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1 Specification

At a high level, COLM can be seen as a block cipher based Encrypt-Linear
mix-Encrypt mode, designed with the goal to achieve online misuse resis-
tance, to be fully parallelizable, and to be secure against blockwise adaptive
adversaries. In this section we provide a definition of the COLM family of au-
thenticated ciphers, which includes the parameter space defining the family
and a list of recommended parameter sets.

1.1 Notation

By {0, 1}∗ we denote the set of all strings, and by {0, 1}n the set of strings of
length n. Given two strings A and B, we use A ‖ B and AB interchangeably
to denote the concatenation of A and B. For A ∈ {0, 1}∗, by A10∗ we denote
the string with a 1 appended, and then padded with zeros until its length is
a multiple of n. By bBcs we denote the s most significant bits of X.

A block cipher E : K × {0, 1}n → {0, 1}n is a function that takes as
input a key k ∈ K and a plaintext M ∈ {0, 1}n, and produces a ciphertext
C = E(k,M) = Ek(M). Throughout the document E denotes the block
cipher AES-128, with κ = n = 128.

A block is a string of length at most 128 bits. It is complete if it has
length 128 bits, and incomplete otherwise. The set of complete blocks is
denoted B = {0, 1}128. Any string B ∈ {0, 1}r, can be represented as a
sequence of blocks (B[1], B[2], . . ., B[` − 1], B∗[`]), where ` = d r

128
e. For

i < `, B[i] is the ith complete block of B, and B∗[`] is the final block of
B which may be incomplete. For 0 ≤ a ≤ b < ` we denote B[a, . . . , b] =
(B[a], B[a+ 1], . . . , B[b]), and B[, . . . , b] = B[1, . . . , b].

We can view the set {0, 1}n of bit strings as the finite field GF(2n) con-
sisting of 2n elements. To this end, we represent an element of GF(2n)
as a polynomial over the field GF(2) of degree less than n, and a string
an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the polynomial an−1x

n−1+an−2x
n−2+

· · · + a1x + a0 ∈ GF(2n). Addition in the field is addition of polynomials
over GF(2) (i.e. bitwise XOR, denoted by ⊕). To define multiplication in
the field, we fix an irreducible polynomial f(x) := x128 + x7 + x2 + x + 1
over the field GF(2). For a(x), b(x) ∈ GF(2n), their product is defined as
a(x)b(x) mod f(x) — polynomial multiplication over the field GF(2) reduced
modulo f(x). We simply write a(x)b(x) and a(x) · b(x) to mean the product
in the field GF(2n).
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The set {0, 1}n can be also regarded as a set of integers ranging from
0 through 2n − 1. A string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the
integer an−12

n−1 + an−22
n−2 + · · · + a12 + a0 ∈ [0, 2n − 1]. We often write

elements of GF(2n) as integers, based on these conversions. So, for example,
“2” means x, “3” means x + 1, and “7” means x2 + x + 1. When we write
multiplications such as 2 · 3 and 72, we mean those in the field GF(2n).

1.2 Parameters

COLM uses AES-128 with a key and state of size 128 bits. It has two
parameters:

• τ : the number of blocks after which intermediate tags are generated,
where τ ∈ {0, . . . , 127} and τ = 0 by definition means that no interme-
diate tags are generated;

• lτ : the length of the intermediate tags, where lτ ∈ {64, . . . , 128}.

The first recommended parameters set is (τ, lτ ) = (0, 128), the second rec-
ommended parameter set is (τ, lτ ) = (127, 128). For low end devices, when
intermediate tags are beneficial, we suggest τ = 127. As we keep lτ = 128,
we leave it implicit throughout. We simply denote COLMτ to refer to COLM
with the particular choice of τ .

1.3 Linear Mixing Function ρ

COLM internally uses a linear mixing function ρ, that takes two inputs x ∈ B
and st ∈ B and gives y ∈ B and st′ ∈ B in the following way:

y = x⊕ 3 · st ,
st′ = x⊕ 2 · st .

Now, as y and st′ are linear functions of x and st, we can represent x and st′ as
a linear combination of y and st: x = y⊕3·st and st = (y⊕3·st)⊕2·st = y⊕st.
We call this linear function ρ−1. So, ρ−1 is a linear function that takes two
inputs y, st ∈ B and gives x ∈ B and st′ ∈ B in the following way:

x = y ⊕ 3 · st
st′ = y ⊕ st
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1.4 COLM Encryption

COLM encryption takes the following inputs:

• Encryption key K ∈ {0, 1}128.

• Public message number, or nonce, npub ∈ {0, 1}64.

• Parameter set param ∈ {0, 1}64. The most significant 16 bits represent
the intermediate tag interval τ , the next 8 bits denote the intermediate
tag length lτ . The remaining 40 bits are kept as optional for future use
and currently assigned to the fixed value 040.

• Associated data A ∈ {0, 1}∗, with the restriction that 0 ≤ |A| ≤ 264.

• Message (or plaintext)M ∈ {0, 1}∗, with the restriction that 1 ≤ |M | ≤
264.

Upon these inputs, COLMτ returns a tagged ciphertext C ∈ {0, 1}|M |+128, and
in case of τ > 0 a list of intermediate tags T ∈ {0, 1}128·h, where h = b l−1

127
c

denotes the number of intermediate tags generated and l = d |M |
128
e, denotes

the number of blocks of M .

COLM0 – AEAD without Intermediate Tags

COLM0 is depicted in Figure 1.4.

Subkey Generation. As a first step, L = EK(0) is computed.

Initial Value Generation. The initial value is generated from the asso-
ciated data. Split the associated data A into

A = (A[1], . . . , A[a− 1], A∗[a]) ,

where |A∗[a]| ≤ 128 and for i = 1, . . . , a − 1, |A[i]| = 128. If the final asso-
ciated data block A∗[a] is incomplete, we make it complete by 10∗ masking:
A[a] = A∗[a]10∗. Otherwise we set A[a] = A∗[a]. The initial value IV is
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Figure 1.1: COLM authenticated encryption for complete final message
block. Here we denote L1 = 3 · L and L2 = 32 · L.

computed as follows:

W ′[0] = EK((npub‖param)⊕∆A[0]) ,

AA[i] = A[i]⊕∆A[i] for i = 1, . . . , a ,

Z[i] = EK(AA[i]) for i = 1, . . . , a ,

W ′[i] = Z[i]⊕W ′[i− 1] for i = 1, . . . , a ,

IV = W ′[a] ,

where the masking values are computed as follows:

∆A[i] =

{
3 · 7 · 2i−1 · L if i = a and |A∗[a]| < 128

3 · 2i · L otherwise.

Tagged Ciphertext Generation. The tagged ciphertext is generated us-
ing the message M and the IV . Split the message M into

M = (M [1], . . . ,M [l − 1],M∗[l]) ,

4



where |M∗[l]| ≤ 128 and for i = 1, . . . , l − 1, |M [i]| = 128. We pad M [l] and
generate M [l + 1] as follows:

M [l] = M [1]⊕ · · · ⊕M [l − 1]⊕ (M∗[l]10∗)

M [l + 1] = M [l] .

Now, we generate the tagged ciphertext C from the padded message (M [1], . . . ,M [l+
1]) as follows:

W [0] = IV ,

MM [i] = M [i]⊕∆M [i] for i = 1, . . . , l + 1 ,

X[i] = EK(MM [i]) for i = 1, . . . , l + 1 ,

(Y [i],W [i]) = ρ(X[i],W [i− 1]) for i = 1, . . . , l + 1 ,

CC[i] = EK(Y [i]) for i = 1, . . . , l + 1 ,

C[i] = CC[i]⊕∆C [i] for i = 1, . . . , l + 1 ,

where the masking values are computed as follows:

∆M [i] =


7 · 2i−1 · L if i ∈ {l, l + 1} and |M∗[l]| = 128 ,

72 · 2i−1 · L if i ∈ {l, l + 1} and |M∗[l]| < 128 ,

2i · L otherwise,

∆C [i] =


32 · 7 · 2i−1 · L if i ∈ {l, l + 1} and |M∗[l]| = 128 ,

32 · 72 · 2i−1 · L if i ∈ {l, l + 1} and |M∗[l]| < 128 ,

32 · 2i · L otherwise.

The algorithm returns the tagged ciphertext

C = (C[1], . . . , C[l], bC[l + 1]c|M∗[l]|) .

COLM127 – AEAD with Intermediate Tags

COLM127 is similar to COLM0 except for the generation of intermediate tags
and some changes in the ciphertext masking, and we only discuss the changes.
Recall that h = b (l−1)

127
c is the number of intermediate tags generated for M .

Let hi = b (i−1)
127
c denote the number of intermediate tags generated during

the message processing up to ith block.
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The ciphertext is now computed as

C[i] = CC[i]⊕∆C [i+ hi] for i = 1, . . . , l + 1 ,

and the intermediate tags as

TT [j] = EK(W [127 · j]) for j = 1, . . . , h ,

T [j] = TT [j]⊕∆C [128 · j] for j = 1, . . . , h ,

where the masking values are now computed as follows:

∆C [i] =


32 · 7 · 2i−1 · L if i ∈ {l + h, l + h+ 1} and |M∗[l]| = 128 ,

32 · 72 · 2i−1 · L if i ∈ {l + h, l + h+ 1} and |M∗[l]| < 128 ,

32 · 2i · L otherwise.

1.5 COLM Decryption and Tag Verification

COLM decryption takes the following inputs:

• Encryption key K ∈ {0, 1}128.

• Public message number, or nonce, npub ∈ {0, 1}64.

• Parameter set param ∈ {0, 1}64, as defined for the encryption.

• Associated data A ∈ {0, 1}∗.

• Tagged ciphertext C ∈ {0, 1}+, and for COLM127 additionally the list
of intermediate tags T ∈ {0, 1}128·h.

Upon these inputs, it returns the corresponding plaintext M if verification
succeeds, and ⊥ otherwise.

The decryption and verification is a performed as a three step process:
First, the subkey L and the initial value IV are generated using the same
procedure as for the encryption. Then the decryption is performed, followed
by the tag verification.
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1.5.1 COLM0 Decryption

For the case of COLM0 (with no intermediate tags), the decryption procedure
is as follows.

W [0] = IV ,

CC[i] = C[i]⊕∆C [i] for i = 1, . . . , l ,

Y [i] = E−1K (CC[i]) for i = 1, . . . , l ,

(X[i],W [i]) = ρ−1(Y [i],W [i− 1]) for i = 1, . . . , l ,

MM [i] = E−1K (X[i]) for i = 1, . . . , l ,

M [i] = MM [i]⊕∆M [i] for i = 1, . . . , l ,

M∗[l] = M [1]⊕ · · · ⊕M [l] ,

M [l + 1] = M [l] ,

where the masking values are computed as follows (identical to the enryp-
tion):

∆M [i] =


7 · 2i−1 · L if i ∈ {l, l + 1} and |C[l + 1]| = 128 ,

72 · 2i−1 · L if i ∈ {l, l + 1} and |C[l + 1]| < 128 ,

2i · L otherwise,

∆C [i] =


32 · 7 · 2i−1 · L if i ∈ {l, l + 1} and |C[l + 1]| = 128 ,

32 · 72 · 2i−1 · L if i ∈ {l, l + 1} and |C[l + 1]| < 128 ,

32 · 2i · L otherwise.

1.5.2 COLM127 Decryption

For the variant with intermediate tags every 127 blocks, the decryption is
similar to COLM0 except for the two following changes:

CC[i] = C[i]⊕∆C [i+ hi] for i = 1, . . . , l + 1 ,

and

∆C [i] =


32 · 7 · 2i−1 · L if i ∈ {l + h, l + h+ 1} and |C[l + 1]| = 128 ,

32 · 72 · 2i−1 · L if i ∈ {l + h, l + h+ 1} and |C[l + 1]| < 128 ,

32 · 2i · L otherwise;

with hi and h defined as in the encryption routine of COLM127.

7



1.5.3 COLM0 Verification

For the case of COLM0 (without intermediate tags), the verification is per-
formed as follows.

MM [l + 1] = M [l + 1]⊕∆M [l + 1] ,

X[l + 1] = EK(MM [l + 1]) ,

(Y [l + 1],W [l + 1]) = ρ(X[l + 1],W [l]) ,

CC[l + 1] = EK(Y [l + 1]) ,

C ′[l + 1] = CC[l + 1]⊕∆C [l + 1].

The verification now succeeds if:

• for |C[l + 1]| = 128, we have C[l + 1] = C ′[l + 1];

• for |C[l + 1]| < 128, we have C[l + 1] = bC ′[l + 1]c|C[l+1]| and the last
128− |C[l + 1]| bits of M∗[l] are 10∗.

Upon successful verification, the plaintext M [1], . . . , bM∗[l]c|C[l+1]|) is re-
turned. Otherwise, the output is ⊥.

1.5.4 COLM127 Verification

For the variant with intermediate tags every 127 blocks, the verification is
similar to COLM0 with the additional verification of all intermediate tags.
For this, one computes

TT [j] = T [j]⊕∆C [128 · j] for j = 1, . . . , h ,

W ′[j] = E−1K (TT [j]) for j = 1, . . . , h ;

and verifies that the following condition is met:

W [127 · j] = W ′[j] for j = 1, . . . , h.

Note that the masks ∆M and ∆C for COLM127 differ from those of
COLM0.
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2 Comparison with COPA and ELmD

In a nutshell, COLM resembles the best of both COPA [2] and ELmD [3]:

• The parallelizable character of both, with one difference: COPA uses
PMAC for authentication, while ELmD uses PHASH. PHASH is, unlike
PMAC, fully parallelizable. For COLM, we have opted to follow the
PHASH approach.

• COPA uses encryption in both layers, while ELmD uses encryption in
the top layer and decryption in the bottom. COLM uses encryption in
both layers, following COLM.

• The simple linear mixing in-between the two encryption layers. We
have opted to use simple XOR for the authentication part, and the
function ρ for encryption.

• The masking of the blockciphers is simplified in comparison with both
COPA and ELmD.

• Intermediate tags are supported, following ELmD.

The major differences between COPA/ELmD on the one hand and COLM
on the other hand are summarized as follows:

COPA ELmD COLM

Simplified masking % % !

Fully parallelizable authentication % ! !

XOR mixing for authentication ! % !

ρ mixing for encryption % ! !

Bottom layer encryption ! % !

Intermediate tags % ! !

3 Security Goals

COLM achieves the following security levels:
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COLM0 COLM127

confidentiality for the plaintext 64 64
integrity for the plaintext 64 64
integrity for the associated data 64 64
integrity for the public message number 64 64

The security levels apply both in the cases when nonces are unique values
(full security) and also when nonces are reused (full security up to common
prefix, the maximum attainable for single pass schemes). The security levels
correspond to the birthday bound security of the block size of AES, and are
supported by security proofs on COPA [1, 2] and ELmD [4, 3]. A dedicated
security analysis for COLM will follow soon.

4 Intellectual Property

COLM uses a PMAC-like construction for achieving integrity. According to
its designers, one or more patents related to PMAC are pending. Depending
on the breadth of the claims in these patents, this part of COLM could be
covered by them.

The submitters however explicitly state that COLM itself will not be
patented.

5 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission
as a second-round candidate, a third-round candidate, a finalist, a member
of the final portfolio, or any other designation provided by the committee.
The submitter/submitters understand that the committee will not comment
on the algorithms, except that for each selected algorithm the committee
will simply cite the previously published analyses that led to the selection
of the algorithm. The submitter/submitters understand that the selection
of some algorithms is not a negative comment regarding other algorithms,
and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The
submitter/submitters acknowledge that the committee decisions reflect the
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collective expert judgments of the committee members and are not subject
to appeal. The submitter/submitters understand that if they disagree with
published analyses then they are expected to promptly and publicly respond
to those analyses, not to wait for subsequent committee decisions. The sub-
mitter/submitters understand that this statement is required as a condition
of consideration of this submission by the CAESAR selection committee.
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