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1 Introduction

In this document, we specify the MORUS family of authenticated ciphers with
two different internal state sizes: 640 bits and 1280 bits, and two different key
sizes: 128 bits and 256 bits. Three MORUS algorithms – MORUS-640-128,
MORUS-1280-128, and MORUS-1280-256 are recommended in this specifica-
tion.

MORUS is a dedicated authenticated cipher which achieves encryption and
authentication simultaneously. The encryption/decryption is done by XORing
the plaintext with the keystream. And the authentication/verification is done
by injecting the message into state and generating/verifying an authentication
tag.

The MORUS algorithms are designed to be very fast in hardware, since only
the shifts, AND, and XOR operations are used in the cipher, and the critical
path is very short. MORUS is very efficient in software. The speed of MORUS-
1280 (on Intel i7 4770 Haswell, 64-bit Ubuntu 13.10 and GCC 4.8.1) is 0.69 cpb
for 16384 blocks of message.

This document is organized as follows. The MORUS specification is intro-
duced in Section 2. The security of MORUS is discussed in Section 3 and Section
4. The features of MORUS are discussed Section 5. The performance of MORUS
is given in Section 6. The design rationale is given in Section 7.

2 Specification of MORUS

2.1 Preliminaries

2.1.1 Operations

The following operations are used in MORUS:

⊕ : bit-wise exclusive OR.
& : bit-wise AND.
‖ : concatenation.
<<< : rotation to the left.
>>> : rotation to the right.
dxe : ceiling operation, dxe is the smallest integer not less than x.
Rotl 128 32(x, n) : Divide a 128-bit block x into 4 32-bit words, rotate each word left

by n bits.
Rotl 256 64(x, n) : Divide a 256-bit block x into 4 64-bit words, rotate each word left

by n bits.

2.1.2 Notations and Constants

The following notations and constants are used in MORUS:
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0n : n bits of ‘0’s.
1n : n bits of ‘1’s.
AD : associated data (this data will not be encrypted or decrypted).
AD128

i : a 16-byte associated data block (the last block may be a partial
block).

AD256
i : a 32-byte associated data block (the last block may be a partial

block).
adlen : bit length of the associated data with 0 ≤ adlen < 264.
bi : rotation constants used in Rotl xxx yy, 0 ≤ i ≤ 4, which are given

in Table 2.
C : ciphertext.
Ci : a ciphertext block (the last block may be a partial block).
const : a 32-byte constant in the hexadecimal format; const = 00 ‖ 01 ‖

01 ‖ 02 ‖ 03 ‖ 05 ‖ 08 ‖ 0d ‖ 15 ‖ 22 ‖ 37 ‖ 59 ‖ 90 ‖ e9 ‖ 79 ‖
62 ‖ db ‖ 3d ‖ 18 ‖ 55 ‖ 6d ‖ c2 ‖ 2f ‖ f1 ‖ 20 ‖ 11 ‖ 31 ‖ 42 ‖
73 ‖ b5 ‖ 28 ‖ dd. This is the Fibonacci sequence modulo 256.

const0 : the first 16 bytes of const.
cosnt1 : the second 16 bytes of const.
IV128 : 128-bit initialization vector used in MORUS-640.
K128 : 128-bit key used in MORUS.
K256 : 256-bit key used in MORUS.
msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264.
P : plaintext.
Pi : a 16-byte plaintext block (the last block may be a partial block).
Si : state at the beginning of ith step.
Si
j : state at the beginning of jth round at ith step.

Si
j,k : kth element of the state Si

j . In MORUS-640, each element is 128-
bit; in MORUS-1280, each element is 256-bit.

T : authentication tag.
t : bit length of the authentication tag.
u : number of AD blocks after padding, u = dadlen128 e for MORUS-640;

u = dadlen256 e for MORUS-128.

v : number of plaintext blocks after padding, v = dmsglen
128 e for

MORUS-640; v = dmsglen
256 e for MORUS-1280.

wi : constants used in left rotations, which are given in Table 3.

2.2 Parameters

MORUS is a family of authenticated ciphers with two internal state sizes: 640
and 1280 bits. 128-bit and 256-bit key sizes are supported in MORUS. The
associated data length and the plaintext length are less than 264 bits. The au-
thentication tag is less than or equal to 128 bits. We strongly recommend the
use of a 128-bit tag. We do not require any secret message number in our design,
and the public message number (IV) is 128-bit in MORUS. Table 1 summarizes
the parameters.
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Parameters
Length in bits

MORUS-640-128 MORUS-1280-128 MORUS-1280-256

Plaintext (P) < 264 < 264 < 264

Associated data (AD) < 264 < 264 < 264

Key (K) 128 128 256

Tag (T) 128 128 128

Initialization vector (IV) 128 128 128

State (S) 640 1280 1280

Table 1: The MORUS parameters.

2.3 Recommended parameter sets

• Primary recommendation: MORUS-1280-128
128-bit key, 128-bit nonce, 1280-bit state, 128-bit tag
Reason: high speed for both software and hardware applications.

• Secondary recommendation: MORUS-640-128
128-bit key, 128-bit nonce, 640-bit state, 128-bit tag
Reason: smaller state.

• Tertiary recommendation: MORUS-1280-256
256-bit key, 128-bit nonce, 1280-bit state, 128-bit tag
Reason: MORUS-1280-256 uses 256-bit secret key.

2.4 The state update function of MOURS

In each step of MORUS, there are 5 rounds with similar operations to update
the state S. Notice that the message block is used in the updates of Round 2 to
Round 5 but not in Round 1. The operation Rotl xxx yy is to divide an xxx-
bit state element into 4 words of yy-bit, and perform left rotation operation for
every yy-bit word. Rotl 128 32 is used in MORUS-640 and Rotl 256 64 is used
in MORUS-1280. The rotation constants for each round are defined in Table 2.

MORUS-640 MORUS-1280

b0 5 13

b1 31 46

b2 7 38

b3 22 7

b4 13 4

Table 2: Rotation constants used in Rotl xxx yy in MORUS

Besides the the Rotl xxx yy operation, the left rotation of a whole state
element is used for diffusion. The rotation constants for the left rotation are list
in Table 3.
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MORUS-640 MORUS-1280

w0 32 64

w1 64 128

w2 96 192

w3 64 128

w4 32 64

Table 3: Rotation constants used in left rotation in MORUS

Si+1 = StateUpdate(Si, pi) is given as follows:

Round 1 : Si
1,0 = Rotl xxx yy(Si

0,0 ⊕ (Si
0,1 & Si

0,2)⊕ Si
0,3, b0);

Si
1,3 = Si

0,3 <<<w0;

Si
1,1 = Si

0,1;

Si
1,2 = Si

0,2;

Si
1,4 = Si

0,4;

Round 2 : Si
2,1 = Rotl xxx yy(Si

1,1 ⊕ (Si
1,2 & Si

1,3)⊕ Si
1,4 ⊕mi, b1);

Si
2,4 = Si

1,4 <<<w1;

Si
2,0 = Si

1,0;

Si
2,2 = Si

1,2;

Si
2,3 = Si

1,3;

Round 3 : Si
3,2 = Rotl xxx yy(Si

2,2 ⊕ (Si
2,3 & Si

2,4)⊕ Si
2,0 ⊕mi, b2);

Si
3,0 = Si

2,0 <<<w2;

Si
3,1 = Si

2,1;

Si
3,3 = Si

2,3;

Si
3,4 = Si

2,4;

Round 4 : Si
4,3 = Rotl xxx yy(Si

3,3 ⊕ (Si
3,4 & Si

3,0)⊕ Si
3,1 ⊕mi, b3);

Si
4,1 = Si

3,1 <<<w3;

Si
4,0 = Si

3,0;

Si
4,2 = Si

3,2;

Si
4,4 = Si

3,4;
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Round 5 : Si+1
0,4 = Rotl xxx yy(Si

4,4 ⊕ (Si
4,0 & Si

4,1)⊕ Si
4,2 ⊕mi, b4);

Si+1
0,2 = Si

4,2 <<<w4;

Si+1
0,0 = Si

4,0;

Si+1
0,1 = Si

4,1;

Si+1
0,3 = Si

4,3;

The state update function is shown in Fig.1

2.5 MORUS-640

MORUS-640 uses 5 128-bit registers in its internal state. In each step, it processes
one block of 128-bit associated data or plaintext.

2.5.1 The initialization of MORUS-640

The initialization of MORUS-640 consists of loading the key and IV into the
state, and running the cipher for 16 steps. The key and IV are loaded into the
state as follows:

S−160,0 = IV128;

S−160,1 = K128;

S−160,2 = 1128;

S−160,3 = const0;

S−160,4 = const1;

After loading the key and IV, the internal state is updated 16 times using
the state update function:

For i = −16 to− 1, Si+1 = StateUpdate(Si, 0);

Then the key is xored to the state again:

S0
0,1 = S0

0,1 ⊕K128.

2.5.2 Processing the associated data

After the initialization, the associated data AD is processed using the state
update function.

1. If the last associated data block is not a full block, use ‘0’ bits to pad it to
128 bits for MORUS-640, and the padded full block is used to update the
state. Note that if adlen = 0, the state will not be updated.
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Fig. 1: The state update function of MORUS. In Rotl xxx yy, xxx yy is 128 32 for
MORUS-640 and 256 64 for MORUS-1280.
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2. For i = 0 to l, we update the state:

Si+1 = StateUpdate(Si, AD128
i );

where l = dadlen128 e − 1.

2.5.3 The encryption of MORUS-640

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use ‘0’ bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = dadlen128 e and v = dmsglen
128 e. For i = 0 to v−1, we perform encryption

and update state:

Ci = Pi ⊕ Su+i
0 ⊕ (Su+i

1 <<< 96)⊕ (Su+i
2 &Su+i

3 );

Su+i+1 = StateUpdate(Su+i, Pi);

2.5.4 The finalization of MORUS-640

After encrypting all the plaintext blocks, we generate the authentication tag
using eight more steps. The length of the associated data and the length of the
message are used to update the state.

1. tmp = Su+v
3 ⊕ (adlen ‖ msglen), where adlen and msglen are represented

as 64-bit integers.
2. Su+v

4 = Su+v
4 ⊕ Su+v

0 .
3. For i = u + v to u + v + 7, we update the state:

Si+1 = StateUpdate(Si, tmp);

4. We generate the authentication tag from the state Su+v+8 as follows:

T ′ = ⊕4
i=1S

u+v+8
i ;

2.5.5 The decryption and verification fo MORUS-640

The exact values of key size, IV size, and tag size should be known to the
decryption and verification processes. The decryption starts with the initializa-
tion and the processing of authenticated data. Then the ciphertext is decrypted
as follows:

1. If the last ciphertext block is not a full block, decrypt only the partial ci-
phertext block. The partial plaintext block is padded with 0 bits, and the
padded full plaintext block is used to update the state.
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2. For i = 0 to v − 1, we perform decryption and update the state.

Pi = Ci ⊕ Su+i
0 ⊕ (Su+i

1 <<< 96)⊕ (Su+i
2 &Su+i

3 );

Su+i+1 = StateUpdate(Su+i, Pi);

The finalization in the decryption process is the same as that in the encryp-
tion process. We emphasize that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of MORUS-640 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV ). This requirement also applies to MORUS-1280.

2.6 MORUS-1280.

MORUS-1280 uses 5 256-bit registers in its internal state. In each step, it pro-
cesses one block of 256-bit associated data or plaintext.

2.6.1 The initialization of MORUS-1280

The initialization of MORUS-1280 consists of loading the key and IV into the
state, and running the cipher for 16 steps. Let k0 set as follows:

- When the key size is 128-bit, k0 = K128 ‖ K128.
- When the key size is 256-bit, k0 = K256.

the key and IV are loaded into the state as follows:

S−160,0 = IV128 ‖ 0128;

S−160,1 = k0;

S−160,2 = 1256;

S−160,3 = 0256;

S−160,4 = const0 ‖ const1.

After loading the key and IV, the internal state is updated 16 steps:

For i = −16 to − 1, Si+1 = StateUpdate(Si, 0);

Then the key is XORed with the state again:

S0
0,1 = S0

0,1 ⊕ k0;

2.6.2 Processing the associated data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use ‘0’ bits to pad it to
256 bits for MORUS-1280, and the padded full block is used to update the
state. Note that if adlen = 0, the state will not be updated.

2. For i = 0 to l, we update the state:

Si+1 = StateUpdate(Si, AD256
i );

where l = dadlen256 e − 1.
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2.6.3 The encryption of MORUS-1280

After processing the associated data, at each step of the encryption, a 32-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use ‘0’ bits to pad it to 256 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = dadlen256 e and v = dmsglen
256 e. For i = 0 to v−1, we perform encryption

and update state:

Ci = Pi ⊕ Su+i
0 ⊕ (Su+i

1 <<< 192)⊕ (Su+i
2 &Su+i

3 );

Su+i+1 = StateUpdate(Su+i, Pi);

2.6.4 The finalization of MORUS-1280

After encrypting all the plaintext blocks, we generate the authentication tag
using eight more steps. The length of the associated data and the length of the
message are used to update the state.

1. tmp = Su+v
3 ⊕ (adlen ‖ msglen ‖ 0128), where adlen and msglen are repre-

sented as 64-bit integers.
2. Su+v

4 = Su+v
4 ⊕ Su+v

0 .
3. For i = u + v to u + v + 7, we update the state:

Si+1 = StateUpdate(Si, tmp);

4. We generate the authentication tag from the state Su+v+8 as follows:

T ′ = ⊕4
i=1S

u+v+8
i ;

The authentication tag T consists of the first t bits of T ′.

3 Security Goals

The security goals of MORUS are given in Table 4. In MORUS, each key and
IV pair should be used to protect only one message. If verification fails, the new
tag and the decrypted ciphertext should not be given as output.

Note that the encryption security is under the assumption that the attacker
could not forge a message through repeated trials. The integrity security in
Table 4 includes the integrity security of plaintext, associated data and nonce
and under the assumption that the secret key is unknown to the attacker, and
128-bit tag is used.

4 Security Analysis

In this section, we will give our initial analysis on the security of MORUS. Most
of the analysis is on MORUS-640, but can be extended to MORUS-1280 trivially.
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Table 4: Security Goals of MORUS.

Confidentiality (bits) Integrity (bits)

MORUS-640-128 128 128

MORUS-1280-128 128 128

MORUS-1280-256 256 128

4.1 The security of the initialization

The initialization of MORUS is designed to ensure the IV and key are properly
mixed so that the internal state after initialization is secret. We consider the
differential attack using IV differences as the main threat to the initialization
of MORUS. The reason is that the IV is the only input in the initial state
controlled by an attacker under our security assumptions (differences in key are
considered uncontrollable by an attacker).

In order to maximize the differential probability, we will model the AND
operation in following way:

- Any difference passes through the AND operation will be eliminated unless
it is able to cancel a difference in XOR operations to reduce the weight of
the updated state element.

For example, suppose that SA, SB , SC , and SD are four state elements, and
SA = SB ⊕ (SC & SD) is computed. If there is a difference at bit i of either SC

or SD, the difference in the output of AND operation for bit i will be the same
as the ith bit of SB to ensure the ith bit of SA has no difference.

This approximation does not always lead to the minimal number of active
bits. But in most of the circumstances we analyzed, especially when the number
of active bits is small, it does give a good approximation to the minimal number
of active bits.

We discuss the differential probability of the initialization of MORUS-640
with input differences on IV through following two cases.

Case 1. There is only 1 bit difference in IV . Notice that MORUS uses bit operations
in the state update function. As a result, the position of the one bit differ-
ence will not affect the differential probability. We assume the difference is
at bit 0 of the IV in our analysis. Using the above mentioned approxima-
tion, we find that after 6 steps, the differential probability is 2−201 when the
value of initial state is assumed unknown. And after 7 steps, the differential
probability is 2−357. Since the initial state is given except the key, the dif-
ferential probability can be 1 for some bits in the first two steps. However,
after two steps, the values of state elements are mixed with the key and thus
can be considered unknown. We may exclude the differential probability in
first three steps, which is 2−10 for a more accurate bound.

Case 2. There are 2 or 3 bits difference in IV . We fix a bit difference at bit 0 of
IV , and enumerated all the cases that there are 2 and 3 active bits in the
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IV . For 2 bits cases, there are 127 possible ways to choose the position of
the other bit. And for 3 bits case, there are 127×126

2 = 8001 possible ways
to choose the positions of the other two bits. After 5 steps, the differential
probability is 2−401 for for the 2 bits differences on IV and 2−432 for 3 bits
difference on IV .

Case 3. When the difference on IV is more than 3 bits, we expect that the differential
probability will decrease until the weight in the internal state elements is high
enough so that a large number of active bits get canceled. But in that case,
the weight of active bits will increase fast in the early steps and differential
probability is likely to fall below 2−256 more quickly than the 1 bit difference
case.

Hence, it is unlikely that there is any differential characteristic with proba-
bility hight than 2−128 after 16 steps of MORUS initialization.

4.2 The security of the encryption process

The MORUS encryption is a stream cipher with a large state which is updated
continuously. The attacks against a block cipher cannot be applied directly to
MORUS. We emphasize that the security of encryption is under the assumption
that the IV is not reused for the same key. Once the IV is reused, it will lead
to serious attacks on recovering the state.

Statistical Attacks. If the IV is used only once for each key, it is impossible to
apply a differential attack to the encryption process. And in general, the statis-
tical attacks are difficult to launch against MORUS. And non-linear operations
are used in the state update and keystream generation, which makes it difficult
to recover the state by applying algebraic attacks.

4.3 The security of message authentication

The security of message authentication of MORUS is related to the length of the
tag generated. In our analysis, we will only consider the case that the tag length
is 128-bit since it implies the security of the cases with shorter tag length. To
analyze the authentication of the MORUS, we will compute the probability that
a forged message would bypass the verification.

4.3.1 Internal state collision Construction of internal state collision is a
typical method used in attacking the message authentication. For MORUS, since
the internal state size is at least 640-bit, any internal collision through birthday
attack requires about 2−320 blocks to be encrypted, which is far too expensive for
an attacker. Another method to construct an internal state collision is to inject
a message difference at certain step and cancel it at a later step. Our analysis
will show that this attack will lead to an internal state collision with probability
below 2−128.
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First, we consider the case that the difference gets eliminated in two steps,
i.e., the difference is injected to the internal state at one step and get eliminated
immediately at the next step. There are 10 rounds (2 steps) in this case, which
we number as Round 1,..., Round 10. Recall that two state elements get updated
in each round: one is to compute a state element using 4 of the previous state
elements and the other is to left rotate a state element computed two rounds
ago. For simplicity, we will slightly change the order of these operations so that
only one state element is updated in each round. And we call this state element
as CVi when it is updated at Round i. What we do is to perform the left rotation
immediate after one state element get updated and rotate back when it is used
after two rounds. Hence the state update in Round i becomes:

CVi = Rotl xxx yy(CVi−5 ⊕ (CVi−4 & CVi−3)⊕ (CVi−2 >>>w(i−1) mod 5)⊕mi)

Notice that mi is the plaintext block used in each step and mi = 0 if i = 0 mod 5.
And the difference in plaintext will inject to Round 2 and be the same in Round
3-5.

To eliminate the difference after two steps, we need that CV6, . . . , CV10 have
no difference. In our study, we will focus on following two conditions:

1: No difference at CV6. This is because CV6 is completely determined by the
previous state elements and has nothing to do with the plaintext block in
the second step.

2: For each difference at bit i in CV3 or CV4 there must be a difference at
bit i in CV5. Otherwise, is impossible to eliminate the difference using the
difference in the second plaintext block.

Then we search the input difference bits to find a lower bound for the number
of bits with difference (active bits) in the input. And we found that for the
input difference with weight less than or equal to 25, there is no valid 10-round
differential characteristics for MORUS. Now we may evaluate the bound for
the differential probabilities. When input difference is n bits, there are n bits
differences at CV2, CV3 and CV5. Since each bit difference will be involved in two
AND operations, and each AND operation on one bit has differential probability
2−1, the differential probability is at least 2−5n (5 AND operations for CVi and
CVi+1, i = 1, 2, 3, 4, 5). The differential probability is less than 2−26×5 = 2−130.

Next, we consider the case that the input difference get eliminated in 3 steps.
If there are 3 active bits in the input, the differential probability after 3 step is
2−132 by our approximation. Note that the difference is not eliminated through
the approximation. And much stronger conditions are needed to eliminate the
differences. Hence the probability that the input difference get eliminated after 3
steps will be much lower than 2−132 when the number of active bits is 3. When we
increase the number of active bits in the input, the trend is to increase the weight
of active bits in the states, which we can observe in the previous cases. Intuitively,
this is can be explained as when the weight of active bits is low, the increased
number of active bits exceeds the number of active bits get eliminated. And
when the weight is high enough such that the cancellation effect is dominated,
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we can expect the overall weight will be higher than the single difference case
in the first 3 steps. Hence, although it is impossible to enumerate all the input
differences, we believe that there is no differential characteristic with probability
higher than 2−128 which can eliminate the input difference in 3 steps.

Now we deal with the cases that the number of active bits in the input is less
than three.

- Only one active bit in the input. Since the position of active has no impact
on the differentials, we assume the active bit is at bit 0. Then, we propagate
the difference up to 3 steps (15 rounds), assuming no input difference at
next two steps. Now, we enumerate the input difference at step 2 such that
following two conditions are satisfied:

1. There is no difference at Round 11. Again, it is because the difference
cannot be eliminated through the message in step 3.

2. The active bits at CV10 covers the actives bits at CV8 and CV9.

Our search show that even if we increase the number of active bits to 20 in
the input of the second step, it is impossible to find a differential character-
istic satisfied the above conditions. With similar evaluation of probability,
and take consideration to the differential probability introduced by the ini-
tial difference, we can conclude that the probability that the internal state
collision is less than 2−128 in this case.

- Two active bits in the input. By our approximation, the differential proba-
bility is at least 2−101 for any two active bits propagate to 3 steps. We think
it is safe to consider the probability for internal state collision to be less than
2−128 if the number of active bits in the second step is larger than 20, in
spite that some difference in the internal state may be canceled each other.
In our search, we fix one bit difference at bit 0 and try to impose a difference
at the other 127 possible positions. And the search result confirms that no
valid differential characteristic is found when the number of active bits is
less than 21.

Now, consider the rest cases: the difference get eliminated after at least 4
steps. If there is one bit difference at the input, the differential probability is
at least 2−196 using our approximation, which is much lower than 2−128. And
if we want to eliminate the differences, more conditions are required. Hence, it
is reasonable to consider the probability to eliminated the internal difference in
these cases to be less than 2−128. This conclude our analysis when the internal
state collision is constructed through injection of plaintext differences.

4.3.2 Attacks on the finalization In addition to the internal state collision,
we analyze the security of the finalization. When there is a difference in the
internal state before the finalization, we expect that the differential probability
is less than 2−128 after 8 steps of the MORUS state update function. Hence, the
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difference at the tag is not predictable in this case. Another situation is that
there is no difference at the internal state but there is some difference at the
adlen or msglen. Then the difference will be used as message difference in the
state update function for 8 steps. So the differential probability is expected to
be less than 2−128 in this case as well.

5 Features

MORUS has the following advantages over previous ciphers:

1. MORUS is efficient in software. According to the previous section, the speed
of MORUS-1280 is 0.69 cpb on Intel Haswell processors for long messages,
which is around 30% faster than AES-GCM [4].

2. MORUS is fast in hardware performance. In MORUS, the critical path to
generate a keystream block is 3 AND gates and 8 XOR gates.

3. MORUS is efficient across platforms. In constructing authenticated encryp-
tion schemes, AES is frequently used as a building block. There are authen-
ticated encryption modes so that the AES can be used as underlying block
cipher, e.g., EAX [1], CCM [6], GCM [4] and OCB 2.0 [5]. And a number of
dedicated AE schemes use AES round function, e.g., AEGIS [7] and ALE [2].
These schemes can be benefited from the AES-NI which performs one round
AES encryption/decryption in a single instruction. On the other hand, al-
though the widely use of AES, there are platforms which do not support
the AES-NI instruction set. For example, in the ARM architecture, AES-NI
instruction set is not implemented so far. The performance of AES based
authenticated encryption schemes will be notably slower on these platforms.
In contrast, the MORUS family offer a more steady performance across plat-
forms since its performance does not rely on the use of AES-NI instruction
set.

4. Secure. MORUS provides 128-bit authentication security, stronger than AES-
GCM.

6 Performance

We implemented MORUS in C code. We tested the speed on the Intel Core
i7-4770 processor (Haswell) running 64-bit Ubuntu 13.01. Turbo boost is turned
off in the experiment. The compiler being used is gcc 4.8.1, and the options “-O3
-mavx2” are used. The test is performed by encrypting/decrypting a message
repeatedly, and printing out the final message. To ensure that the tag generation
is not removed during the compiler optimization process, we use the tag as the
IV for processing the next message. To ensure that the tag verification is not
removed during the compiler optimization process, we sum up the number of
failed verifications and print out the final result.
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Table 5 shows the speed comparison of the MORUS. For long message, the
speed of MORUS-640 and MOURS-1280 is about 1.11 cpb and 0.69 cpb, respec-
tively. The speed of MOURS-1280 is faster than that of AES-128-GCM on the
Haswell, which is 1.03 cpb [3].

Table 5: The speed comparison (in cycles per byte) for different message length on Intel
Haswell. EA means encryption-authentication; DV means decryption-verification.

16B 64B 512B 1024B 4096B 16384B

MORUS-640(EA) 28 7.72 1.95 1.58 1.18 1.11
MORUS-640(DV) 28 7.99 1.97 1.56 1.23 1.16
MORUS-1280(EA) 33.9 8.28 1.59 1.12 0.78 0.69
MORUS-1280(DV) 35.8 8.46 1.63 1.13 0.80 0.69

7 Design rationale

In our design of MORUS, we are trying to design a fast authenticated cipher
which is not based on AES so that this cipher can run fast in platforms with no
AES-NI. Our design is aimed at achieving the following goals:

- Simple
- Secure
- Fast in hardware
- Efficient in software
- Avoid using AES round function

7.1 State update function

The construction of state update function of MORUS is based on 5 small round
functions with similar operations. In each round function, only XOR, AND and
rotations are used. The diffusion of MORUS is from two types of rotations: the
rotations on the whole registers (<<<) and the rotations on four partial words
inside a register (Rotl xxx yy). The later operation takes advantage of the SSE2
and AVX instructions in which the shifts on four word can be done in one in-
struction. We choose the AND non-linear function since it can be easily and
efficiently implemented in both software and hardware. Two internal state ele-
ments get updated in a round function. Hence, every internal state element will
get updated twice in a step. It is remarkable that MORUS is constructed using
simple bit-wise operations, which makes it fast in hardware implementations.

7.2 Encryption and authentication

The encryption of MORUS adopts the method used in stream ciphers. The key
and nonce are mixed into the state during initialization and after that, the cipher
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generates keystreams and XORs the keystreams with the plaintext to produce
ciphertext. In MORUS, message blocks are injected into its state update function
so as to authenticate the message simultaneously with the encryption.

In the initialization of MORUS, we use 16 steps of state update function
(80 rounds). This is to ensure the state cannot be recovered and the differential
probability is small after the initialization.

In the finalization, we introduce an extra XOR operation to distinguish the
finalization from the encryption and we use a similar method as used in AEGIS:
mixing the length of associated data and plaintext is XORed to one of the
internal state elements and used as a message block to update the states for 8
steps. In this way, any change in the internal state or the length of message will
be involved in computing the tag.

7.3 Selection of rotation constants

The diffusion in MORUS relies on the 10 rotations. Therefore, the rotation con-
stants need to be carefully chosen. We use following rules in the selection of
rotations constants:

1. The rotation constants should exclude the multiples of 8.
2. No rotation constant should be a multiple of another rotation constant.
3. The sum of any two constants modular 32 (or 64 for MORUS-1280) is not

equal to 0 or another constant.

We enumerate the possible choices of rotation constants satisfied the above
requirements and propagate a 1-bit difference on message to count the weight
after four steps for MORUS-640 and five steps for MORUS-1280. Then we select
a set of the rotation constants which results in high weight.

The designers have not hidden any weaknesses in this cipher.

8 Intellectual property

MOURS is not patented and it is free of intellectual property restrictions. If any
of this information changes, the submitter/submitters will promptly (and within
at most one month) announce these changes on the crypto-competitions mailing
list.

9 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission as
a second-round candidate, a third-round candidate, a finalist, a member of the
final portfolio, or any other designation provided by the committee. The sub-
mitter/submitters understand that the committee will not comment on the al-
gorithms, except that for each selected algorithm the committee will simply cite
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the previously published analyses that led to the selection of the algorithm. The
submitter/submitters understand that the selection of some algorithms is not a
negative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision. The submitter/submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee
members and are not subject to appeal. The submitter/submitters understand
that if they disagree with published analyses then they are expected to promptly
and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter/submitters understand that this statement is required
as a condition of consideration of this submission by the CAESAR selection
committee.
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A Changes in the second round submission

There is no tweak of MORUS in the second round of CAESAR competition.
We corrected the figure of the state update function and a few typos in this
document.


