
Submission to the CAESAR competition

AES-COPA v.2

Designers/Submitters:
Elena Andreeva1,2, Andrey Bogdanov3, Atul Luykx1,2,
Bart Mennink1,2, Elmar Tischhauser3, and Kan Yasuda1,4

Affiliation:
1 Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium.
2 iMinds, Belgium.
3 DTU Compute, Technical University of Denmark, Denmark.
4 NTT Secure Platform Laboratories, Japan.

copa@esat.kuleuven.be

AES-COPA v2: Submission to CAESAR

1 Specification

1.1 Parameters

AES-COPA has two parameters: the key length κ and the tag length τ . The key length
can be either 16 bytes (128 bits), 24 bytes (192 bits), or 32 bytes (256 bits). The tag
length is between 8 bytes (64 bits) and 16 bytes (128 bits). The nonce, also called the
public message number, is an input of length 16 bytes (128 bits).

AES-COPA does not support a secret message number. Each key size of AES-COPA
corresponds to a key size of AES. AES-COPA supports variable length associated data and
plaintexts. To comply with our security claims from Sect. 2, the length of the associated
data together with the plaintext data is at most ≈ 264 · 16 bytes.

Recommended parameter set: 16 byte (128 bits) key length and 16 byte (128 bits) tag
length.

1.2 Notation

A block cipher E : K×{0, 1}n → {0, 1}n is a function that takes as input a key k ∈ K and
a plaintext M ∈ {0, 1}n, and produces a ciphertext C = E(k,M). We sometimes write
Ek(·) = E(k, ·). For a fixed key k, a block cipher is a permutation on n bits. Throughout
the document E denotes the block cipher AES-128 and n denotes its block size (128 bits).
Strings of length n are called blocks.

By {0, 1}∗ we denote the set of all strings, and by {0, 1}+ the set of all non-empty
strings. Given two strings A and B, we use A ‖ B and AB interchangeably to denote
the concatenation of A and B. For A ∈ {0, 1}∗, by A10∗ we denote the string with a 1
appended, and then padded with zeros until its length is a multiple of n. If X is a string
with length a multiple of n, by X[i] we denote the ith n-bit block of X. The length of a
string X is denoted by |X|. By bXcj we denote the j most significant bits of X.

We can view the set {0, 1}n of bit strings as the finite field GF(2n) consisting of 2n

elements. To this end, we represent an element of GF(2n) as a polynomial over the field
GF(2) of degree less than n, and a string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the
polynomial an−1x

n−1+an−2x
n−2+· · ·+a1x+a0 ∈ GF(2n). Addition in the field is addition

of polynomials over GF(2) (i.e. bitwise XOR, denoted by ⊕). To define multiplication
in the field, we fix an irreducible polynomial f(x) := x128 + x7 + x2 + x + 1 over the
field GF(2). For a(x), b(x) ∈ GF(2n), their product is defined as a(x)b(x) mod f(x) —
polynomial multiplication over the field GF(2) reduced modulo f(x). We simply write
a(x)b(x) and a(x) · b(x) to mean the product in the field GF(2n).

The set {0, 1}n can be also regarded as a set of integers ranging from 0 through 2n−1.
A string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the integer an−12

n−1 + an−22
n−2 +

· · ·+ a12 + a0 ∈ [0, 2n− 1]. We often write elements of GF(2n) as integers, based on these
conversions. So, for example, “2” means x, “3” means x + 1, and “7” means x2 + x + 1.
When we write multiplications such as 2 · 3 and 72, we mean those in the field GF(2n).

1

AES-COPA v2: Submission to CAESAR

1.3 Authenticated Encryption

The encryption E and decryption D functions of AES-COPA have the following interfaces:

E : {0, 1}κ × {0, 1}n × {0, 1}∗ × {0, 1}+ → {0, 1}+ × {0, 1}τ ,
D : {0, 1}κ × {0, 1}n × {0, 1}∗ × {0, 1}+ × {0, 1}τ × {0, 1} → {0, 1}+ ∪ {⊥}.

The function E takes as input a public message number N ∈ {0, 1}n, associated data
A ∈ {0, 1}∗, and a message M ∈ {0, 1}+. It returns a ciphertext C ∈ {0, 1}+, where
|C| = |M |, and tag T ∈ {0, 1}τ : (C, T)← E(N,A,M). The decryption function D takes
as input a public message number N ∈ {0, 1}n, associated data A ∈ {0, 1}∗, ciphertext
C ∈ {0, 1}+, tag T ∈ {0, 1}τ , and a bit P indicating whether the last block of M was
incomplete (and thus padding was applied). The algorithm D outputs M ∈ {0, 1}+ if the
tag is correct and ⊥ otherwise, which we denote as M/⊥ ← D(N,A,C, T, P).

Let L
def
= Ek(0). Write M = M [1]M [2] · · ·M ′[d] where each M [1], . . . ,M [d − 1] is

a block of 16 bytes (128 bits). Depending on whether or not the last block M ′[d] is
incomplete, we perform the following padding:

M [d] =

{
M ′[d] if |M ′[d]| = 128,

M ′[d]10∗ otherwise.

The encryption and decryption procedures of AES-COPA on such a (possibly padded)
messageM [1] · · ·M [d] of d 128-bit blocks and on a ciphertext and tag pair (C[1] · · ·C[d], T)
are then defined as:

AES-COPA-Encrypt:
P ← 0 if |M ′[d]| = 128 else 1
V ← PMAC1′(A‖N)
(C, S)← Encrypt(V,M, P)
Σ ←M [1]⊕M [2]⊕ · · · ⊕M [d]
T ← Ek

(
Ek(Σ ⊕ 2d−1327PL)⊕ S

)
⊕ 2d7L

Output (C, bT cτ)

2

AES-COPA v2: Submission to CAESAR

AES-COPA-Decrypt:
V ← PMAC1′(A‖N)
(M,S)← Decrypt(V,C, P)
if P then B incomplete last block
M ′[d]10∗ ←M [d]
Σ ←M [1]⊕M [2]⊕ · · · ⊕M [d− 1]⊕M ′[d]10∗

else
M ′[d]←M [d]
Σ ←M [1]⊕M [2]⊕ · · · ⊕M [d]

end if
if bEk

(
S ⊕ Ek(Σ ⊕ 2d−1327PL)

)
⊕ 2d7Lcτ = T then

Output M [1] · · ·M [d− 1]M ′[d]
else

Output ⊥
end if

where the subroutines are defined as:

PMAC1′(X):
X[1]X[2] · · ·X[x]← X
∆0 ← 33L, U ← 0
for i = 1, . . . , x− 1 do
U ← U ⊕ Ek

(
X[i]⊕∆0

)
∆0 ← 2∆0

end for
if
∣∣X[x]

∣∣ = n then
V ← Ek

(
U ⊕X[x]⊕ 3∆0

)
else
V ← Ek

(
U ⊕X[x]‖10∗ ⊕ 32∆0

)
end if
Output V

Encrypt(V,M, P):
V [0]← V ⊕ L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do
V [i]← Ek

(
M [i]⊕∆0

)
⊕ V [i− 1]

C[i]← Ek
(
V [i]

)
⊕∆1

∆0 ← 2∆0,∆1 ← 2∆1

∆0 ← 7∆0 if i = d− 1 and P = 1
end for
C ← C[1]C[2] · · ·C[d], S ← V [d]
Output (C, S)

Decrypt(V,C, P):
V [0]← V ⊕ L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do
V [i]← E−1k

(
C[i]⊕∆1

)
M [i]← E−1k

(
V [i]⊕ V [i− 1]

)
⊕∆0

∆0 ← 2∆0,∆1 ← 2∆1

∆0 ← 7∆0 if i = d− 1 and P = 1
end for
M ←M [1]M [2] · · ·M [d], S ← V [d]
Output (M,S)

3

AES-COPA v2: Submission to CAESAR

See Figures 1 and 2 for a pictorial description. In PMAC1′, the last block X[x] is padded
(if not a multiple of n bits) by a one and as many zeroes as necessary to obtain a multiple
of the block size n. Here, the block “X[x]10∗” replaces the block “X[x]” if X[x] itself is
not n bits.

Figure 1: COPA plaintext processing (complete last block, i.e. P = 0).

(a) Tag generation (P = 0) (b) Processing of associated data

Figure 2: Tag generation and processing of associated data.

2 Security Claims

In this section we specify the security levels with respect to the recommended key length
of 16 bytes, tag length of 16 bytes, nonce length of 16 bytes. For these parameters
AES-COPA achieves the following security levels (in log2 of number of AES calls):

4

AES-COPA v2: Submission to CAESAR

AES-COPA

confidentiality for the plaintext 64
integrity for the plaintext 64
integrity for the associated data 64
integrity for the public message number 64

The security levels of AES-COPA correspond to the birthday bound security on the block
size of AES1 (see also Sect. 3). They are supported by security proofs [1]. The security
levels apply both in the cases when nonces are unique values (full security) and also when
nonces are reused (full security up to common prefix, the maximum attainable for single
pass schemes). We refer to [1] for the technicalities. We conjecture that security against
key recovery is 128 bits and security against tag guessing is 128 bits.

3 Security Analysis

AES is believed not to be distinguishable from a permutation drawn uniformly at random.
In [1] we show that under this assumption (AES is a strong pseudo-random permuta-
tion SPRP) AES-COPA cannot be distinguished from an ideal authenticated encryption
scheme in up to about 264 AES calls. That is, AES-COPA is confidentiality secure (in
the sense of indistinguishability from an online permutation) against chosen-plaintext
(CPA) attacks and integrity secure against forgery up to approximately 264 AES calls.
Most importantly, and in contrast with the majority of existing authenticated encryption
schemes, AES-COPA security proofs hold for stronger nonce-repeating attackers and is
hence secure against nonce misuse.

More precisely, in [1] we prove the nonce misuse security of AES-COPA in the standard
model under the SPRP assumption on AES against an AE distinguisher up to the bound
39(σ+q)2

2n
+ (l+2)(q−1)

2n
+ 2q

2n
, where q are the AES-COPA queries of total length at most σ

blocks and each of length at most l blocks.
This results means that under the same key the amount of ciphertext should not

exceed 264 blocks. We note, that many existing AES-128 based authenticated encryption
schemes with the same security levels conservatively limit the total amount of plaintext
and associated data blocks under a fixed key to at most 248 blocks (252 bytes).

When a ciphertext decrypts to ⊥ the implementor needs to ensure that no informa-
tion beyond this fact is leaked to the adversary. An adversary can always produce a
valid tag T with probability 2−|T |. It is recommended that applications take care of pro-
ducing ciphertexts with a single tag size under the same key to avoid potential security
degradation.

We clarify that our security model does not encompass timing and power consumption
attacks.

1We clarify that our security results are of the same order as AES based authenticated encryption
schemes, such as AES-GCM and AES-OCB

5

AES-COPA v2: Submission to CAESAR

4 Features of AES-COPA

Online. AES-COPA is based on an online cipher and is designed to allow for online
processing for both encryption and decryption, processing data on-the-fly as it arrives.

Nonce misuse resistance. AES-COPA is designed to maintain security when the
nonce is reused. More specifically, it achieves the maximal possible security against nonce
reuse for an online authenticated encryption scheme [3], meaning that when two plain-
texts are encrypted using the same associated data A and nonce N , the adversary can
only determine the length of the common plaintext prefix of the two messages, since these
will have the same corresponding ciphertext blocks.

Efficiency. AES-COPA is designed to allow high-performance implementations in both
software and hardware.

• Parallelizability: AES-COPA can fully parallelize the execution of AES calls for
subsequent message blocks once the respective masks have been computed. The
same holds for the second layer of AES calls. For messages longer than one block,
this significantly increases the performance. For shorter messages, the available
parallelism in AES-COPA can be exploited by processing multiple messages simul-
taneously. Both approaches naturally extend to the case where multiple cores are
available.

• AES-COPA is designed for efficiency for both short and long messages. Besides the
AES key schedule, the overhead for short messages basically only amounts to two
AES calls for the tag generation. On Intel’s recent Haswell microarchitecture, AES-
COPA achieves a performance of up to 1.29 cycles/byte (cpb) for longer messages
(2048 bytes) and 1.44 cpb for shorter messages (128 bytes).

• Key agility (computational cost under distinct keys): AES-COPA requires one extra
AES call every time a new key is used.

• Nonce agility (computational cost under use of nonces): Since nonces are appended
to the associated data A, changing the nonce requires one extra AES call.

• Ability to efficiently preprocess A: Associated data (excluding the nonce) can be
preprocessed independently of the message or the value of the nonce.

• Ability to efficiently preprocess plaintext: In the same way, the message (or parts
thereof) can be preprocessed without seeing A in the first layer of AES calls. This
also applies if the nonce is used.

6

AES-COPA v2: Submission to CAESAR

Encryption and decryption do not require both AES and its inverse. AES-
COPA encryption requires only forward AES operations while decryption requires only
inverse AES operations if there is no associated data A, the subkey L is stored, and no
tag truncation takes place (i.e., the recommended tag size is used).

Combination of well-known techniques. AES-COPA relies on the design principles
of PMAC to achieve integrity of both the associated data and the plaintext. For the
confidentiality we use masking techniques which instantiate an XEX tweakable block
cipher on top of the basic underlying and well-understood AES block cipher.

4.1 Comparison to AES-GCM

Security against stronger adversaries. Compared to AES-GCM, AES-COPA guar-
antees security against a stronger adversary in the nonce misuse setting. In the nonce
misuse setting the security of AES-GCM fails completely.

Performance. On platforms without fast multiplication instructions (including Sandy/Ivy
Bridge), AES-COPA is faster than AES-GCM for all message lengths. For instance, on
Sandy Bridge, AES-COPA runs at up to 1.70 cpb, while AES-GCM requires around
2.53 cpb. Even on Intel’s Haswell platform with its improved multiplication instructions,
AES-COPA offers comparable performance to AES-GCM in the case where multiple mes-
sages are processed in parallel, both for short and long messages [2]. Note that this is a
very common scenario both in client-server protocols and in network packet processing.
More generally, on platforms where AES computation is faster than GF(2128) multiplica-
tion AES-COPA is faster than AES-GCM. This especially implies better implementation
characteristics for platforms such as ARM or 8-bit microcontrollers, where AES can be
implemented very efficiently.

Absence of weak keys as in polynomial hashing. There are no weak keys for
AES-COPA like those existing for AES-GCM [5].

No universal hashing required. Unlike AES-GCM, AES-COPA does not require full
GF(2128) multiplications.

5 Design Rationale

AES-COPA has been designed to allow for high performance in parallel environments and
to maintain security even if nonce is reused. Among other platforms, AES-COPA is well-
suited for both Intel’s AES-NI and high-performance hardware, being based on AES and
small-constant multiplications in the finite field. A PMAC-like construction accounts for
integrity and a XEX-type construction is used for assuring confidentiality in AES-COPA.
AES is well-studied and wide-spread (including implementations and countermeasures

7

AES-COPA v2: Submission to CAESAR

against side-channel analysis), being, thus, the natural choice for the underlying block
cipher. The designers have not hidden any weaknesses in AES-COPA.

6 Intellectual Property

AES-COPA uses a PMAC-like construction for achieving integrity. According to its de-
signers, one or more patents related to PMAC are pending. Depending on the breadth of
the claims in these patents, this part of AES-COPA could be covered by them.

The submitters however explicitly state that AES-COPA itself will not be patented.
If any of this information changes, the submitters will promptly (and within at most one
month) announce these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee re-
garding the selection or non-selection of this submission as a second-round candidate,
a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the committee. The submitters understand that the committee will
not comment on the algorithms, except that for each selected algorithm the committee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submitters understand that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the committee
decision. The submitters acknowledge that the committee decisions reflect the collective
expert judgments of the committee members and are not subject to appeal. The submit-
ters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of
consideration of this submission by the CAESAR selection committee.

References

[1] Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and Authenticated Online Ciphers. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT (1). Lecture Notes in Computer Science, vol. 8269, pp. 424–443. Springer
(2013)

[2] Bogdanov, A., Lauridsen, M.M., Tischhauser, E.: AES-Based Authenticated Encryp-
tion Modes in Parallel High-Performance Software. Cryptology ePrint Archive, Report
2014/186 (2014), http://eprint.iacr.org/

8

http://eprint.iacr.org/

AES-COPA v2: Submission to CAESAR

[3] Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE. Lecture Notes in
Computer Science, vol. 7549, pp. 196–215. Springer (2012)

[4] Nandi, M.: Xls is not a strong pseudorandom permutation. In: Sarkar, P., Iwata,
T. (eds.) Advances in Cryptology ASIACRYPT 2014, Lecture Notes in Computer
Science, vol. 8873, pp. 478–490. Springer Berlin Heidelberg (2014), http://dx.doi.
org/10.1007/978-3-662-45611-8_25

[5] Procter, G., Cid, C.: On Weak Keys and Forgery Attacks against Polynomial-based
MAC Schemes. In: FSE 2013 (2013)

9

http://dx.doi.org/10.1007/978-3-662-45611-8_25
http://dx.doi.org/10.1007/978-3-662-45611-8_25

AES-COPA v2: Submission to CAESAR

A Changes

A.1 Changes from v1 to v2

• The processing of messages whose length is not a multiple of the block size (16 bytes)
was changed from using tag splitting (for messages shorter than one block) and XLS
(for messages longer than one block) to ciphertext expansion by 10∗ padding. This
change was motivated by the weaknesses in the XLS construction demonstrated by
Nandi [4].

• Correction of typographical errors.

10

	Specification
	Parameters
	Notation
	Authenticated Encryption

	Security Claims
	Security Analysis
	Features of AES-COPA
	Comparison to AES-GCM

	Design Rationale
	Intellectual Property
	Consent
	Changes
	Changes from v1 to v2

