
Tiaoxin− 346

VERSION 1.0

Codenames:
tiaoxin, tiaoxinv1

Designer/submitter:
Ivica Nikolić

Nanyang Technological University, Singapore
inikolic@ntu.edu.sg

15.03.2014

Chapter 1

Specification

1.1 Authenticated Encryption Tiaoxin− 346

Tiaoxin− 346 is a nonce-based authenticated encryption scheme.
In the encryption/authentication stage it takes four inputs:

• Key K of size 128 bits,

• Public message number (nonce) IV of size 128 bits,

• Plaintext (also called a message) M of size 0 to 2128 − 1 bits,

• Associated data AD of size 0 to 2128 − 1 bits,

and it outputs a ciphertext C and an authentication tag Tag, i.e.

Tiaoxin− 346 (K, IV,M,D) = (C, Tag).

The number of bytes1 of C equals the number of bytes of M. The length of the
authentication tag Tag is at most 128 bits (inclusive). Tiaoxin − 346 does not
use secret message number. The public message number is a nonce.

In the decryption/verification stage it takes key K, public message number
(nonce) IV, ciphertext C, associated data AD, tag Tag and outputs fail if the
tag is incorrect, or it outputs the message M if it is correct.

1.2 Recommended Parameters

Tiaoxin − 346 can parametrize the tag length. We recommend one parameter
set:

1. Tag length of 128 bits. Codename: tiaoxin-v1.

1We assume the granularity is on a byte, rather than bit level. If required, the bit granu-
larity can be applied easily.

2

TIAOXIN− 346 FOR THE CAESAR COMPETITION

1.3 Preliminaries

The following notations and operations are used in the paper.

Notations:

• Word - a sequence of 16 bytes. The values of words are given in hexadec-
imal notation. Word to AES matrix conversation is the standard one2:
the first byte of the word (sequence) is at (1, 1) in the matrix, the fourth
at (4, 1), the sixteenth is at (4, 4).

• Z0 - a constant word defined as Z0 =428a2f98d728ae227137449123ef65cd

• Z1 - a constant word defined as Z1 =b5c0fbcfec4d3b2fe9b5dba58189dbbc

• Ts - a state composed of s words. For instance, T3 has 3 words, T6 has
6 words. To index state words we use the language C notation, hence
Ts = (Ts[0], Ts[1], . . . , Ts[s−1]), where Ts[i], i = 0, . . . , s−1 are words, and
Ts[0] is the first word.

Operations:

• |X| - length of X expressed in bits

• X||Y - concatenation of X and Y

• X⊕ Y – bitwise addition (XOR) of the words X and Y

• X&Y – bitwise conjunction (AND) of the words X and Y

• AES(X, SK) – one keyed round of AES applied to the word X, where SK
is the subkey, i.e.:

AES(X, SK) =MixColumns(ShiftRows(SubBytes(X)))⊕ SK.

SubBytes, ShiftRows,MixColumns are the same operations as in AES.
Thus, AES(X, SK) is the AES-NI instruction aesenc.

• R(Ts,M) – a round transformation of a state with s words. The inputs
of R are state Ts and word M, while the output is a new state Tnew

s , i.e.
R : Ts ×M→ Tnew

s :

Tnew
s [0] = AES(Ts[s− 1], Ts[0])⊕M
Tnew
s [1] = AES(Ts[0], Z0)

Tnew
s [2] = Ts[1]

. . .

Tnew
s [s− 1] = Ts[s− 2]

2This allows to use Intel’s load/store and AES-NI instructions without any additional byte
reversals, see [7].

3

TIAOXIN− 346 FOR THE CAESAR COMPETITION

1.4 The States of Tiaoxin − 346 and the Update
Operation

Tiaoxin− 346 has three states T3, T4, T6 composed of 3, 4, 6 words, respectively.
TheUpdate operation (called a round function), based on the above R(Ts,M), is
used to compute the new value of the states (in the different phases). As inputs,
beside the three states, Update takes three additional words M0,M1,M2, i.e.
Update : T3 × T4 × T5 ×M0 ×M1 ×M2 → T3 × T4 × T6.
Update(T3, T4, T5,M0,M1,M2) is defined as (see Fig. 1.1):

Tnew
3 = R(T3,M0); T3 = Tnew

3

Tnew
4 = R(T4,M1); T4 = Tnew

4

Tnew
6 = R(T6,M2); T6 = Tnew

6

A

A

A

A

A

A

M1 M 2M0

Figure 1.1: The Update operation (round function) in Tiaoxin − 346. Circled
A stands for one AES round. The AES rounds applied to T3[2], T4[3], T6[5] are
keyless, while the AES rounds applied to T3[0], T4[0], T6[0] use Z0 as a subkey.

1.5 Definition of Tiaoxin− 346

Let us define the encryption-authentication step of the design. Tiaoxin − 346
processes the associated data AD and the messageM in blocks where each block
is composed of 2 words (32 bytes, 256 bits):

• The associated data AD is divided into blocks of 32 bytes each. If the
last block of AD is incomplete (the length of the block is less than 32
bytes), this block is padded with zero bytes. The padded associated data is
denoted as AD and hence AD = AD1||AD2|| . . . ||ADd, where |ADi| = 256

and d = d |AD|

256
e. If AD is empty, then d = 0, and AD is empty. The length

of the AD is encoded as 16-byte big endian word and stored in ADlenght,
i.e. ADlenght = |AD|.

• The message M is divided into blocks and padded with zero bytes if the
last block has less than 32 bytes. The padded message is denoted as M

and hence M = M1||M2|| . . . ||Mm, where |Mi| = 256 and m = d |M|

256
e. If

4

TIAOXIN− 346 FOR THE CAESAR COMPETITION

M is empty, then m = 0 and M is empty. The length of the M is encoded
as 16-byte big endian word and stored in Mlenght, i.e. Mlenght = |M|.

Tiaoxin − 346 is a stream cipher based design and as such it works in four
phases: Initialization, Processing associated data, Encryption, and Finalization.
These phases are executed in the order specified above.

Initialization. In the initialization, the key K and the public message number
(nonce) IV are loaded into the three states T3, T4, T6 and the states go through
15 rounds.

T3[0] = K; T3[1] = K; T3[2] = IV ;

T4[0] = K; T4[1] = K; T4[2] = IV ; T4[3] = Z0;

T6[0] = K; T6[1] = K; T6[2] = IV ; T6[3] = Z1; T6[4] = 0; T6[5] = 0;

for i = 1 to 15

Update(T3, T4, T6, Z0, Z1, Z0);

end for

Processing associated data. Assume the padded associated data has d
blocks: AD = AD1, . . . , ADd. Recall that each block is composed of two words,
i.e. ADi = AD

0
i ||AD

1
i . The Processing associated data is defined as:

for i = 1 to d

Update(T3, T4, T6, AD
0
i , AD

1
i , AD

0
i ⊕AD1

i);

end for

Encryption. Assume the padded message has m blocks: M = M1, . . . ,Ml.
Recall that each block is composed of two words, i.e. Mi = M0

i ||M
1
i . In the

encryption, a block Mi is processed in one round, and a block of ciphertext
Ci = C

0
i ||C

1
i is output. The encryption is defined as:

for i = 1 to m

Update(T3, T4, T6,M
0
i ,M

1
i ,M

0
i ⊕M1

i);

C0
i = T3[0]⊕ T3[2]⊕ T4[1]⊕ (T6[3]&T4[3])

C1
i = T6[0]⊕ T4[2]⊕ T3[1]⊕ (T6[5]&T3[2])

end for

A note about the last ciphertext block. If the last message block of the
original, unpadded message is incomplete (the size is less than 32 bytes) and
has b bytes (b < 32), then the last ciphertext block is truncated to the first b
bytes as well – the first b bytes of Cm are kept, while the remaining 32− b are
discarded.

The ciphertext C is defined as a concatenation of all ciphertext blocks (with
the exception that the last block might be truncated) that have been output
during the encryption, i.e. C = C1||C2|| . . . ||Cm.

5

TIAOXIN− 346 FOR THE CAESAR COMPETITION

Finalization/Tag production. After all message blocks have been processed,
the words holding the lengths of the associated data and message are processed,
then the states go through 20 more rounds, and the tag Tag is produced as an
XOR of all words of all states. This final phase is defined as:

Update(T3, T4, T6, ADlength,Mlength, ADlength ⊕Mlength);

for i = 1 to 20

Update(T3, T4, T6, Z1, Z0, Z1);

end for

Tag = T3[0]⊕ T3[1]⊕ T3[2]⊕ T4[0]⊕ T4[1]⊕ T4[2]⊕ T4[3]⊕
T6[0]⊕ T6[1]⊕ T6[2]⊕ T6[3]⊕ T6[4]⊕ T6[5]

1.5.1 Decryption and Verification

In the decryption-verification process, the order of the phases is the same3:
Initialization, Processing associated data, Decryption, and Finalization. Ini-
tialization, Processing associated data and Finalization are the same as during
the encryption. Let us define the Decryption. Assume the ciphertext C has m
blocks, i.e. C = C1||C2|| . . . ||Cm. Then the Decryption phase is defined as:

for i = 1 to m

Update(T3, T4, T6, 0, 0, 0);

M0
i = C0

i ⊕ T3[0]⊕ T3[2]⊕ T4[1]⊕ (T6[3]&T4[3])

M1
i = C1

i ⊕ T6[0]⊕ T4[2]⊕ T3[1]⊕ (T6[5]&T3[2])⊕M0
i

T3[0] = T3[0]⊕M0
i

T4[0] = T4[0]⊕M1
i

T6[0] = T6[0]⊕M0
i ⊕M1

i

end for

The Decryption might seem less efficient than the Encryption but that is only
because in the code above the Update is used. Refer to Appendix A for an
efficient implementation of the round of Decryption which uses precisely the
same operations as the round of Encryption, and thus has the same efficiency.

If in the Decryption, the last ciphertext block is incomplete, then same as
for the Encryption, the block is padded with zero bytes, and the output message
block is truncated.

If the produced tag Tag is invalid, the ciphertext and the wrong Tag are not
returned.

3With the exception that Encryption is replaced by Decryption.

6

Chapter 2

Security Goals

Table 2.1: Security goals of Tiaoxin− 346. There is no secret message number.

goal bits of security

confidentiality for the plaintext 128

integrity for the plaintext 128

integrity for the associated data 128

integrity for the public message number 128

There is no secret message number. The public message number is a nonce.
The goals in table above are under the assumptions that:

1. Each pair of (key, public message number) is used only once1, nonce-
respecting

2. If the verification fails, the ciphertext and the wrong tag are not output2,

In addition to the above goals, we claim

• Full security against related-key attacks. That is, the adversary is allowed
to query chosen messages (plaintexts) under two different related keys and
two related (and chosen) nonces, where the relation is given as an XOR
difference.

• Full security against distinguishing attacks.

• Full security for messages of any length up to 2128 − 1 bits.

1Two different pairs of of associated data and plaintext cannot be encrypted under the
same pair of key and public message number.

2It the verification fails, the only data returned to the user is the value false.

7

Chapter 3

Security Analysis

3.1 Differential and Linear Trails

High probability differentials for some of the phases of Tiaoxin − 346 can lead
to forgery and state/key recovery. Thus it is crucial to provide analysis against
differential attacks. We do so be investigating the high probability differential
trails. More precisely, we are able to find the best differential trails for each of
the phases of Tiaoxin− 346 by using Matsui’s approach [12]1.

The Update operation (more precisely the operation R(Ts,M)) has been
chosen to assure that the search is feasible and the probability of trails is low.
Let us focus on T3 (the analysis is similar for T4 and T6). If in T3[0] there is a
difference, then it must go through 2 AES round calls before it comes again to
T3[0]. That is, if at round i there is a difference δ in T3[0], then at round i + 1
there is a difference AES(δ) in T3[1], at round i+2 there is difference AES(δ) in
T3[2], and finally at round i+ 3 a difference AES(AES(δ)) is added to T3[0]. As
there are no other words added between the two AES calls (except the constant
Z0), it means that any difference in T3[0] will activate 5 S-boxes before coming
back in three rounds to T3[0]. This holds as any 2-round AES has 5 active
S-boxes (the branch number is 5). Moreover, if at round i + 3 the difference
AES(AES(δ)) is added to T3[0], and T3[0] does not contain a difference, then it
means in the next three rounds AES(AES(δ)) will go through 2 more AES calls
with no other differences added. As a result, the initial difference δ has gone
through 4 AES calls, and thus it activated 25 S-boxes. These two observations
provide the basis for the search of trails. The probability of the trails found by
the search is upper bounded - we assume 2 AES rounds always have 5 active
S-boxes (3 always 9, 4 always 25, etc.), but indeed they can have more.

The method to search for trails is the same for all phases, however, the attack
frameworks are different. We explain further the cases we have investigated and
the results we have obtained.

1This approach has been applied several times by the author of Tiaoxin− 346 to search for
the best related-key trails in various cipher, see [1, 13, 2].

8

TIAOXIN− 346 FOR THE CAESAR COMPETITION

• Initialization: We allow the attacker to inject differences in both the key
and the nonce (or only in one of them). The best differential trail on all
15 rounds of the Initialization has 171 active S-boxes (or a probability
of at most 2−1026). In fact, after 6 rounds the best trail already has a
probability lower than 2−256. This leaves a large security margin against
related-key/related-nonce differential attacks. Having such a margin in
the Initialization is critical as differential attacks based on trails in some
cases can be extended for a few additional rounds.

• Processing associated data and Encryption/Decryption: There are vari-
ous high probability trails for several rounds of encryptions2. However,
achieving the initial differences (the starting difference of the trail) in the
states is hard, as practically this is equivalent either to finding trails for
the Initialization or introducing differences through the messages in the
previous rounds. The former has been shown above to be hard, whereas
the later cannot be achieved due to the fact that Tiaoxin− 346 is nonce-
based, and thus the differences in the states are unpredictable (and not
zero!).

One can, however, start with states that do not contain differences – this
framework is possible in the Decryption. More precisely, given a associated
data, ciphertext and a tag, one can try to build another associated data
and ciphertext that results in the same tag. This type of forgery attack has
been introduced and exploited in the recent analysis of ALE [5], see [11, 17]
for details. Such forgery reduces to the problem of finding a differential
trail for the Encryption or the Decryption phases, that starts and ends
with a zero difference in the states. Our search reveals that the best such
trail (see Fig. B.1 of the Appendix) for the Encryption has 30 active S-
boxes (six times differences go through 2 AES rounds), or a probability
of at most 2−6·30 = 2−180. Even if the adversary is able to somehow
switch from trails to differentials, the large security margin assures that
the trail cannot be exploited as no more than 2128 online failed tags can
be checked (see the security claims). The best trails for the Decryption are
equivalent to the best for Encryption as each of them fixes the difference
in the message and in the ciphertext.

• Finalization: Trails for the Finalization do not have to end in a zero
difference, however they must start with some non-zero states. The only
exception (start with a non-zero difference) is if a difference has been
introduced by the first round of the Initialization, i.e. Update(T3,T4,T6,
ADlength, Mlength, ADlength ⊕Mlength)

3. The analysis in this case is
the same as for the case presented below. In the Finalization, same as in

2For instance, there is trail with probability 1 for one round of encryption (any difference
in T3[1] and no differences in the rest of the words of all three states).

3This can happen if the last message blocks (or the last associated data blocks) are the
same, but have a different length. Due to the padding, the same blocks will be processed
during the Encryption (or Processing associated data phase), but Mlength (or ADlength)
will be different.

9

TIAOXIN− 346 FOR THE CAESAR COMPETITION

the Initialization, the words input to Update are constant. If analyzed
separately, the best 20-round trail for T3 has 90 active S-boxes (probability
at most 2−540), for T4 has 80 active (probability at most 2−480), and for
T6 has 62 active S-boxes (at most 2−372). We stress that these are the
probabilities only for the Finalization, but if we take into account the
probability of getting the initial difference of any of the trails, then the
accumulative probability would be much lower. We do not investigate
further the exact probability as the current is already very low (below
2−372).

Above, we investigated trails rather than differentials and we provided upper
bounds on the probability by counting the number of active S-boxes and assum-
ing each holds with 2−6. The positions of the taps in the output function (i.e.
which words are used to produce the ciphertext word) assures that trails are
a good estimate of the probability in the Encryption/Decryption phases. This
might not be the case for the remaining phases, and here one can work with dif-
ferentials. However, even in this case the 2-round AES assures low probability
(see [14]) and thus Tiaoxin− 346 stays secure.

The security analysis of Tiaoxin − 346 against linear attacks is similar to
the above differential analysis – in general high probability linear trails exist in
the Encryption/Decryption, however, as the attacker does not have the precise
values of the state bytes (only through the ciphertexts bytes, but then they are
masked), building exploitable linear trails is hard.

3.2 Rotational Attacks, Internal Differentials and
Fixed Points

Rotational attacks [10] can be a threat to AES-based designs as the keyless
AES round permutations are susceptible to this type of analysis. In a similar
fashion, internal differentials [15], as described in [6] and used in [9], could pose a
threat to the security of the design. In Tiaoxin−346 these two types of attacks
are prevented with the use of a non-symmetric constant Z0 which is added as a
subkey to 3 out of the 6 AES calls per Update. If in T3[0] the internal difference
is zero, then after the application of the AES round (and the addition of the
subkey Z0), the internal difference of all 8 bytes will be non-zero. Therefore the
next application of the AES round to this word will have very low differential
probability (at most 2−48). As a result, after several rounds, the probability of
any internal differential trail in T3 (or even worse, in all three states), will be
very low.

Each of the three states has fixed points. For T3 such point has the form TF3 =
(X,AES(X) + Z0, AES(X) + Z0) and a message input M = AES(AES(X) + Z0),
that is R(TF3 ,M) = TF3 . There are 23·128 = 2384 fixed points for all three states
(but only 2256 during the encryption due to the requirement M2 =M0 ⊕M1).
Hence the probability of hitting randomly a fixed point is 2384−13·128 = 2−1280.
The initial key and nonce setup in the the Initialization does not permit to start

10

TIAOXIN− 346 FOR THE CAESAR COMPETITION

with a fixed point.

3.3 Attacks Based on Similarity of Phases

Note that the three word inputs M0,M1,M2 to Update make each of the
phases of Tiaoxin − 346 (with the exception of the Processing associated data
and Encryption) distinct. In the Initialization (M0 = Z0,M1 = Z1,M2 = Z0)
and the Finalization (M0 = Z1,M1 = Z0,M2 = Z1), M0,M1,M2 do not
comply with the condition M0 ⊕M1 = M2, whereas this is the case for the
middle two phases (M0 = M0

i ,M1 = M1
i ,M2 = M0

i ⊕M1
i). This makes the

three phases completely different and stops attacks that potentially can exploit
similarity of phases, such as slide attacks [3, 4].

3.4 Forgery

To forge the tag, the adversary either has to provide a new tag of previously
unencrypted message or to try to find another message that produces some al-
ready valid tag. The former reduces to the problem of finding a good differential
trail for the Finalization (if the adversary wants to reuse some previous valid
tag) or to predict the output of the Finalization with a secret input (the input
is secret as the state is unknown). From the above differential analysis we see
that the first task cannot be achieved, as the probability of such trails is very
low. The second task would require some type of state recovery – a problem
analyzed below.

Far more popular approach to forge is by producing collisions in the state
and then reusing the already existing valid tag. The collisions can be achieved
by chance or on purpose (with differential trails). The big state of Tiaoxin−346
prevents the first type of collisions. The second type are much more dangerous,
at least in the Decryption (in the Encryption, this is equivalent to differential
trails for the Initialization, which as we have seen above have very low proba-
bility). The difference in the Decryption is introduced through associated data
and/or the ciphertexts and is canceled in the next several rounds (see [11, 17]).
This allows to forge regardless of the Initialization and the Finalization. As long
as the adversary can find a high probability trail for the Processing associated
data that starts and ends with a zero difference (with non-zero differences in
between), she can forge the tag by applying the difference in the associated
data. Similarly, if the adversary can find such trails for the Decryption, then
she can forge by introducing differences in the ciphertexts. From the differential
analysis above we can see that all such trails have low probability, hence this
type of forgery cannot be achieved as well.

11

TIAOXIN− 346 FOR THE CAESAR COMPETITION

3.5 State and Key Recovery

There is no bulletproof approach to build an authenticated encryption scheme
that guarantees that state recovery is infeasible. Thus for Tiaoxin−346 we can
only conjecture that the state recovery requires more effort than a simple brute
force of the key. To justify our claim and to deepen the analysis, we add to the
following insights:

• Each of the three states of Tiaoxin− 346 holds an information about the
key K. That is, if one succeeds in recovering one of the states, then by
inverting the design up to the beginning of the initialization, one would
be able to recover the key. Therefore for Tiaoxin − 346 a state recovery
(one of T3, T4, T6) is equivalent to a key recovery. The values for the words
of a particular state, however, are never output straightforwardly, but as
XOR (or AND) of words of all three states (refer to the output function
used for producing the ciphertexts).

• The three states require different number of rounds to achieve a full dif-
fusion: T3 needs 5 rounds, T4 needs 7 rounds, and T6 needs 11 rounds.

• A single bit of the ciphertext depends on 5 different bits from the states
T3, T4, T6. As AND is used in the output function, we can replace x&y
with the constant 0, with probability 3/4 per bit. Hence with probability
(3/4)128 ≈ 2−53.1 one can assume that C0

i = T3[0] ⊕ T3[2] ⊕ T4[1] (or
C1

i = T6[0]⊕T4[2]⊕T3[1]). This strategy allows to cancel as much as 2 full-
state ANDs (if 3 then the probability becomes 2−3·53.1 = 2−159.3 < 2−128)
in arbitrary chosen ciphertext words. However, the non-linear system of
equations, obtained in the case of 2 AND cancellations is underdefined as
C0

i , C
0
i+1 depend on 5 words: the values of T3[0], T3[1], T3[2], T4[0], T4[1] at

round i. Therefore, bruteforcing the free variables of the system will result
in a complexity worse than key enumeration. If we take system composed
of 1 equation we get 3 variables T3[0], T3[2], T4[1], and again the situation
is the same: too many bits to guess. Reducing the number of variables in
the system as well cannot be achieved if one takes C1

i (the second word in
a block of ciphertext) – if fact, in this case the number of unknown words
only increases.

One can replace AND with XOR (i.e. x&y = x ⊕ y ⊕ 1), with the same
probability of 3/4 per bit. A motivation for such strategy is the fact that
linear combinations of some ciphertexts words could cancel more state
words (and lead to system with less variables) than when AND is replaced
with 0. This however does not happen, and the system of any 2 (or less)
equations has even more free variables.

Another promising attack strategy, based on the same idea of cancellation
of AND (or replacing it with XOR) and then solving a system of equations
is as follows. Assume that instead of trying to solve a system where the
unknown variables are words, one deduces equations based on bytes. The

12

TIAOXIN− 346 FOR THE CAESAR COMPETITION

basis of this idea lies on the fairly weak diffusion of the AES round calls
used in Update and of that between the state words. Hence it might be
that some ciphertext bytes depend on a smaller number of bytes of the
states, i.e. not all ciphertext bytes (output in a few consecutive rounds)
depend on all state bytes. Let us try to minimize the number of such
bytes and focus only on C0

i (with the AND cancellation, C0
i depends only

on T3, T4, while C1
i depends on all three). If we choose a single byte of C0

i

(say at position (1, 1)), then it depends on three bytes of T3[0], T3[2], T4[1]
at the same position at round i (denote the states as T i3, T

i
4). Since we

want to minimize the number of free variables in the system, we take the
very same byte at the next C0

i+1, but then due to the diffusion, T i+1
3 [0]

depends on 4 bytes of T i3[2], and thus at round i we should have guessed
more bytes. Thus we cannot succeed by guessing only a single byte in the
states. A similar situation occurs if we focus on one column (rather than
byte) of C0

i (than the whole word T i3[2] should be guessed). Thus we must
guess all bytes of C0

i at round i and we end up with a scenario that has
been discussed above.

3.6 No Claims

The security of Tiaoxin − 346 is analyzed in the framework of authenticated
encryption, and we do NOT claim security in any of the more general frame-
works/cases such as:

• If the nonce is reused. Obviously in this case high probability trails (that
do not need to end in a zero difference) for the Encryption of Tiaoxin−346
can be used to recover state bytes and to compromise the confidentiality.

• In the open key model. When the key is known to the attacker, for
instance, colliding tags can be easily produced and various distinguisher
are possible.

• If state sizes are different. The state sizes are chosen with a purpose to
be 3,4, and 6 words. For instance, if two of the state sizes are equal, then
high probability differential trails that end with a zero difference (and that
can be used to forge tags), exist for the decryption.

• If there are only two states. Same as above, good trails exist.

• Reduced rounds in the Initialization/Finalization.

To summarize, we claim no additional security to the one specified in Section 2.

13

Chapter 4

Features

Tiaoxin− 346 has the following features:

• It is a nonce-based, software oriented design based on a stream cipher.

• It is the first authenticated encryption (or even MAC) scheme1 to use only
3 AES rounds per 16-byte message. More precisely, it uses 6 AES round
calls per 32-byte message. All 6 calls are fully parallelizable.

• It achieves 0.28 cpb on Intel Haswell. Depending on the software platform
(Intel Haswell or Intel Sandy Bridge), it is 3.5 to 6.5 times faster than
the benchmark AES-GCM, and twice faster than OCB3 (or AES-128 in
counter mode). The speed can be improved further if latency of AES-NI
aesenc is reduced and the throughput stays the same2.

• It is analyzed against various types of attacks. Most of the design decisions
were made in order to make the cipher secure. The security claims are
maximum expected in the framework of nonce-respecting adversaries. It
provides full security against related-key attacks.

• Accepts very long messages of sizes up to 2128−1 bits. No loss of security
on long messages.

• State sizes found to be optimal among the all state sizes following the
design strategy and being secure.

1To the best of our knowledge.
2This occurred with the introduction of Haswell, where compared to Sandy/Ivy Bridge,

the throughput stayed the same but the latency got reduced by one cycle.The current latency
on Haswell is 7 cycles; Tiaoxin − 346 would run even faster if the latency was 6 cycles.

14

Chapter 5

Design Rationale

Tiaoxin − 346 is designed to achieve maximal software efficiency while main-
taining high level of security. The main transformation used is the AES round
function, while parts of the design are inspired by AEGIS [16].

All the design elements used in Tiaoxin−346 serve a particular purpose and
were chosen either to increase the efficiency or to increase the level of security:

• Parallel AES round calls instead of serial. The AES-NI instruction for
performing one round of AES increases significantly the efficiency of AES-
based designs, but this instruction has rather large latency. That is, the
result of this operation cannot be used for some number of cycles (8 for
Intel Sandy Bridge, 7 for Haswell), and thus designs based on serial execu-
tion of AES calls are not that fast unless multiple messages are processed
at the same time. The best example is the comparison of the speed of AES
in cipher block chaining (serial) and counter (parallel) modes: the second
runs around 7-8 times faster. In Tiaoxin−346 we parallelize all AES calls
within one round of Update, and hence the speed of the design is very
high – on average, to execution the 6 AES calls in Update requires only
7-8 cycles on the new Intel processors (around 0.22− 0.25 cycles per byte
go for the AES calls in Tiaoxin− 346). To achieve this parallelization, we
had to increase the state size.

• Three states. Each of the first two states T3, T4 processes independently
message words. The transformations used in these two states are not
sufficiently strong to assure full security as each of them uses only 2 AES
round calls per 16-byte message. However, the third state processes all of
the words from the first two states, and significantly increases the security
of the whole design. This is the main trick that allows to reduce the
number of AES calls per 16-byte message to only 3.

• State sizes. No two state sizes (among the three) should be the same as
otherwise high probability differential trails exist. For instance, assume
that the first two states have the same size. Then exist same differential

15

TIAOXIN− 346 FOR THE CAESAR COMPETITION

trails for both of them, which result in no difference for the third state
(because the inputs to the third is M0

i ⊕M1
i , thus the differences cancel).

This would immediately lead to forgery attacks. With a computer search
we found that the smallest state cannot be less than 3 three words while
the design is still secure. The states of sizes 3,4,5 were not chosen as high
probability differential trail exist (again found with computer search) for
such states – the trail is presented in Fig. C.1 of the Appendix). Hence
the chosen state sizes are optimal (smallest and secure) among all we have
tried.

• No diffusion between states. This significantly simplifies the analysis and
we are able to deterministically find the best differential trails. We have
also investigated possible designs that have some inter state diffusion.
However, our partial brute force search did not return any secure candi-
dates.

• Stronger diffusion in the states. We have also investigated state opera-
tions that have stronger diffusion than the currently used. Such designs
are much harder to analyze and also have reduced efficiency. The main
reason for discarding most of such designs, however, is a complete loss of
a reasonable security proof. In each of our current states, between two
AES calls there is only an addition of the constant Z0 (for instance, in T3,
the word T3[0] first goes through AES round with Z0 as subkey and then
again goes through AES round, with no other words added in between
the two AES calls). This assures that once there is a difference in T3[0]
(or T4[0], T6[0]), the number of active S-boxes activated by this difference,
by the time it gets again to the word at position 0, must be at least 5
(because the branch number of AES is 5). Hence to find the best trails
we only have to count how many times the words at position 0,in all three
states, have differences. If the diffusion in the states was stronger, and
there was a word added between the two AES calls, then the probability
of the differential trails will rise significantly – instead of working with
2-round AES, we will have to deal with 1-round AES which has as low as
1 active S-box for some trails.

• The output function for producing the ciphertext. The taps (the position
of the words used for producing the ciphertext words) in the output func-
tion were chosen to make the state recovery harder – it assures that no
linear transformation of few consecutive ciphertexts words reveal any of
the state words. AND (&) in the output function was chosen to stop the
potential state recovery. We note that there exist several other combina-
tions of secure tap positions and that AND can be replaced by OR.

• The use of constants Z0, Z1. These two constants are the first four 64-bit
words used as constants in SHA-512. Their main purpose is to stop rota-
tional and internal differential attacks, and, in general, attacks based on
similarity of operations. The constants are used to make the Initialization

16

TIAOXIN− 346 FOR THE CAESAR COMPETITION

and Finalization of Tiaoxin−346, with two different key sizes, completely
different.

• Constants as inputs to Initialization, Finalization. In these two phases
the Update operation has constant word inputs. This assures that all
differential trails will have very low probability (as differences in the states
cannot be canceled) and they cannot be exploited to attack the design.
The word inputs (which are either the constant Z0 or the constant Z1) do
not comply to the requirement of the third word being XOR of the first
two (which is the case for the Encryption phase). This makes the phases
different from the Encryption and stops slide attacks.

17

Chapter 6

Software Performance

Tiaoxin − 346 is designed to take a full advantage of the dedicated AES in-
struction set implemented in the latest processors. In particular, the design
extensively uses the AES-NI instruction aesenc which is one keyed encryption
round of AES. The Update operation basically is the only transformation used
in Tiaoxin− 346, and can be implemented with only 6 calls to aesenc and 3-4
XORs. Each of the calls can be executed independently, and since the latency
of aesenc is at best 7 cycles (achieved on the latest Intel processor Haswell),
there is no stall in executing these calls. In fact, Tiaoxin − 346 theoretically
could be even more efficient if the latency of aesenc was 6 cycles. The low
number of AES calls per message block guarantees that even a simple table
look-up implementation would result in an efficient cipher.

The output function used for producing the ciphertexts in the encryption
phase requires 6 XORs and 2 ANDs. The Initialization and Finalization bear
an overhead which is equivalent to encrypting 1120 bytes of message. This
reflects on the speed measurements for short messages, however, even in this
case the speed of Tiaoxin− 346 is very high (see Tbl 6.1).

To test the actual efficiency of the design, we have implemented the au-
thenticated encryption on C with the support of AES intrinsics and obtained
benchmarks on two platforms. The first platform is Intel Core i5-2467M 1.6GHz
(Sandy Bridge) with 64-bit Linux Mint 16 Petra and gcc 4.8.1. The second is
Intel Core i5-4570 CPU 3.20GHz (Haswell) with 64-bit Linux Mint 16 Petra
and gcc 4.8.1. On both, the code is compiled with the switches “-O3 -msse2
-maes -mavx -march=native”, and Turbo Boost is off when running. To obtain
more precise results, we took the average speed over 1000 experiments. In each
of the experiments we took randomly chosen key and nonce. The message in
the first experiment was chosen randomly, and in the following experiment the
ciphertext was used as the next message (with stores to and loads from memory,
in between). The results of the testing along with the benchmarks of AES-128
in counter mode, AES-128 OCB3, and AES-128-GCM are given in Tbl. 6.1. We
note that the entries in the table for these three schemes were taken from [5, 8].
In the cases when the papers reported different benchmarks for the same de-

18

TIAOXIN− 346 FOR THE CAESAR COMPETITION

sign, we took the more efficient estimate. Also, we could not find the speed
for all message lengths (long messages of around 64KB, etc.) – in this case we
assumed that the speed is the same as for shorter messages – thus the results
are presented with question marks.

On long messages, Tiaoxin−346 runs at round 0.38 cycles per byte on Sandy
Bridge. It is two times faster than AES, and 6-7 times faster than AES-128-
GCM, which is the supposed CAESAR benchmark authenticated encryption
scheme. On Haswell Tiaoxin− 346 runs at 0.28 and again is around two times
faster than AES-128 in counter mode. The speed advantage compared to AES-
128-GCM is smaller, however, Tiaoxin− 346 is still around 3.5 times faster.

We have also benchmarked the authentication part alone in Tiaoxin− 346–
in this case there is no overhead of the output function and the design runs much
faster. On Sandy Bridge to authenticate 64KB long messages, Tiaoxin − 346
needs around 0.27 cycles per byte, while on Haswell around 0.25 cycles per byte.

Table 6.1: The speed of (authenticated) encryption schemes compared to the
speed of Tiaoxin − 346 (encryption + authentication). All measurements are
given in cycles per byte. The numbers in the second row are the length of the
message inputs in bytes. All the measurements except for Tiaoxin − 346 are
taken from [5, 8]. In [8] most of the measurements do not specify the message
bytes – “?” is used to signal this in the table.

Intel Sandy Bridge Intel Haswell

128 256 512 1024 2048 4096 8192 216 8192 216

AES-128-CTR 1.61 1.22 0.99 0.87 0.80 0.77 0.76 0.73? 0.63? 0.63?

AES-128-OCB3 2.69 1.79 1.34 1.12 1.00 0.88 0.86 0.86? 0.69? 0.69?

AES-128-GCM 4.95 3.88 3.33 3.05 2.93 2.90 2.55 2.53? 1.03 1.03?

Tiaoxin− 346 2.49 1.45 0.91 0.65 0.50 0.44 0.40 0.38 0.31 0.28

19

Chapter 7

Intellectual property

Tiaoxin− 346 is not patented and is free for use in any application.
If any of this information changes, the submitter/submitters will promptly

(and within at most one month) announce these changes on the crypto-competitions
mailing list.

20

Chapter 8

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission
as a second-round candidate, a third-round candidate, a finalist, a member of
the final portfolio, or any other designation provided by the committee. The
submitter/submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply
cite the previously published analyses that led to the selection of the algorithm.
The submitter/submitters understand that the selection of some algorithms is
not a negative comment regarding other algorithms, and that an excellent algo-
rithm might fail to be selected simply because not enough analysis was available
at the time of the committee decision. The submitter/submitters acknowledge
that the committee decisions reflect the collective expert judgments of the com-
mittee members and are not subject to appeal. The submitter/submitters un-
derstand that if they disagree with published analyses then they are expected
to promptly and publicly respond to those analyses, not to wait for subsequent
committee decisions. The submitter/submitters understand that this statement
is required as a condition of consideration of this submission by the CAESAR
selection committee.

21

Acknowledgements

I would like to thank Jian Guo, Jérémy Jean, Tetsu Iwata, Thomas Peyrin,
Lei Wang and Hongjun Wu for helpful discussions and suggestions. This work
is sponsored by the Singapore National Research Foundation Fellowship 2012
NRF-NRFF2012-06.

Bibliography

[1] A. Biryukov and I. Nikolić. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application to AES, Camel-
lia, Khazad and others. In H. Gilbert, editor, EUROCRYPT, volume 6110
of Lecture Notes in Computer Science, pages 322–344. Springer, 2010.

[2] A. Biryukov and I. Nikolić. Search for related-key differential characteristics
in DES-like ciphers. In A. Joux, editor, FSE, volume 6733 of Lecture Notes
in Computer Science, pages 18–34. Springer, 2011.

[3] A. Biryukov and D. Wagner. Slide attacks. In L. R. Knudsen, editor,
FSE, volume 1636 of Lecture Notes in Computer Science, pages 245–259.
Springer, 1999.

[4] A. Biryukov and D. Wagner. Advanced slide attacks. In B. Preneel, editor,
EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages
589–606. Springer, 2000.

[5] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser.
ALE: AES-based lightweight authenticated encryption. 20th International
Workshop on Fast Software Encryption–FSE, 2013. To appear.

[6] I. Dinur, O. Dunkelman, and A. Shamir. Collision attacks on up to 5 rounds
of SHA-3 using generalized internal differentials. FSE, 2013. To appear.

[7] S. Gueron. Intel advanced encryption standard (AES) instructions set.
Intel White Paper, Rev, 3, 2010.

[8] S. Gueron. AES-GCM software performance on the current high end CPUs
as a performance baseline for CAESAR competition. DIAC 2013: Direc-
tions in Authenticated Ciphers, 2013.

[9] J. Guo, I. Nikolić, T. Peyrin, and L. Wang. Cryptanalysis of Zorro. Cryptol-
ogy ePrint Archive, Report 2013/713, 2013. http://eprint.iacr.org/.

[10] D. Khovratovich and I. Nikolić. Rotational cryptanalysis of ARX. In
S. Hong and T. Iwata, editors, FSE, volume 6147 of Lecture Notes in Com-
puter Science, pages 333–346. Springer, 2010.

23

TIAOXIN− 346 FOR THE CAESAR COMPETITION

[11] D. Khovratovich and C. Rechberger. The LOCAL attack: Cryptanalysis
of the authenticated encryption scheme ALE. SAC, 2013. To appear.

[12] M. Matsui. On correlation between the order of S-boxes and the strength of
DES. In A. D. Santis, editor, EUROCRYPT, volume 950 of Lecture Notes
in Computer Science, pages 366–375. Springer, 1994.

[13] I. Nikolić. Tweaking AES. In A. Biryukov, G. Gong, and D. R. Stinson,
editors, Selected Areas in Cryptography, volume 6544 of Lecture Notes in
Computer Science, pages 198–210. Springer, 2010.

[14] S. Park, S. H. Sung, S. Lee, and J. Lim. Improving the upper bound on
the maximum differential and the maximum linear hull probability for SPN
structures and AES. In T. Johansson, editor, FSE, volume 2887 of Lecture
Notes in Computer Science, pages 247–260. Springer, 2003.

[15] T. Peyrin. Improved differential attacks for ECHO and Grøstl. In T. Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages
370–392. Springer, 2010.

[16] H. Wu and B. Preneel. AEGIS: A fast authenticated encryption algorithm.
Cryptology ePrint Archive, Report 2013/695, 2013. http://eprint.iacr.
org/.

[17] S. Wu, H. Wu, T. Huang, M. Wang, and W. Wu. Leaked-state-forgery
attack against the authenticated encryption algorithm ALE. In K. Sako
and P. Sarkar, editors, ASIACRYPT, volume 8269 of Lecture Notes in
Computer Science, pages 377–404. Springer, 2013.

24

Appendix A

Optimal Software
Implementation of a Round
of Decryption

One complete round of Encryption, uses 6 keyed AES calls aesenc and 4 XORs
in Update, with an additional 6 XORs and 2 ANDs in the output function
– in total 6 AES call, 10 XORs and 2 ANDs. A round of Decryption can be
implemented with the very same number and type of operations:

Tnew
3 [1] = AES(T3[0], Z0); T

new
3 [2] = T3[1]

Tnew
4 [1] = AES(T4[0], Z0); T

new
4 [2] = T4[1]; T

new
4 [3] = T4[2]

Tnew
6 [1] = AES(T6[0], Z0); T

new
6 [2] = T6[1]; T

new
6 [3] = T6[2]; T

new
6 [4] = T6[3]; T

new
6 [5] = T6[4]

Tnew
3 [0] = C0

i ⊕ Tnew
3 [2]⊕ Tnew

4 [1]⊕ (Tnew
6 [3]&Tnew

4 [3])

M0
i = AES(T3[2], T3[0])⊕ Tnew

3 [0]

T6[0]
new = C1

i ⊕ Tnew
4 [2]⊕ Tnew

3 [1]⊕ (Tnew
6 [5]&Tnew

3 [2])

M1
i = AES(T6[5], T6[0])⊕ Tnew

6 [0]⊕M0
i

T4[0]
new = AES(T4[3], T4[0])⊕M1

i

T3 = Tnew
3 ; T4 = Tnew

4 ; T5 = Tnew
5

25

Appendix B

The Best Differential Trail
for Tiaoxin− 346

The best differential trail has 30 active S-boxes (a difference goes 6 times through
2 AES rounds) and holds with a probability of at most 2−180. The trail is given
in Fig. B.1.

26

TIAOXIN− 346 FOR THE CAESAR COMPETITION

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

0 0

0 0 1 1

11010

1 1

2

1 1 1

2

11

22

1

1

2

1

1

1

1

2

Figure B.1: A best differential trail for Tiaoxin − 346. The blue rectangles,
denote words with differences. The number in the state words (in the blue
rectangles), denotes how many times a difference went through AES rounds
without some other word difference being added to it.

27

Appendix C

On the Authenticated
Encryption with States
with Sizes 3,4,5

As mentioned earlier, we have not chosen states of sizes 3,4,5, as in this case
there exist a high probability differential trail that can be used to produce
forgery. The trail is given in Fig. C.1, has 20 active S-boxes, and holds with a
probability of 2−120.

28

TIAOXIN− 346 FOR THE CAESAR COMPETITION

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

0 0

10 10

1 1 1 1

1111

2 2

1

2

1

2

Figure C.1: A differential trail when the states have sizes 3,4,5. The blue
rectangles, denote words with differences. The number in the state words (in
the blue rectangles), denotes how many times a difference went through AES
rounds without some other word difference being added to it.

29

