
YAES v21

Designers: Antoon Bosselaers and Fre Vercauteren
ESAT/COSIC, KU Leuven, Belgium

Submitters: Antoon Bosselaers and Fre Vercauteren
frederik.vercauteren@esat.kuleuven.be

2014.05.14

1 YAES is shorthand for Yet Another AES-based Authenticated Encryption Scheme

1

1 Specification

1.1 Parameters

YAES has three parameters: key length, nonce length and tag length. The key length
will be equal to 16 bytes (128 bits), the nonce length can be between 1 and 16 bytes
(but maximum of 127 bits set), and the tag length is between 8 and 16 bytes.

1.2 Recommended parameter sets

Primary recommended parameter set yaes128v2: 16-byte (128 bit) key, 16-byte (127
bit, this is not a typo) nonce, 16-byte (128 bit) tag.

1.3 Authenticated encryption

Notation and basic building blocks

– {}∗: set of finite length binary strings
– 0k: a string of k zero bits
– 1k: a string of k one bits
– ⊕: bit-wise exclusive OR
– ||: concatenation
– A: associated data
– M: plaintext
– K: key
– N: public message number
– C: ciphertext
– T: tag
– |X|: bit length of binary string X ∈ {}∗ where the length of the empty string is

0.
– a binary string a0a1a2a3a4a5 · · · is represented as a byte array A with

A[i] = 0xa8ia8i+1a8i+2a8i+3a8i+4a8i+5a8i+6a8i+7 ,

in particular A[0] = 0xa0a1a2a3a4a5a6a7.
– msbb(X): first b bits of binary string X ∈ {}∗ where b ≤ |X|
– A0∗: if |A| < 128, A || 0128−|A| else msb128(A)
– A10∗: A || 10∗. Note that due to the 0∗ operator, the result is always 128 bits.
– |X|b := d|X|/be: number of b-bit blocks in binary string X ∈ {}∗

– X[0] || X[1] || · · · || X[x]
b← X with x = |X|b denotes b-bit partitioning of X (last

block can be partial block)
– F2128 : the Galois field with 2128 elements represented as F2128〈θ〉 := F2[x]/f(x)

where f(x) = x128 +x7 +x2 +x+1. We note that f(x) is a primitive polynomial,
i.e. the element θ (or x by abuse of notation) generates the full multiplicative
group

– a 128-bit string a = a0 · · · a127 can be naturally interpreted as an element of F2128

as a0 + a1x+ · · ·+ a127x
127

2

– x · a (resp. xi · a) with a ∈ F2128 : multiplication by x (resp. xi), note that this
can be implemented by a right shift and an XOR (resp. repeated right shifts and
XORs). In particular, given the bit string representation of a = a0a1 · · · a127, the
bit string representation of x · a is given by

x · a = a127(a0 ⊕ a127)(a1 ⊕ a127)a2a3a4a5(a6 ⊕ a127)a7 · · · a126 .

– AES128Round(S,K): one full AES-128 round with 16-byte state S and 16-byte
round key K. This corresponds to the instruction m128 aesenc si128(S, K) on
processors that support AES-NI.

– AES128RoundKey(K, i): returns the round key in the i-th round of AES128, where
by definition AES128RoundKey(K, 0) returns K

– AES128[r]Rounds(M,K, i): r full AES-128 rounds starting from the i-th AES-
128 round with M 16-byte message and K the 16-byte AES key (the round
keys are derived from K using the standard AES-128 key schedule starting from
the i-th round). The pseudo-code of AES128[r]Rounds(M,K, i) is given below.

Algorithm AES128[r]Rounds(M,K, i)

1. S ←M
2. for j = 0 to r − 1 do
3. Kj ← AES128RoundKey(K, i+ j)
4. S ← AES128Round(S,Kj)
5. return S

– AES128(M,K): standard full AES-128 with 16-byte messageM and 16-byte keyK

The inputs to the authenticated encryption function YAES128 ENC are a public mes-
sage number N of maximum 127 bits, associated data A, a plaintext M, where the
total combined length of A and M is maximum 248 bytes, a key K of 16 bytes and
a tag length 64 ≤ τ ≤ 128. The output is the ciphertext C of exactly the same
bit length as M and a tag T of length τ . The function uses two subroutines AD128

and EF128 for authenticating associated data and encrypting and authenticating the
message respectively.
The inputs to the authenticated decryption function YAES128 DEC are a public mes-
sage number N, associated data A, a ciphertext C, a key K and a tag T of length
τ . The output is the plaintext M or the error symbol ⊥ when the input is deemed
invalid.
The full specification of the YAES128 encryption/decryption functions are given on
the next page.

3

Algorithm YAES128 ENC(N,A,M,K, τ)

1. if |A| > 0 then TA← AD128(A,K)
2. else TA = 0128

3. (C,TE)← EF128(N,M,K)
4. T = TE⊕ TA
5. return (C,msbτ (T))

Algorithm YAES128 DEC(N,A,C,K,T, τ)

1. if |A| > 0 then TA← AD128(A,K)
2. else TA = 0128

3. (M,TE)← DF128(N,C,K)
4. T′ = TE⊕ TA
5. if msbτ (T

′) = T then return M
6. else return ⊥

Algorithm EF128(N,M,K)

1. m← |M|128; M[1] || · · · ||M[m]
128← M

2. L← AES128(N10∗,K)
3. S ← 0128

4. for i← 1 to m do
5. V ← AES128[6]Rounds(L,K, 1)
6. V ← V ⊕M[i]10∗

7. S ← S ⊕ AES128[4]Rounds(V,K, 7)
8. C[i]← msb|M[i]|(V ⊕ L)
9. L← x · L

10. if |M[m]| = 128 then L← (x+ 1) · L
11. else L← (x2 + 1) · L
12. TE← AES128(S ⊕ L,K)
13. return (C,TE)

Algorithm DF128(N,C,K)

1. c← |C|128; C[1] || · · · || C[c]
128← C

2. L← AES128(N10∗,K)
3. S ← 0128

4. for i← 1 to c do
5. V ← AES128[6]Rounds(L,K, 1)
6. M[i]← C[i]⊕msb|C[i]|(V ⊕ L)
7. V ← V ⊕M[i]10∗

8. S ← S ⊕ AES128[4]Rounds(V,K, 7)
9. L← x · L

10. if |C[c]| = 128 then L← (x+ 1) · L
11. else L← (x2 + 1) · L
12. TE← AES128(S ⊕ L,K)
13. return (M,TE)

Algorithm AD128(A,K)

1. a← |A|128; A[1] || · · · || A[a]
128← A

2. R← AES128(0128,K)
3. S ← 0128

4. for i← 1 to a do
5. V = A[i]10∗ ⊕R
6. S ← S ⊕ AES128[4]Rounds(V,K, 1)
7. R← x ·R
8. if |A[a]| = 128 then R← (x+ 1) ·R
9. else R← (x2 + 1) ·R

10. T ← AES128(S ⊕R,K)
11. return T

4

N10*

AES128(K)

L

L

AES6(K,1)

M[1]

C[1]

AES4(K,7)

xL

AES6(K,1)

M[2]

C[2]

AES4(K,7)

AES6(K,1)

M[3]

C[3]

AES4(K,7)

x2L

AES6(K,1)

M[m]

C[m]

AES4(K,7)

x(m-1)L

......

...... S

0*

AES128(K)

R

R

A[1]

AES4(K,1)

xR

A[2]

AES4(K,1)

A[3]

AES4(K,1)

x2R

A[a]10*

AES4(K,1)

x(a-1)R

......

AES128(K)

xa(x+1)R
 OR
xa(x2+1)R

TA

S

xm(x+1)L

 OR
xm(x2+1)L

AES128(K)

TA

T

TE

2 Security goals

We have the following security statements for a nonce respecting adversary and for
the recommended parameters:

– key recovery attack: security 128 bits
– confidentiality of plaintext: security 64 bits
– integrity of plaintext/associated data: security 55 bits

The numbers given above mean the following: the advantage of the adversary for key
recovery goes up as k/2128 where k is the number of key guesses. The advantage of
the adversary for breaking the indistinguishability-from-random goes up as q2/2128

where q is roughly the total number of blocks that are submitted to encryption oracle.
The advantage of the adversary of producing a valid forgery (i.e. ciphertext/tag pair
that validates and was not generated by encryption oracle) goes up as q2ε+ q2/2128

where q is roughly the total number of blocks that are submitted to encryption oracle

5

and ε is such the implicit hash function used is ε-AXU (almost XOR universal). The
lower number for the integrity of plaintext/associated data therefore thus comes from
the fact that the best bound on 4-round AES is only ε-AXU with ε = 2−113.

3 Security analysis

The security of YAES128 can be derived from general principles in that it combines a
tweaked CTR mode with an ε-AXU hash function based approach for the authentica-
tion part. Although we did not bother to write down a full security proof, this can be
done along the lines of the security proof for CTR-GCM (without the complications
of long nonces) or OCB3.
The security of YAES128 is only guaranteed under the following assumptions:

– Keys are uniform random.
– The nonce really is a nonce, and therefore should not be used more than once.
– The decrypted plaintext should only be revealed upon successful verification of

the tag.

More interesting are the practical implications of not using the full AES block cipher.
The first assumption is that AES128Round[6](xiL,K, 1)⊕xiL should be indistinguish-
able from independent uniform strings. Although we are not aware of any formal anal-
ysis of such constructions, we expect this assumption to hold up in practice. Note
that unlike classical CTR mode, the input xiL is unknown to the attacker, as is the
output. Secondly, it is well known that 4 round AES is ε-AXU with ε = 2−113, which
leads to a somewhat less than ideal security margin for authentication. However, since
the total length of the associated data A and the plaintext M is limited to 248 bytes
(i.e. 244 blocks), we do not expect to find a collision with probability substantially
higher than 2−24.
Note that the recent LOCAL attack on ALE does not generalize to YAES128 since no
state bytes are leaked directly into the ciphertext.

4 Features

YAES128 has the following features:

– Fully parallel: YAES128 is fully parallel on the message block level, both for en-
cryption and authentication, and therefore can be trivially pipelined by encrypt-
ing consecutive blocks simultaneously. Note that the required mask at any given
position can be computed efficiently by a simple square and multiply algorithm.
This implies that even on multicore processors a single message could be en-
crypted/decrypted by splitting it over the different cores.

– Tweaked CTR mode: the encryption itself is a simple tweaked CTR, where the
input (in this case all zero) and output are masked. Note that this is different
from standard CTR mode, where the input to the block cipher is known (since
it is derived from the public message number N). Furthermore, given any plain-
text/ciphertext pair, it is easy to also derive the output of the block cipher in
normal CTR mode. Due to the tweaks this is no longer possible.

6

– Block cipher encryption only: YAES128 only uses the AES block cipher in encryp-
tion mode. This is one major advantage over AES-OCB3 where also decryption is
required; this implies that an implementation of YAES128 will always be smaller
than AES-OCB3 both in software and hardware.

– No “full” finite field multiplications: the only finite field operations are simple
XOR or multiplication by the constant x. This is a major advantage over AES-
GCM that requires a full finite field multiplier, which not only leads to a large
circuit in hardware, but also implies extra functionality to be implemented in
software.

– Re-use of existing implementations: it is easy to see that YAES128 can be derived
trivially from existing AES-CTR or AES-OCB3 mode implementation by making
very minor modifications, mostly redefining how the counter is updated and the
injection of the plaintext block after the 6th round and the extraction of the
corresponding ciphertext block.

– Efficiency: given the above remark, we can see that the efficiency of YAES128 will
be very similar to AES-OCB3. As an indication of the expected performance, we
provide cycle counts of AES-OCB3 using the same doubling approach for masking
(recent work by Bogdanov et. al): 1.94 cpb for 128 byte message, 0.77 cpb for 1024
byte message, and 0.72 byte for 2048 byte message. This shows that YAES128 will
perform very well both for short and longer messages.

– Low overhead: compared to AES-CTR mode, the overhead is roughly two full AES
encryptions when there is no associated data and one extra full AES encryption
to handle associated data.

– Medium state size: YAES128 uses four 128-bit states for the round keys, tweaks,
message blocks and authentication state.

– Incremental if decryption available: modifying one plaintext block modifies the
corresponding ciphertext block (that can be recomputed very efficiently), but also
modifies the tag. To update the tag, it is easy to see that one would also need
AES128 decryption, so if one is willing to accept this cost, YAES128 can be made
incremental.

– Precomputation and preprocessing: similar to AES-GCM, it is possible to pre-
compute the keystream without seeing M or A; it is possible to preprocess A
without seeing M or the public message number N; it is possible to preprocess
M without seeing A; and in general it is possible to preprocess various parts of
A and M without seeing the other parts.

– Security: YAES128 is a tweaked version of well-understood techniques: tweaked
CTR-mode for encryption and a PMAC1 like construction as MAC. Note however
that YAES128 is not simply encrypt-then-MAC, since the ciphertext itself is not
MAC-ed. We refer to Section 3 for security properties of YAES128.

– Public message number N is nonce: it is easy to see that YAES128 (like other
stream cipher based authenticated encryption modes where the stream only de-
pends on the key K and N) loses all security when N is re-used with the same
key K to encrypt another message. Since the same keystream will be generated,
a simple XOR of the ciphertext leaks the XOR of the corresponding plaintexts.

7

– No decryption misuse resistance: it is easy to see that the plaintext produced by
the decryption function of YAES128 should not be used before the tag has been
verified.

– Recommended parameters: for simplicity there is currently only one recommended
parameter set: 128-bit key K, 127-bit nonce N, 128-bit tag. A 256-bit version can
be easily derived in analogy with the 128-bit version: the 14 rounds of normal
AES, would be split in 8 rounds for encryption and 6 rounds for authentication.
Currently no statements are made on the resulting security bounds.

5 Design rationale

The design of YAES128 is driven by the following set of requirements:

– Block cipher based, but only using the encryption function of the block cipher
for both encryption and decryption.

– Fully parallelizable on the message block level. This rules out all the chaining
modes of operation or designs that serially update state.

– Use of standard components that have been studied extensively and with readily
available implementations including side channel protection.

– Performance comparable to or better than AES-OCB.
– Online and single pass.
– Small to medium sized state.
– No “full” finite field multiplications, since this adds another component that

typically requires large area in hardware implementations.
– No requirements on nonce-misuse-resistance or decryption-misuse-resistance.

Taken the above requirements into account, the building blocks are limited to the
AES round function and masking, for instance using the now classical Galois Field
doubling approach. We remark however that other masking schemes would be possible
such as the ones based on Gray codes or LFSRs.
The resulting mode can be viewed in various several ways. The first one is as a
masked CTR-mode with reduced round AES for encryption, with a MAC based on
the incremental hash function design instantiated with 4-round AES. Note that the
difference with standard CTR mode is that both the input and output are masked.
This implies that although the encryption itself is a reduced round AES, one actually
never obtains a proper input/output pair. The mode is also somewhat related to
OTR: given an input message M , derive a new message M ′ of double the length
of M with M ′[2i] = M [i] and M ′[2i + 1] = 0n with n the block size in OTR. The
ciphertext then simply corresponds to the concatenation of the left halves of the OTR
output, whereas the right halves are used to compute the tag.
Finally we remark that “The designers have not hidden any weaknesses in this cipher”.

6 Intellectual property

The designers/submitters of this proposal have note filed any patent applications nor
have any intention to file future patent applications. As far as the designers/submitters

8

are aware, there are no intellectual-property constraints relevant to use of the cipher. If
any of this information changes, the submitter/submitters will promptly (and within
at most one month) announce these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candi-
date, a third-round candidate, a finalist, a member of the final portfolio, or any other
designation provided by the committee. The submitters understand that the commit-
tee will not comment on the algorithms, except that for each selected algorithm the
committee will simply cite the previously published analyses that led to the selection
of the algorithm. The submitters understand that the selection of some algorithms is
not a negative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at the time
of the committee decision. The submitters acknowledge that the committee decisions
reflect the collective expert judgments of the committee members and are not subject
to appeal. The submitters understand that if they disagree with published analyses
then they are expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitters understand that this state-
ment is required as a condition of consideration of this submission by the CAESAR
selection committee.

Acknowledgments

The designers would like to thank Elena Andreeva, Danny De Cock, Vincent Rijmen
and Elmar Tischhauser for their insights into authenticated encryption schemes and
Danilo Gligoroski for pointing out a discrepancy between the algorithms and their
illustrations.

Appendix: Test Vectors

Key= 00000000000000000000000000000000

Adata=

Nonce= 09f911029d74e35bd84156c5635688c0

Plain=

Cipher=

Tag= f62f040d7c7cc30bfcf449fb1fd6fb8c

Key= 00000000000000000000000000000000

Adata= 00112233445566778899

Nonce= 09f911029d74e35bd84156c5635688c0

Plain= 8e

Cipher= c0

9

Tag= 163924ce11d81c2d373a86e6825e4efb

Key= 00000000000000000000000000000000

Adata= 00112233445566778899aabbccddeeff

Nonce= 09f911029d74e35bd84156c5635688c0

Plain= 00000000000000000000000000000000

Cipher= 4e23b0f5e59aaca555507f246ac4859e

Tag= 7d6f1549741a21776c219411349272a7

Key= 7f7e7d7c7b7a79787776757473727170

Adata= 00112233445566778899aabbccddeeff

Nonce= 09f911029d74e35bd84156c5635688c0

Plain= 7468697320697320736f6d6520706c61

Cipher= 63bb6fef9b3210aa760dd284c1b05e55

Tag= 92ca38160c25c09cabfd2cc4510a2861

Key= 7f7e7d7c7b7a79787776757473727170

Adata= 00112233445566778899aabbccddeeff ffeeddccbbaa99887766

Nonce= 09f911029d74e35bd84156c5635688c0

Plain= 7468697320697320736f6d6520706c61 696e7465787420746f20

Cipher= 63bb6fef9b3210aa760dd284c1b05e55 3961d827b9140ba5dec5

Tag= 83946736086461fd3caea2517aba89c4

10

