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Chapter 1

Specification

1.1 Notation

e Throughout this note, word represents 32 and w represents 64. Any el-
ement of {0,1}" is called block and any element of {0,1}"° is called
word. Given any element x € {0, 1}"*¢, we write ||z|| := ¢, the number
of blocks of x.

o Let a € {0,1}" then we write a = a,_1a,_2---ag where a; € {0,1}.
Moreover, we write ajj_1..0] = aj—1a;—2---ap which returns the least sig-
nificant j bits of a.

e o << 1 represents a, ¢ left shift of an n-bit string a. Similarly, a >> i
represents ¢ right shift of a.

e r = a mod n represents the remainder when a is divided by n, i.e., 0 <
r < n such that n divides (a — 7).

e For any set S, ST = UX,S" and S* = {A\} U ST where \ denotes the
empty string.

e The padding function maps = € {0,1}* to pad(z) := z* = z||10P where
p=w— (x| mod w)—1. Note that z* € {0,1}"™, i.e., ||z*|w = m, where
m = [y,

W

1.1.1 Underlying Finite Field Fy»

Let Fon denote the binary Galois field of size 2", for a positive integer n. Field
addition and multiplication between a,b € Fan are represented by a®b (or a+b
whenever understood) and a - b respectively. Any field element a € Fon can be
represented by any of the following equivalent ways for ag, a1, ...,a,-1 € {0,1}.

e An n bit string anan—1---a9 € {0,1}".

e A polynomial a(x) = ag+a1z+ -+ a,_12" "t of degree at most (n—1).



1.1.2 Choice of Primitive Polynomials

In our construction, the primitive polynomials [12, 4] used to represent the field
Fos2 and Foes are respectively

1. p3a(z) =232 + 222 + 22 + 2 + 1 and
2. poa(z) =% + 2t + 2+ +1

We denote the primitive element 0"~210 € Fon by a,,, where n € {32,64}.
Whenever n is understood from the context, we simply write v to mean «,, for
notational simplicity.

32-bit String Polynomial
03910 T Or «
03911 r+lora+1
022100 x? or a?

Table 1.1: Various representations of some elements in Fgs2

Thus, the field multiplication a(z) - b(z) is the polynomial r(z) of degree at
most (n — 1) such that a(z)b(x) = r(z) mod p,(z).
Multiplication by Primitive Element a. We first see an example how we

can multiply by age. Multiplying an element a := asjasp---ag € Fas2 by the
primitive element ags of Fos2 can be done very efficiently as follows:

a-azp = a<<l, if az3; =0
= (a<<1)®0°10"111, else

Let ¢ = 010111 and d = 0°°11011. Hence, we can also write the multiplication
as a - asgy = (a << 1) @ az;c. One can similarly express the multiplication of
the other powers of «.

3 a=(a<<2)Pazi(c<< 1) Dazpc=(a << 2)D(s31--5150)

where sg = S92 = aszp, S3 = So3 = azi, S1 = So = azp @ azy and all other
s; = 0. Similar simplification can be made for other power of a multiplications.
This representation is useful when we implement the power of a multipliers in
hardware.

Examples
Loa?(@® +2% + 2 +1) = (2% + 2% + 23 +2%) mod psa(z)
= (2 +2%) + (2 + 2 + 2%+ ) + (2 + 2® + 2+ 1)
= @B +22+1)

2. 2*(@% +1) = (2% +2%) mod pu ()
=22 + (2° + 2* + 27 + )
= (2 +2* + x)



1.1.3 Vandermonde Matrix and Horner’s Rule

We define a special form of vandermonde matrix, denoted V}, 4 ¢, where o denotes
the primitive element a, (i.e., x mod p,(z)).

1 e 1 1 1
alf~1 e a? o 1
2(£-1) .. 4 2
Vidt = o 0! 0" 1
a(z_l)(d_l) e a2(d_1) ad_l 1
Example
1 1 1 1 1 1 1
o a® ot a? a2 a 1
Viear = A2 a0 48 46 ot a2 1
Al ald a2 o of ol 1

where « is the primitive element of Foyis.

Multiplying V;, 41 to a vector can be done in an online manner without re-
quiring much memory. For example, when we multiply Vie 4.1000 - b where h
is 4 x 1 vector we can compute it using only 4 states for h by using standard
Horner’s rule. The general algorithm is described below.

Algorithm VMult,, /4
Input: z := (z1,22,...,2¢) € F5.
Output: y := (y1,%2,...,yq) € F. such that y = x - Vi.d.e

1 ’ylz--:ydzon

2 fori=1to/

3 (Y1, --.ya) = VHorner, q(x;)

4 return (yi,...Y4);

Algorithm 1: VMult, /,; multiplies a /-dimensional vector z = (x1,...,7,) by

Vandermonde matrix V' to convert into d-dimensional vector z-V,, 4 .. We apply
Horner’s rule to implement the algorithm.

The VHorner,, 4 subroutine is described in the Algorithm 2. This subroutine
actually implements the Horner’s rule. The subroutine will be implemented
later in VHorner,, /4 circuit described in Chapter 4.

To implement the Algorithm 1, we have to implement o/ -multipliers for 1 <
j < d. We have seen before that one can efficiently describe these multiplications
by shift and bit-wise xor operations. Functionally, the above algorithm is same



Subroutine VHorner, /4
Input: (7, (y1,y2,---,Yd)) € Fan x FS,
Output: y := (v}, v5,...,v,) € FL.

1 forj=1tod
Y=ol Yy @
3 return (y1,...y});

Algorithm 2: VHorner, 4 subroutine.

as multiplying (x1,...,x¢) with the Vandermonde matrix V,, 4, i.e.,
1 e 1 1 1

Y1 al-1 . o2 o 1 L1

Y2 B q2(—1) L at o2 1 L2

Yd Qd=-D=1) . 20d-1) G d-1) 1 L

Suppose in Algorithm VMult,, /,; we denote the value of y; (in line 3) by yf

when “for-loop” is executed up to i = k. Thus, the final output is (v},...,v}).
Note that for any k, we have

N 1 e 1 11
Y1 ak—1 o o2 o 1 T
y’f 2(k—1) 4 2 T2

_ « e « « 1

k . R . . .

Ya Qd=-Dk=1) o 20d-1)  d-1) 1 Tk

In other words, with an appropriate tapping of y values we can compute VMult,, /4(z1,
., o), for all 1 < k <[, during the computation of VMult,, /4(z1, ..., 7).

1.2 External Parameters

1.2.1 Recommended Parameter Choice

In this paper We propose a construction TriviA. However, it has some other
parameters which can be chosen by user following the recommendation.

1. ck: The possible choices of ck is from 0 to L := 230, Here ck = 0 means
that there are no intermediate tag in the output of Trivia-ck but the com-
putation of authentication is same for ck = L. Roughly, we need to store
64ck bits of messages for the intermediate authentication before we release
it. Based on the buffer availability of implementation environment one can
choose the value of the parameter ck.



We recommend two values for ck, namely 0 (when the complete message can
be stored before we authenticate whole message, i.e., no intermediate tag is
required) and ck = 128 (if the buffer size is at least 1KB).

1.3 Input and Output Data

To encrypt a message M with an associated data D and a nonce N, one needs
to provide the informations given below.

e An encryption key K € {0,1}'2®, the seed for the underlying streamcipher
Trivia-SC.

e A Public message no. pub € {0,1}%*. This can include the counter to
make the nonce non-repeating, if required.

e The parameter set param € {0,1}%. The first 32 bits denotes the bit
representation of ck. The remaining 32 bits are preserved for future pa-
rameters which is currently set as 032. We define nonce N € {0,1}128 to
be the concatenation param||pub.

e Associated data D € {0,1}*, with the following restriction of associated
data size : 0 < |D| < 264

e A message (or plaintext) M € {0,1}*, where 1 < |M]| < 2!28. In this
algorithm we do not have any provision of secret message number.

TriviA-ck authenticated encryption produces the following output data:
e Ciphertext C € {0,1}/MI.
e Tag T € {0,1}'?%" where

1 if ck = 0;
(A = ETATR

1.4 Mathematical Components

1.4.1 Streamcipher Trivia-SC

Trivia-SC is the base stream cipher which is a modified version of Trivium [1]
for encryption key and authentication tag generation. Trivia-SC is loaded with
128-bit key and 128-bit IV and generates bitstream. It uses three Non-linear
feedback registers (NFSR) A, B and C of size 132 bit, 105 bit and 147 bit respec-

tively. We will also represent the stream cipher internal state by Sy, Sa, - -« , S3s84,
where A = (51,52, ,5132), B = (5133, 5134, -+, S237) and C' = (Sa3s, S230,
oo, S3sa).



Figure 1.1: Trivia-SC Stream Cipher



Algorithm 3 describes the all basic modules used for the streamcipher Trivia-

SC. A proper intergration of these modules can be used to descibe a stream-
cipher. In this specification, we describe an integrated combinations of these
modules and VPV-Hash to describe TriviA.

W N =

© 0 N O s

10
11

12

13

Modules of Trivia-SC

Load (K,IV) / x Key and IV Loading x /

(A1, Az, Az, ..., Ai3) < (K1, K2, K3, ..., K128,1,1,1,1);
(017023037 "'70147) — (IVl,IVQ,I‘/g,, "'71‘/1287 17 17 sy 1)7
(Bl,BQ,B?,, ...,3105) < (1, 1, 1, ceny 1),

Update / * Update a Single Round x /

t1 < Aes © A132 @ (A130 A A131) ® Bog;

to <= Bgo @ Bios @ (Bios A Bioa) ® Cho;
ts < Co6 @ Crar @ (Cras A Clag) @ Ars;
(A1, Az, As, ..., A132)  (t3, A1, Ag, ..., Aisr);
(B1, B2, B3, ..., Bios) < (t1,B1, Ba, ..., Bioa)
(Cl, 02, Cg, cery 0147) <— (tg, Cl, 02, ceny A146);

Y

KeyExt / «* Extract a Key Bit x /

z = Aes D A132 ® Beg ® B1os @ Cop @ Cra7 B (Ar02 A Bes) ;
Output z ;

StExt64 / « Extract 64 Key Bits x /

Output Ay, As, -+, Ags;

Insert (T) / xInsert T into State Registers x /

(517527"',S|T|) = (517‘527*"7S|T|) @T )

Algorithm 3: Modules of Trivia-SC. Here A represents “and” between two bits

The 64 bit Modules

Trivia-SC is parallelizable upto 64 bit. This means the stream cipher can produce
upto 64 bit stream at a single clock cycle.

Similarly the 64 round updations of Trivia-SC can be done at a single clock

cycle due to the parallelism. That is the Update64 subroutine which is equivalent
to running the Update subroutine 64 times can be executed in a single clock
cycle. More formally the KeyExt64 and the Update64 module is described in the
Algorithm 4,

The StateExt64 returns 64 bits and it has already been defined in the Algo-

rithm 3.



KeyExt64 / x Extract First 64 Bits from A After 64 Rounds * /
1 t= A[g...66} S>, A[69...132} S>, B[G...Gg] ©® B[42...105] S¥) C[g...@'ﬁ] & 0[84~~-147] S¥)

A[39...102] A B[g...ﬁ(ﬂ ;
Output t ;

N

Update64 / x Update 64 Rounds * /
t1 A[g...ﬁﬁ] S A[Gg...lgg] S A[67...130] A A[68~~131} s>, B[33...96] ;
to B[6--~69] & B[42...105] S¥) B[40...103] A B[41...104] @ 0[57...120} ;
t3 < C[g...66] N7 C[84---147} S5 C[82~~-145] A 0[83~--146} 5> A[lg...75] ;
(Al, AQ, A3, cens Algg) <— (tg, Al; Ag, ceey A68) ;
(Bl, Bz, Bg, ceny 3105) <— (tl, Bl, Bz, cens B41) ;
(01, CQ, Cg, ceny 0147) <— (tg, Cl, CQ, ceny Agg) ;

®w N & ok W

Algorithm 4: 64 bit modules of Trivia-SC. Here A means that “bitwise-and”
of two 64 bit variables.

1.4.2 VPV-Hash

In this section we describe our second component, VPV-Hash [13] defined to
compute tag. It first applies Vandermonde based an error-correcing code, called
ECCode™ and then applies Pseudo-dot-product and again Vandermonde-based
linear transformation.

ECCode

ECCodeg is an error correcting code of systematic form having minimum distance
d and it expands (d — 1) elements, called checksum. Thus, it is an optimum or
MDS code in terms of minimal expansion. In our constructions, we use ECCodey
for d = 4 or 5. Our error-correcting code has systematic form and so it would be
sufficient to describe the checksum elements. In other words, given any input of
¢-tuple of field elements (z1, ..., x¢), the codeword is (x1,...,Z¢, Y1, .., Yd—1) €
thd_l where (y1,...,y4-1) = VMulty/g—1)(71,...,7¢). We also denote as

ECCodey(x1,...,x¢) = (T1,- -, Te, Y1y -+, Yd—1)- (1.1)

We recall the constant L = 23° to be the maximum number of field elements
can be fed as an input to ECCodey. In other words, we restrict ¢ for ECCodey
to be less than or equal to L. After this length the code may not have desired
minimum distance which we have smaller length as described in Proposition 3.1
in Chapter 2 later.

Arbitrary Length Error Correcting Code:

The above algorithm works for at most L = 23° blocks. We define an error
correcting code, denoted ECCode} ., which works for any arbitrary length blocks



T E IF;'W with an additional parameter ck < L. We first sparse x as (X1, ..., Xm)
where all X;’s, possible except the last one, are ck-block elements. We call
these X;’s chunk. More formally X € F;‘éﬂ is a complete chunk and X € Fém,
with ¢ < ck is called an incomplete chunk. The last chunk may be incomplete.
ECCodefhck first parse the input string then apply ECCode, individually.

Definition 1.1 We define ECCode; , for 0 < ck <L as
ECCodej . (z) = (ECCodeq(X1),...,ECCodeq(Xym—1), ECCodeq(X.yn)). (1.2)

We also define ECCode () = ECCodey | (x). Given Z € {0,1}*, we denote £
by |[ECCodey  (pad(Z))]||. Thus,

o JlIpad(2)] + (d = LBl g ek = 0
27 Vpad(2)]| + (d — 1)[ 122 f ke > 0.

Algorithm VPV-Hash,«, d=4,5and 0 <ck <L =23,
Input: = € {0,1}*, (k1,..., ke, k*) € {0,1}W**%= x {0,1}324
Output: Tag € ({0,1}324) t = [@1 if ck = 0, else ¢ = [0

T
ck

=

x* = pad(x) ;
T1,...,20,) = ECCodey o (77);
Ti = (231, Ti2) € Fae and ki = (ki1, ki2) € Free, 1 <0 < 4y

N

3 fori=1to/,
9i=(xi1 ® ki1)(Ti2 @ ki2);

s =[5l
6 fori=1toc—1

Ti = VMultyerd/a(91, 925 - - - Gi(cktd-1));
8 T.=VMultyord/i(g1,92,---,90,) ® K

o return (Ty,...,T.);

We define a algorithm final-VPV-Hash which is computationally same as
VPV-Hash except that it returns only T. instead of (Ty,...,T.). More
formally, final-VPV-Hash(z, (k1,..., ke, k%)) = Te.

Algorithm 5: VPV-Hashg: A A-universal hash for variable length binary
strings which would essentially help to prove the unforgeability of our authen-
ticated encryption.



1.5 TriviA-ck

The components needed to construct TriviA-ck have been defined in the previous
subsections.

1.5.1 TriviA-ck-[Auth-Enc]

Select(M, K, len)

1 if [M| mod 64 =0 then

2 K'=((Ki, - K«), (Kekpa, s Kockys) -+, (Kq(ekg3)+15 s Kilen — 4));
3 else

4 K' = ((Kla T 7ch)7 (ch+4a T 7K2Ck+3)7 T (Kq(ck+3)+17 e 7KLen _3))7
5 output K’ ;

Algorithm 6: The Select subroutine. Here, q = [W} -1
TriviA-ck-[Auth-Enc] authenticated encryption algorithm is described by Algo-
rithm 7. The algorithm uses the subroutine Select described in the Algorithm 6
to extract the key bits corrosponds to the padded message position (Excluding
checksum positions computed by ECCode™) from the £;; words.

We have already mentioned that ck = 0 denotes the final tag doesn’t contain
the sequence of intermediate tags. Hence TriviA-0 represents the presence of L
sized buffer and Tag is 32 x 4 = 128 bit long.

Note that TriviA-L and TriviA-0 are not same. If the message has more than
L blocks then TriviA-L produces intermediate tags but TriviA-0 does not. If the
message has less than L blocks then both TriviA-L and TriviA-0 are functionally
same.

10



Algorithm TriviA-ck-[Auth-Enc]
Input: (M, D, (param, pub), Key) € {0,1}* x {0,1}* x {0,1}2*64 x {0,1}128
Output: (C, Tag) € {0,1}MIx{0,1}'?8 ¢t = 1ifck = 0, 0.w. t = f”pad(M)”}.

w N =

N O ok

0]

10
11
12

13
14
15
16

17
18
19
20

21
22
23
24
25
26

27
28

29

N = paraml||pub ;
Load(Key, N);
for i =1 to 18 Update64 ;

fori=1to lp ;

k; = StExt64; .
if i > (¢p — 3) then kY P = KeyExt64;
Update64;

K = (kl,kg, . .kzD) )

Kp = (levk%’k%[Sl..O]) )

T = final-VPV-Hashs (D, (K, K3})));
Insert(T);

for i =1 to 18 Updateb4 ;

for i =1 to las;
kY = KeyExt64;
kf StateExt64;
if |[M| mod 64 = 0;
Ifi> (£ —4) Then k™ = KeyExt64;
else .
ifi> (0 —3) Then k{73 = KeyExt64;
Update64;

K¢ = (klcvkgv' kZM) )
KT = (kT kT, ... kg ) ;
Ky = (kM’k3 )i
C = Select(M, KC ) & M;
if ck = 0 then
Tag = final-VPV-Hashg o« (M, (KT, K3,)) ;

else
Tag = VPV-Hashy o (M, (KT, K3%,))

return (C, Tag);

Algorithm 7: TriviA-ck-[Auth-Enc]

11



Key N*

—rrT

Update64 (18 Times)

'

| 1 StExt64

Update64

00|

KeyEat6d StExt64
= V PV Hash
Update64
KeyEaxt64 StExt64 — T
I Update64
KeyFExt64 StEzt64
— N
D ——
D
%
Update64 (18 Times) M
KeyExzt64 StExt64 |
— ] - ITag,
[ ]
° ———> [Tago
KeyExt64 ° .
Select
Update64 °
KeyExt6 StEzt64 V PV Hash
Update64 l— .
StExt64
K* Update64 +—— Tag
M StExt64
M —>

Figure 1.2: Circuit Diagraim for TriviA when messige size is not multiple of 64.
When it is multiple of 64 we need to run 4 StExt64 final calls instad of three as
we get 4 expanded message blocks whose ciphertext is not required.
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1.5.2 TriviA-ck-[Ver-Dec]

In this section we will describe the verified-decryption algorithm TriviA-ck-[Ver-Dec].
The algorithm takes as input the (C, Tag) tuple in addition with D, param||pub.
Let us describe how it works when ck = 0. As there is no intermediate tag
we run exactly same as encryption (we use /¢ instead of £;;) to obtain the key
stream K¢ and then computes message as

M = Select(C, K°, ¢¢) @ C.
The verified-decryption algorithm returns
e M if Tag = final-VPV-Hash, o (M, (KT, K3,)),
e | (rejects and no message is released) otherwise.

Now we describe verified-decryption algorithm when ck > 0. We write Tag =
C|+1
(Itagh, - - Itag’[cﬂfl, Tag' := Itag'{cﬂ), for r = [%

we compute ltag; for all 1 < ¢ < [Z] after decrypting the message M =
(M, ... ’Mfcﬂ) where M, represents the i** chunk of the message M. The

verified-decryption algorithm returns

|. Using the similar manner

o M if ltag; = ltag}, for all 1 <i < [1]

o (My,...,M;_1,1) (rejects and and the first (i — 1) message chunks are
released) if there exists any index ¢ > 1 such that Itag, # ltag’, but
ltag; = Itag’;, 1 < j <.

13



Chapter 2

Security (Goals

Recommended | confidentiality for | integrity for integrity for
parameter sets the plaintext the plaintext | the associated data
TriviA-0 128 128 126
TriviA-128 128 128 126

Table 2.1: Table quantifying for all choices of ck including 0, the intended
number of bits of security with the assumption that nonce can repeat at most 232
times. Note that our recommendation choice is ck =128 and ck = 0. However,
for any other choices of ck, the security remains same. It is suggested to choose
depending on the application requirement.

We call the concatenation of the public message number and parameter nonce.
However we can allow the repetition of nonce at most 232 many times. Our
constructions remain secure as given in the above table, as long as nonce and
associated data remains distinct over every execution. If the nonce and associ-
ated data pair repeats for two different invocations then there will be an attack
against privacy and authenticity. Moreover, if nonce repeats more than 232
times then still we have but lesser bits of security. One can find out the security
level from the Theorem 3.4 for arbitrary repetition of nonce. The privacy and
the integrity proof can be found in Theorem 3.4 and Theorem 3.5.

14



Chapter 3

Security Analysis

3.1 Empirical Results

Cube Attack [2] is best known algebraic attack on reduced round version of
Trivium [1]. It has been tested for the recommended versions of Trivia-SC with
1152 round initialization, no maxterms of size less than equal to 29 has been
found. Moreover for the 896 and 832 round initialization version we have havn’t
found any maxterm of size 29 or less. But for 768 round initialization version
this attack finds some linear superpoly with cube size 20.

Trivia-SC with 1152 initialization rounds has also been tested for the output
bit polynomial density. We have used Moebious Transform [5] to compute the
polynomial density. The polynomial has been restricted to 30 IV variables and
density of the monomials of degree less than 30 in the restricted polynomial
has been calculated. The result is given in the table 3.1. Trivia-SC with 960
initialization rounds has also been tested for the output bit polynomial density
and the result is given in the table 3.2. Output bit polynomial density for
Trivia-SC with 768, 832 and 896 rounds initialization is given in table 3.3 |
table 3.4 and table 3.5 respectively.

It has been observed from the results that the output bit polynomial for
Trivia-SC with 896 or more rounds of initialization behaves as random polyno-
mial where as for 768 rounds of initialization version monomials of size 22 or
more have density zero, thus makes the polynomial behaving in a non random
manner.

We have also observed the behaviour of the polynomials corresponding to
the statebits of the internal state register of Trivia-SC. The statebit polynomial
density has been observed to be very similar to that of the output bit polynomial.
We are doing extensive analysis on the properties of statebit polynomials and
the results will be given later in more details.

The statistical tests on Trivia-SC were performed using the NIST Test Suite [17].
Tests were performed on the on the output bit-stream. We also performed the

15



Monomial Size | 23 25 26 27 28 29
Density 051049 | 049 | 05| 0.52 | 0.4

Table 3.1: Trivia-SC with 1152 Rounds

Monomial Size | 23 | 25 | 26 | 27 28 29
Density 05105 1]05|05]0.5110.36

Table 3.2: Trivia-SC with 960 Rounds

Monomial Size | 15 16 17 18 20 22 | 23
Density 0.17 | 0.09 | 0.036 | 0.011 | 0.0002 | O | O

Table 3.3: Trivia-SC with 768 Rounds

Monomial Size | 17 18 20 22 23 25 26 27 28

Density 0.5]1049 {049 | 049 | 048 | 043 | 0.36 | 0.29 | 0.14

Table 3.4: Trivia-SC with 832 Rounds

Monomial Size 23 25 26 27 28 29
Density 049 | 051049 | 0.5 | 047 | 0.5

Table 3.5: Trivia-SC with 896 Rounds

same tests on a version of Trivia-SC where the key is random 384 bit string. No
weaknesses were found in any of these cases.

3.1.1 Security against Biryukov and Maximov Attack [10]

Trivia-SC is an extended version of Trivium, has been tested to output data
streams indistinguishable from independent and uniform random strings for
distinct inputs. Hence the ciphertext C' is indistinguishable from one time pad
of plaintext P. The constrained (over 30 randomly chosen IV bits) output
polynomial over key and I'V bits behaves as random polynomial for Trivia-SC
with 1152 round initialization.

Biryukov and Maximov Attack [10] in 2007 have constructed an attack on
Trivium which aims to recover the whole internal state with known keystream
by guessing one third of the internal state bits. Since the output bit equation
z = 586 4+ 5132 + S8 + §L05 + S8 4 ST has no nonlinearity the attacker can
easily get 22 linear equations from the output and the complexity of the attack

9 _99 . . . .
reduces to 23 7°°) where 6 is the internal state size. This leads to a key recovery
attack with complexity 296722 = 274 where the key size is 80 bit.

16



The above attack can recover the internal state and thus the secret key with
complexity less than 2'2® for Trivia-SC when the ouput bit equation has no
nonlinearity. The attack can obtain min{6—36, 6—39, %} i.e, 22 linear equations on
the statebits as mentioned in the attack. Hence the total complexity for the state
recovery which in tern leads to the key recovery attack reduces to 2§22 = 2106,
where 6 = 384 and the key size is 128 bit, making it an efficient distinguisher

for key recovery.

ScTriviA has removed this disadvantage of trivium by introducing nonlinearity
in the output bit equation. This resists the attacker from getting some linear
equation from the output bitstreams. Hence the complexity of the state recovery
attack which in tern led to key recovery attack is 2%, where 6 = 384 is the total
size of the internal state. Hence this attack does not help the attacker since the
key in Trivia-SC is 128 bit long.

3.2 Main Theorems

In this section, we prove the privacy and authenticity against all adversaries
which can make encryption queries with distinct pair of nonce and associated

data. Before we these prove we first describe universal hash property of VPV-
Hash.

3.2.1 A-Universal Property of VPV-Hash

Proposition 3.1 Letd < 5. For any fized { < L := 230, the output of ECCodey,
which is (x1,T2, -+, Te,Y1,Y2, - Yd—1) has minimum distance d. More pre-
cisely, for any fixred ¢ < L, and x # 2’ € Fgm, the hamming distance between
ECCodey(x) and ECCodey(x') is at least d.

Proof. Proof for d =4 is already given in [13]. The proof for d = 5 is verified
empirically. Note that we use the generator matrix of the form G := [I : V,, 5 ¢].
From the MDS property, it would have distance 5 if all square matrix of V' are
non-singular. If we do not include the last row in the square matrix then it
falls into the case for d = 4 which had been taken care in [13]. Now, one
can check by calculating determinant that whenever 1 + o, + o, # 0 for all
1 <1 < 5 </, the square matrices are non-singular. We have checked that our
choice of primitive polynomial satisfies this conditions at least for ¢ = 239,

Corollary 3.2 For any positive integer £, ECCode:;’Ck mapping £-block elements
to codewords, has minimum distance d. Moreover, the distance d can be observed
in a single chunk of codewords.

The proof of the above corollary is trivial from the above Proposition 3.1.

Remark 1 Note that two different length inputs of ECCodey; can map to code-
words (with different length) having minimum distance just one. In other words,
one codeword can be simply prefix of the longer which has one extra block or field
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element. To handle variable length inputs, we will process length independently
as described in Section 1.4.2.

Now we state that VPV-Hash is A-universal hash function. A keyed hash
function hy, is called e-AU (universal) hash function if for all distinct inputs
x and 2’ from input space and for all difference 0, the following 0-differential
probability

diffy, 5[z, 2'] == Pr. s [hk(z) - hi(z') = 4] (3.1)

is at most €. The notation “K ﬁ K” means that the random variable K is
uniformly distributed over the key space K.

Proposition 3.3 Suppose the keys for VPV-Hash is (Ky,...,Ky) and (K5, ...,
K}) (used for hashing length). Moreover, assume that we only use Kj o, K; 4,
K as described in TriviA. Then,

1. VPV-Hashy . s 1/2128—A—universal hash function and VPV-Hashs . is
1/2190-A-universal hash function for arbitrary length messages.

2. Bven when the K ’s are fized for a length suitable for one message,
VPV-Hashy o is 1/2126—A—unive7‘sal hash function.

Proof. As ECCode,  has distance d, we can apply the result from [13] to
prove the bounds for fixed length even for a fixed key corresponding to length.
To prove for variable length we need to argue in two cases. If the length key
is not leaked and different for two messages whose differential probability is
computed then due to full entropy of length key we will have 1/212% or 1/2169
differential probability. When length key is revealed, we still have 64 bit entropy
in length key due to different lengths of two messages. This can happen when
two padded message differ by at least two blocks. Let us assume that the last
64 bit of 128 bit hash output has the full entropy and so differential probability
is 1/254 for these 64 bits. Now for the first 64 bits we can still use the entropy
of hash key. Note that we should have at least two blocks of 64-bit hash keys
which is present in longer messages. Due to 1/23!-regular property of pseudo-
dot product hash for those keys ( independent with length keys) we have 1,/262
differential probability for the the first 64 bits of hash. This completes the proof.

3.2.2 Privacy of TriviA

We give a particularly strong definition of confidentiality or privacy, one assert-
ing indistinguishability from random strings. Consider an adversary A who has
access of one of two types of oracles: a “real” encryption oracle or an “ideal” au-
thenticated encryption oracle. A real authenticated encryption oracle, Fix, takes
as input (D, M) and returns (C, Tag) = Fx (D, M). Whereas an ideal authenti-
cated encryption oracle $ returns a random string R with |R| = [M|+1 for every
fresh pair (D,M). Given an adversary A (w.o.l.g. we assume a deterministic
adversary) and an authenticated encryption scheme F', we define the (full)
privacy-advantage of A by the distinguishing advantage of A distinguishing
F from $. More formally,
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AdvEY(A) := AdvS (A) = Prc[AFx = 1] — Prg[AS = 1].

Note that TriviA has similarity with AEAD-5 in [16]. So we adopt the proof
of the theorem stated in that paper. However, we have better bound due to
insertion of hash value T of nonce and associated data in the current state of
streamcipher. In [16], T' (in [16], it was denoted by V in Table-4) is initialized
and the streamcipher is freshly started. So the collision probability is about
q? /2190, However, if we insert it and if we assume that the nonce N can repeat
n many times then the collision probability of state is about (q/n) x n? x 27128
(ignoring the collision probability of whole state for two different nonce as the
state size is 384). So we have our following modified theorem: Let A be an
adversary which can make ¢ queries (including both encryption and decryption
queries) at an aggregate of total o associated data and message blocks. More-
over, nonce N can repeat n times (we set n < 232 which is reasonably large) .
then The privacy-advantage of the adversary A against TriviA is given by,

Theorem 3.4 . an

Advia(A) < n+ 9160 °
where n denotes the maximum distinguishing advantage over all adversaries B
making at most o block queries to Trivia-SC and running in time Ty (which is

about time of the adversary A plus some insignificant overhead).

3.2.3 Authenticity of TriviA

We say that an adversary A forges an authenticated encryption F' if A outputs
(D, C) where Fi(D, C) # L (i.e. it accepts and returns a plaintext), and A
made no earlier query (D, M) for which the F-response is C. It can make s
attempts to forge after making q queries. We define that A forges if it makes at
least one forges in all s attempts and the authenticity-advantage of A by

Advi™(A) = Prg[AFx forges).

We can argue similarly for authenticity also. Suppose adversary makes ¢
forgery attempts. After removing the collision probability for state and distin-
guishing advantage, i.e., 7+ 5155, we can consider differential probability for final
tag. Note that even though intermediate tag is leaked, the final tag is actually a
linear combination of all intermediate tag and so adversary must forge one of the
intermediate tag. For any such forging attempt, the differential probability of
intermediate tag (for matching nonce-associated data) is bounded by 27126, So
we can have similar following theorem: Let A be an adversary which can make
q queries (including both encryption and decryption queries) at an aggregate of
total o associated data and message blocks. The authenticity-advantage of the

adversary A against TriviA is given by,
Theorem 3.5
qn

uth q
AdvTiia(4) < n+ 5160 T 5126
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where 1 denotes the maximum distinguishing advantage over all adversaries B
making at most o block queries to Trivia-SC and running in time Ty (which is
about time of the adversary A).

20



Chapter 4

Features

4.1 Main Features of the Cipher

4.1.1 Efficient and Nonce Misuse Resistant

One of the most important requirement for most of the nonce based authenti-
cated encryption scheme is the nonce should be distinct for every invocation.
Otherwise the privacy of those schemes can be compromised easily. Nonce can
be chosen as a counter value or random integer (such that repitation occurs with
negligible probability) to ensure the distinctness. But in practical scenario such
as lightweight applications or some other applications it is very challenging to to
ensure distinct nonces since in lightweight applications either it needs to store in
a nontamperable state or require some hardware source of randomness. Again
in case of GCM-AES [11] and CCM-AES [3] occurance of same nonce for two dif-
ferent invocations under the same key, but with distinct plaintext compromises
the confidentiality of the plaintexts as well as the authenticity and integrity
under the key. Hence Nonce Misuse Resistance is an important criteria for
designing the AE scheme.

TriviA is a misuse resistant AE Scheme since it needs the tuple of nonce and
associated data to be distinct. The nonce and the associated data are used to
produce a intermediate state which in turn used to produce the encryption key
and the authentication key. Since any distinct pair of nonce and associated data
tuple produces distinct state hence TriviA provides Nonce Misuse Resistance.

Various Nonce Misuse Resistant AE Schemes like SIV [15], BTM [6], HBS [7]
are deterministic in nature and they don’t use nonce. Instead they use distinct
IVs which are processed from the message and associated data with the require-
ment that the message and associated data tuple should be distinct. But these
constructions are less efficient since they are two pass construction (they have
to process the message twice), where one pass is reserved for encryption another
is for authentication. TriviA produce encryption key and authentication key in
one pass (after the intermediate state is produced) and message is processed
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with this keys only once and hence it is more efficient. has

4.1.2 Presence of Intermediate Tag

TriviA computes a sequence of intermediate tags before computing the final tag.
Since creating a single authentication tag requires additional memory to store
the complete message, TriviA creates a sequence of intermediate tags where each
tag in the sequence can be computed from the previous tag without storing all
messages. The final tag will be computed from the last intermediate tag from
the sequence.

This construction is useful for limited buffer implementation and has been
proven secure in this implentation structure. The main disadvantage of the
scheme is that the presence of sequence of tags makes the ciphertext, authen-
tication tag tuple a bit longer. Hence the user has been given the flexibilty to
make the computation of the intermediate tags optional. We would like to note
that intermediate tag in authenticated encryption has been described in [14].

4.1.3 Low Hardware Area in the Implementation

The base component for TriviA is the stream cipher Trivia-SC, which needs low
hardware requirement, since it is a variant of Trivium, which has low hardware
requirement. Beside this TriviA uses the same VPV-Hash [13] universal hash
for both the intermediate state value computation and the authentication tag
generation, hence both the operation uses the same circuit.

Moreover VPV-Hash universal hash requires low hardware area than that of
the hardware efficient Topelitz construction [9]. For example, VPV-Hashs ¢ uses
only one 32 bit multiplier to compute 128 bit tag, which is much better than
compared to that of Toeplitz construction which requires four 32 bit multiplier
to compute 128 bit tag. The figure below gives a abstract view of the circuit
required for VPV-Hash.

Clearly VPV-Hash requires two VHorner Circuit and one 32 bit multiplier.
The VHorner — n/d circuit executes the inner for loop of the VMult, /; algo-
rithm. The figure represents the circuit for the VPV-Hash Universal hash which
is run by TriviA-ck algorithm in two phases for internal state generation and
authentication tag generation respectively. In the first call to VPV-Hashs (,
the control signal does not drop the fourth(64 bit) and fifth(32 bit) line in the
VHorner — 64/4 and VHorner — 32/5 circuits respectively. In the second call to
VPV-Hashy k the control signal drops the fourth(64 bit) and fifth(32 bit) line in
the VHorner — 64/3 and VHorner — 32/4 circuits respectively.

4.1.4 Advantage and Drawback of the Implementation

TriviA uses Trivia-SC to produce the encryption key, authentication key and
VPV-Hash to produce the authentication tag. Trivia-SC is very fast and it is par-
allelizable since it can process 64 bit at a time in a single clock cycle. VPV-Hash
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Figure 4.1: Circuit for VPV-Hash

also uses very low hardware area. We also generate a intermediate state from
the associated data and the nonce and the construction is Nonce Misuse Resis-
tant. Moreover the scheme also produces intermediate tags in the limited buffer
scenario.

TriviA-ck uses two invocation of Trivia-SC, thus two initializations for Trivia-SC
both of 1152 rounds respectively occurs. But the main drawback of the scheme
is that VPV-Hash uses leaked statebits of Trivia-SC as the hash key to generate
the authentication tag. This may create a small compromise of the security.
Moreover, since TriviA generates intermediate tag (optional) after processing a
chunk of data, size of the ciphertext and tag pair becomes larger.

4.2 Implementation Issues

The base component of TriviA for generating encryption and authentication key
is Trivia-SC. which is parallelizable upto 64 bit. This means the stream cipher
can produce upto 64 bit stream at a single clock cycle. This parallelizibilty
has been used by the KeyExt64 andUpdate64 subroutines. Moreover Trivia-SC
is an extended version of Trivium which performs good in both software and
hardware, thus depicts that Trivia-SC is one of the best candidate for generating
keystreams for encryption and authentication.

VPV-Hash uses ECCode error correcting code of minimum distance d, for
d € {4,5} to expand the data. It has been verified that ck < L where L = 23°.
This result says that the maximum possible size of a chunk can be L which is
quite large and ECCode can process more data in a single invocation.
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VPV-Hash algorithm generates the authentication tag by using the hashkey
generated by Trivia-SC. It also produces a sequence of intermediate tags (op-
tional if the buffersize is limited) after processing a chunk/s of data. This re-
quires storing a chunk of message and then applying the VPV-Hash over the
chunk/s. This is done in the incremental manner. That is if the first interme-
diate tag ITag; is computed for GG; then the next intermediate tag ITag, will
be calculated for (G, G2) where G; = (g1, -+ g¢) and Gy = (g1, - g2¢) With
lgi| = 32 bits Vi and ¢ = ck + 3. But this doesn’t require to store both the
chunks because the second intermediate tag can be computed by using G5 and
ITag,. Note that More precisely.

ITag; = Viord,a,l - G1
(4.1)
ITag, = Vioda2 - ( Gi G2 )
= o Viodal - G1 + Viord.a) - G2
= o -1Tag; + Viord, a1 - G2

Where
1 . 1 1 1
a1 ‘e a? o 1
2(1-1) . 4 2
Vivord d,| = @ a a 1
Q-Dd-1) . j20d-1)  ,d-1 g

The above description of intermediate tag generation confirms the optimiza-
tion of the buffer size. Hence it has great advantage for low-end devices (keeping
in mind that, block-wise adversaries are considered only when buffer size is lim-
ited implying low-end device).

4.3 Advantages Over AES-GCM

TriviA has the following advantages over AES-GCM :

e AES-GCM needs distincts nonce for every invocation under the same key
where as TriviA is a Nonce Misuse Resistant Authenticated Encryption,
i.e, it doesn’t need distinct nonces but distinct nonce and associated data
tuple for each invocation.

o AES-GCM isn’t security against blockwise adaptive adversaries since it
leaks some partial information by decrypting a invalid ciphertext when
buffer is limited. TriviA has overcome this disadvantage by incorporating
a sequence of intemediate tags before the final tag.

e Our constructions has much higher bit security for authencity compare to
AES-GCM.
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e AES-GCM uses a 128 bit field multiplier to process 128 bit data in a single
clock cycle. our construction uses a 32 bit field multiplier to process 64
bit data. Hence it can process 128 bit data by using two 32 bit field
multiplier. Clearly two 32 bit multiplier takes less hardware area than a
128 bit multiplier with a factor less than %
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Chapter 5

Design Rationale

TriviA-ck uses Trivia-SC and VPV-Hashq <« as the mathematical components and
it can be viewed as a integration of these two components. Trivia-SC is an
extended version of Trivium [1], which is one of the eStream finalists and can
be efficiently implemented both in software and hardware. The subroutines
of Trivia-SC are almost equivalent to Trivium except the non-linearity in the
output bit equation. We add this non-linearity to resist the attack in [10].
Hence Trivia-SC requires low hardware area and it is comparable to Trivium.
Moreover Trivia-SC gives equivalent software performance as Trivium since it
provides same 64 bit parallelism as in Trivium and can process 64 bit in a single
clock cycle.

We have also observed that after 896 round initializations the output bit
polynomial (over key and IV bits) behaves like random functions. Hence it
functions like one time pad when XORed with a message after 896 round ini-
talization. Thus TriviA-ck runs atleast 960 round initialization of Trivia-SC in
both the phases.

The second component of TriviA-ck is VPV-Hashg (x which is an efficient uni-
versal hash function with minimum number of multiplication. As we have men-
tioned earlier VPV-Hashg x performs better than efficient Toeplitz construction
in terms of the number of multiplications and the hardware area.The number
of multiplications in VPV-Hashq ¢ is optimum [13] and it is d times less than
that of the Toeplitz construction.

Due to limited buffer implementation such as low end devices the decryption
algorithm has to release some part of the plaintext before the authentication
is done. This can cause some attacks on some constructions [8] since the ad-
versaries against authenticity called blockwise adaptive adversary would have
access of partial decryption oracles. To resist such attacks, we recommend to use
a sequence of intermediate tags (along with the final tag), generated in a such
a manner that during decryption, the plaintext computation is independent of
the intermediate tags.
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We have generated a intermediate state using the associated data and Trivia-SC
generated bit streams. The generated intermediate state is then mixed inter-
nal state registers of Trivia-Sc and the final tag is produced. This technique
has been implemented to make the scheme nonce-misuse resistant. This is in-
deed an important requirement since schemes like AES-GCM [11], AES-CCM (3]
occurance of same nonce for two different invocations under the same key com-
promises confidentiality oe authenticity of the plaintext. TriviA-ck requires that
the nonce may be repeated but not the tuple of associated data and nonce.

The designers have not hidden any weaknesses in this cipher. One can analyze
the polynomials corresponding to state bits for the further analysis of weaknesses
in the cipher. Polynomial density for the polnomials corresponding to state bits
have been checked and found that they behave like random polynomials. Still
it may be a good area for analyzing the weaknesses in the cipher.

the designers have tried to exploit the dependency between state bits (from
StateExt64) and key streams (from KeyExt64) mathematically but couldn’t find
any. One may try to find dependencies between the state bits and keystream
bits and try to explore attacks.
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Chapter 6

Intellectual Property

This cipher or any parts of the cipher, doesnt have an kind of patents. Existance
of any kind of patent on any parts of the cipher is not known to the submitters.
If any of this information changes, the submitters will promptly (and within at
most one month) announce these changes on the crypto-competitions mailing
list.
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Chapter 7

Consent

The submitters hereby consent to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitters under-
stand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitters understand
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply be-
cause not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective
expert judgments of the committee members and are not subject to appeal.
The submitters understand that if they disagree with published analyses then
they are expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.
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