][8] = { .. // round constants

// 64-bit version
void sbob_pi(sbob_w512 *s512)
{

int i, r;
sbob_w512 t; // temporary

for (r = 0; r < 12; r++) { // 12 rounds

for (i = 0; i < 8; i++) // t = x ^ rc
t.q[i] = s512->q[i] ^ sbob_rc64[r][i];

for (i = 0; i < 8; i++) { // s-box and linear op
s512->q[i] = sbob_sl64[0][t.b[i]] ^

sbob_sl64[1][t.b[i + 8]] ^
sbob_sl64[2][t.b[i + 16]] ^
sbob_sl64[3][t.b[i + 24]] ^
sbob_sl64[4][t.b[i + 32]] ^
sbob_sl64[5][t.b[i + 40]] ^
sbob_sl64[6][t.b[i + 48]] ^
sbob_sl64[7][t.b[i + 56]];

}
}

}

Results of wall-clock throughput measurements on a typical desktop system:

Algorithm Throughput (MB/s) Cycles / Byte
AES - 128/192/256 109.2 / 90.9 / 77.9 26.8 / 32.3 / 37.6
SHA - 256/512 212.7 / 328.3 13.8 / 8.92
GOST 28147-89 53.3 58.3
GOST R 34.11-1994 20.8 141
GOST R 34.11-2012 109.4 26.8
SB 115.7 25.3

These are wall-clock measurements. Measurements were made on a single core of an Intel Core i7 860
@ 2.80 GHz system running Ubuntu Linux 13.10 (amd64) with gcc 4.8.1. Linux reported internal clock
frequency as 2.93 GHz during the tests. Note that the cycles / byte numbers are calculated directly from
the internal clock frequency and throughput, and are therefore influenced by I/O and other factors.

The AES, SHA, GOST 28147-89 and R 34.11-1994 timings with were measured with Ubuntu default
OpenSSL (1.0.1e). A. Degtyarev's implementation (0.11) was used for the GOST 34.11-2012 benchmark.
The SB reference implementation is by author.

18

Chapter 5

Design Rationale

SB design and analysis were interdependent and were performed concurrently. Detailed design
rationale is therefore more completely given in Chapter 3, "Security Analysis". Here we just give some
broad rationale to our overall component and parameter selection.

5.1 Parameter and Component Selection
Regarding parameter selection:

• The Sponge Construct is a flexible method for building cryptographic algorithms of different kinds
from a single permutation. The Sponge parameter selections were derived from well-established
theorems regarding Sponge functions and a large body of research. [1, 2, 3, 4, 6, 8].

• Security relationship of Theorem 1 (Section 3.3) indicates that the number of rounds is appropriate
and conservative as it is the same as is also used in S.

• The BLNK padding variant as used in SB will allow flexible later extensions such as "Paral-
lelized Tree AEAD" without breaking the core.

Specific notes regarding the LPS core:

• The LPS transform is a conservative choice as it can be analyzed with well-established tools devel-
oped for the AES round function. Increased size of the MDS Matrix guarantees efficient avalanche
to cover the larger state size.

• The LPS transform of SB is equivalent to that of the S standard, which has received
years of analysis from the Russian cryptologic community and security authorities.

• LPS is a 512-bit transform and therefore perfectly suited for Sponge cryptography with given pa-
rameters. This is advantageous to, say, AES round transform that has been widened in some ad
hoc fashion.

5.2 Hidden Weaknesses
The designer of SB has not hidden any weaknesses in this cipher.

The designers of S have not published their detailed design criteria, at least not in English.
We see that, with appropriate selection of constants Ci, one may hide at least one fixed point for the the
πC function, or a collision for the g function. In the context of SB , where the state is randomized by
a secret key and a nonce, this should have a limited impact on security.

Tweak option. In order to save storage space on low-resource platforms, we reserve the option of
switching from Ci to some on-the-fly generated pseudorandom sequence in future versions of SB .
The use of large random incompressible tables was also one the most widely criticized design features
of SHA-2 Family, making it relatively poorly suited for ultra-lightweight platforms.

19

Chapter 6

Intellectual Property and Consent

6.1 Intellectual Property
The author is not aware of any patents or patent applications that directly cover the work described in
this document, nor are planning to submit any.

If any of this information changes, the submitter will promptly (and within at most one month) an-
nounce these changes on the crypto-competitions mailing list.

6.2 Consent to CAESAR Selection Committee
The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee.

The submitter understands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led to the
selection of the algorithm.

The submitter understands that the selection of some algorithms is not a negative comment regarding
other algorithms, and that an excellent algorithm might fail to be selected simply because not enough
analysis was available at the time of the committee decision. The submitter acknowledges that the com-
mittee decisions reflect the collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if they disagree with published analyses then they are expected
to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions.

The submitter understands that this statement is required as a condition of consideration of this sub-
mission by the CAESAR selection committee.

Dr. Markku-Juhani O. Saarinen
Trondheim, NORWAY
March 15, 2014

20

Bibliography

[1] B, G., D, J., P, M.,  A, G. V. Sponge functions. In Ecrypt Hash Workshop
2007 (May 2007).

[2] B, G., D, J., P, M.,  A, G. V. Sponge-based pseudo-random number
generators. In CHES 2010 (2010), S. Mangard and F.-X. Standaert, Eds., vol. 6225 of LNCS, Springer,
pp. 33--47.

[3] B, G., D, J., P, M.,  A, G. V. Cryptographic sponge functions, version 0.1.
http://sponge.noekeon.org/, STMicroelectronics and NXP Semiconductors, January 2011.

[4] B, G., D, J., P, M.,  A, G. V. Duplexing the sponge: Single-pass au-
thenticated encryption and other applications. In SAC 2011 (2011), A. Miri and S. Vaudenay, Eds.,
vol. 7118 of LNCS, Springer, pp. 320--337.

[5] B, G., D, J., P, M.,  A, G. V. The Keccak reference, version 3.0. NIST
SHA3 Submission Document, January 2011.

[6] B, G., D, J., P, M.,  A, G. V. On the security of the keyed sponge con-
struction. In SKEW 2011 Symmetric Key Encryption Workshop (February 2011).

[7] B, G., D, J., P, M.,  A, G. V. Permutation-based encryption, au-
thentication and authenticated encryption. In DIAC 2012 (2012). http://keccak.noekeon.org/
KeccakDIAC2012.pdf.

[8] B, G., D, J., P, M.,  A, G. V. Sakura: a flexible coding for tree hashing.
IACR ePrint 2013/213, http://eprint.iacr.org/2013/213, April 2013.

[9] B, E.,  D, O. A framework for iterative hash functions - HAIFA. IACR ePrint
2007/278, http://eprint.iacr.org/2007/278, July 2007.

[10] B, E.,  S, A. Differential Cryptanalysis of the Data Encryption Standard. Springer, 1993.

[11] C, S., R.P, B, W. E., T, M. S., K, J. M., P, S.,  B, L. E. Third-
round report of the SHA-3 cryptographic hash algorithm competition. Tech. Rep. NISTIR 7896,
National Institute of Standards and Technology, November 2012.

[12] D, J.,  R, V. The Design of Rijndael: AES -- the Advanced Encryption Standard. Springer,
2002.

[13] D, I. A design principle for hash functions. In CRYPTO '89 (1989), G. Brassard, Ed., vol. 435
of LNCS, Springer, pp. 416--427.

[14] D, V.,  D, A. GOST R 34.11-2012: Hash Function. No. RFC 6986. Internet Engi-
neering Task Force, August 2013.

[15] F, N.,  S, B. Practical Cryptography. John Wiley & Sons, 2003.

[16] GOST. Cryptographic Protection for Data Processing System. No. GOST 28147-89. Gosudarstvennyi
Standard of USSR, 1989. (In Russian).

21

[17] GOST. Cryptographic Protection of Information, Hash Function. No. GOST R 34.11-94. Gosudarstvennyi
Standard of Russian Federation, 1994. (In Russian).

[18] GOST. Cryptographic Protection of Information, Hash Function. No. GOST R 34.11-2012. Gosudarstven-
nyi Standard of Russian Federation, 2012. (In Russian).

[19] K, O.,  K, V. Algebraic aspects of the russian hash standard GOST R 34.11-
2012. In Proc. CTCrypt '13, June 23--24, 2013, Ekaterinburg, Russia (2013). IACR ePrint 2013/589
http://eprint.iacr.org/2013/589.

[20] K, L.,  W, D. Integral cryptanalysis (extended abstract). In FSE 2002 (2002), J. Dae-
men and V. Rijmen, Eds., vol. 2365 of LNCS, Springer, pp. 112--127.

[21] M, M. Linear cryptoanalysis method for DES cipher. In EUROCRYPT '93 (1994), T. Helleseth,
Ed., vol. 765 of LNCS, Springer, pp. 386--397.

[22] M, S., M, C.,  O, J. Generating strong one-way functions with cryptographic algo-
rithm. IBM Technical Disclosure Bulletin, 27 (1985), 5658--5659.

[23] M, F., P, N., R, C., K, M.,  S, J. Cryptanalysis of the GOST
hash function. In CRYPTO 2008 (2008), D. Wagner, Ed., vol. 5157 of LNCS, Springer, pp. 162--128.

[24] M, R. Secrecy, Authenticatication, and public key systems. PhD thesis, Stanford University, 1979.

[25] NIST. Advanced Encryption Standard (AES). No. FIPS-197. National Institute of Standards and Tech-
nology, 2001.

[26] NIST. Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and
GMAC. NIST Special Publication 800-38D, 2007.

[27] R, P., B, M.,  B, J. OCB: A block-cipher mode of operation for efficient authen-
ticated encryption. ACM Transactions on Information and System Security (TISSEC) 6, 3 (August 2003),
365--403.

[28] S, M.-J. O. Cycling attacks on GCM, GHASH and other polynomial MACs and hashes. In
FSE 2012 (2012), vol. 7549 of LNCS, Springer, pp. 216--225.

[29] S, M.-J. O. Beyond modes: Building a secure record protocol from a cryptographic sponge
permutation. In CT-RSA 2014: Cryptographers' Track, RSA Conference USA, 25--28 February 2014, San
Francisco, USA (2014), Springer. To Appear.

[30] S, M.-J. O. CBEAM: Efficient authenticated encryption from feebly one-way phi functions.
In CT-RSA 2014: Cryptographers' Track, RSA Conference USA, 25--28 February 2014, San Francisco, USA
(2014), Springer. To Appear.

[31] S, M.-J. O. The CBEAMr1 authenticated encryption algorithm. CAESAR First Round Can-
didate, http://www.cbeam.mx, March 2014.

[32] S, M.-J. O. StriBob: Authenticated encryption from GOST R 34.11-2012 LPS permutation
(extended abstract). Submitted for Publication, February 2014.

[33] W, D.,  S, B. Analysis of the SSL 3.0 protocol. In The Second USENIX Workshop on
Electronic Commerce Proceedings (November 1996), USENIX Press, pp. 29--40.

[34] Yı, T.,  K, E. B. On the implementation aspects of sponge-based authenticated encryp-
tion for pervasive devices. In CARDIS 2012 (2013), S. Mangard, Ed., vol. 7771 of LNCS, Springer,
pp. 141--157.

Document version 20140315200000.

22

