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Summary
This document describes a nonce-based authenticated encryption with associated data (AEAD) scheme
proposed to the CAESAR competition. Our proposal, called Offset Merkle-Damgård (OMD for short), is a
mode of operation for a keyed compression function. If the compression function at hand does not have a
dedicated-key input then it must be first keyed by some conventional method, e.g. prepending the key to
the message in the input of the compression function.

Almost all popular AEAD schemes in the literature have used blockciphers or (more recently) random
permutations as their underlying primitives. But, we note that compression functions are also among the
most widely-used and analyzed cryptographic primitives. We have a rich source of secure compression func-
tions thanks to more than two decades of public research and standardization activities on hash functions.
This motivates one to think about building an AEAD scheme from a compression function. However, at
first glance, it might seem that the efficiency of a compression function based AEAD scheme would be,
in general, lower than popular blockchipher-based or permutation-based AEAD schemes. This efficiency
concern has been perhaps the reason for less interest on compression function based designs for authenticate
encryption. But, the recent announcement by Intel R○ in July 2013 about introduction of new instructions,
supporting performance acceleration of the Secure Hash Algorithm (SHA) on Intel R○ Architecture processors
(in particular, for SHA-1 and SHA-256), makes one rethink about efficiency of compression function based
AEAD design.

OMD takes advantage of the aforementioned facts about compression functions and provides a scheme
whose security is proven based on well-established security properties of the underlying compression function
and has promising performance thanks to the new Intel R○ instructions supporting the SHA on Intel R○
architecture processors. As specific instantiations of the OMD mode, we recommend two specific compression
functions to be keyed and used in OMD, namely, the compression functions of the standard SHA-256
and SHA-512 hash functions. OMD parametrized with these two compression functions is called OMD-
sha256 and OMD-sha512, respectively. The former is intended for 32-bit implementations and is our main
recommended cipher for CAESAR, while the latter could be used specifically for 64-bit machines.

OMD achieves nearly optimal performance in terms of number of compression function calls that one can
expect from any AEAD scheme solely using a compression function. OMD has several attractive features: (1)



unlike the permutation-based schemes whose security relies on idealistic assumptions about their underlying
permutation, the security of OMD is proved in the standard model based on merely the classical PRF
assumption on the compression function, (2) one can easily get a high quantitative level of security using
OMD with the compression function of a standard hash function with a large hash size (e.g. 256 bits or 512
bits), (3) the only operations that OMD needs in addition to its core compression function are the basic
operations of bitwise xoring two binary strings and shifting a binary string to the left, (4) selecting the core
compression function to be that of SHA-256 the scheme can take advantage of the new Intel R○ instructions
for a highly efficient implementation.
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1 Introduction
An authenticated encryption (AE) scheme delivers on two complementary data security goals: confiden-
tiality (privacy) and integrity (authenticity). Historically, these goals were achieved by combining separate
cryptographic primitives, one to ensure confidentiality and another to guarantee integrity [7,8]. This generic
composition paradigm is neither most efficient (for instance, it requires processing the input stream at least
twice) nor most robust to implementation errors [11, 23]. To address these concerns, the notion of AE
which simultaneously achieves confidentiality and integrity was put forward [7, 9, 16] and further devel-
oped [14, 18, 20–22] as a desirable primitive to be exposed by libraries and APIs to the end developer.
Providing direct access to AE rather than requiring developers to make calls to several lower-level functions
is seen as a step towards improving quality of security-critical code.

This document describes our proposal of a new authenticated cipher for consideration in the CAESAR
competition. Our scheme, called Offset Merkle-Damgård (OMD), is a keyed compression function mode of
operation for nonce-based AEAD. The syntax and security notions for nonce-based AEAD schemes were
formalized by Rogaway in [18,20]. To instantiate the OMD mode, we recommend two specific compression
functions to be keyed and used in OMD, namely, the compression functions of the standard SHA-256 and
SHA-512 hash functions. OMD parametrized with these two compression functions is called OMD-sha256
and OMD-sha512, respectively. The former is intended for 32-bit implementations and is our primary
recommended algorithm, while the latter could be used specifically for 64-bit machines and is our secondary
algorithm.

We believe that an AE scheme whose security is proved by a modular and easy to verify security
reduction, only relying on some widely-verified standard assumption(s) on its underlying primitive(s), can
get more confidence on its security compared to a scheme that demands strong and idealistic properties
from its underlying primitive(s) or is not supported by a formal security proof. Provable security helps
cryptanalysis efforts to be focused on analyzing the simpler underlying primitives rather than the whole
scheme; hence, building confidence on the security of the scheme becomes easier if it uses well-analyzed and
verified primitives.

Setting provable security in the standard model as one of our main design aims, OMD is designed
as a scheme with its security goals achieved provably, based on the sole assumption that its underlying
keyed compression function is a PRF; an assumption which is among the most well-known and widely-used
assumption; for example, the security of the widely-employed standard HMAC algorithm is also based on
this assumption [3]. From a theoretical point of view, this is an advantage for OMD compared to the
recently proposed permutation-based AE schemes in the literature whose security proofs rely on the ideal
permutation assumption.

Unlike the mainstream AE schemes which are blockcipher-based or permutation-based schemes, OMD
is designed to be a compression function based scheme. The cryptographic community has spent more than
two decades on public research and standardization activities on hash functions resulting to development
of a rich source of secure and efficient compression functions. The recent announcement by Intel in July
2013 [2] about Intel SHA Extensions, supporting performance acceleration of the SHA family of functions
(more precisely, SHA-1 and SHA-256), further encourages the decision to design a compression function
based scheme. The SHA family of algorithms is heavily used in many of the most common cryptographic
applications. For example, every secure web session initiation includes SHA-1, and the latest protocols
involve SHA-256 as well. We believe that having a diverse set of AE schemes based on different primitives
can be interesting from a practical viewpoint, providing the opportunity to choose among the AE algorithms
based on what primitives have already been available and implemented and to reuse them.

OMD is patent free and suitable for widespread adoption. Our primary recommended scheme, OMD-sha256,
uses the compression function of SHA-256 [1] and has features offering the following advantages over the
AES-GCM scheme:
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Higher quantitative security level. The proven security of OMD-sha256 falls off, as usual for birthday-
type security bounds, in 𝜎2

2256 where 𝜎 is the total number of calls to the compression function; while, for
the same key size and tag size, the proven security of AES-GCM [15] falls off in about 𝜎′2

2128 where 𝜎′ is the
total number of calls to AES. That is, with the same key length and tag length, OMD-sha256 offers higher
security level than that of AES-GCM.

More flexible key size. AES-GCM only supports three different key lengths, namely 128, 192 and 256
bits. OMD-sha256 can support any key length between 80 bits and 256 bits.

Simpler operations. OMD-sha256 only needs the compression function of SHA-256 plus the simple
operations of bitwise XOR and bitwise AND of two binary strings and (left and right) shifting a binary string.
In comparison, AES-GCM in addition to calling AES requires multiplication of two arbitrary elements in
GF(2128). The field multiplication operation demand extra resources and is a complicated operation in
contrast with the basic operations used in OMD-sha256. This is important, in particular, if one does not
have access to Intel CPUs supporting the PCLMULQDQ instruction for implementing AES-GCM, e.g. on
low-end devices.

Resistance against software-level timing attacks. Most AES software implementations risk leaking
their keys through cache timing [10] unless they are implemented on machines with Intel R○ CPUs supporting
the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we note that the only operations
in OMD-sha256 are: bitwise XOR, AND and OR of two binary strings (32-bit words in the compression
function of SHA-256 and 256-bit words in the OMD iteration), fixed-distance (left and right) shift of a binary
string (32-bit words in the compression function of SHA-256 and 256-bit words in the OMD iteration), and
32-bit addition (of words in the compression function of SHA-256). These operations have the virtue of
taking constant time on typical CPUs in which case the implementations can avoid timing attacks.

Organization of this Document. The notations, definitions and concepts considered as preliminaries
are presented in Section 2. Section 4 provides the specification of OMD as a mode of operation, and then the
description of our two recommended instantiations: our primary recommended cipher, OMD-sha256, uses
OMD with the compression function of the standard SHA-256 hash function; our secondary recommendation,
OMD-sha512, uses OMD with the compression function of the standard SHA-512 hash function. We also
provide the description of the compression functions of SHA-256 and SHA-512 for completeness. The
security goals for OMD as an AEAD scheme are formally defined in Section 3. In Section 5, we provide the
security analysis of OMD. In Section 6 we detail several interesting features of OMD. Section 7 provides
an explanation of the main rationales behind the OMD design. Section 8 and Section 9, respectively, give
the required information about the intellectual property and our consent to all decisions of the CAESAR
selection committee.

2 Preliminaries

Notations. If 𝒮 is a finite set, 𝑥
$← 𝑆 means that 𝑥 is chosen from 𝑆 uniformly at random. 𝑋 ← 𝑌 is used

for denoting the assignment statement where the value of 𝑌 is assigned to 𝑋. The set of all binary strings
of length 𝑛 bits (for some positive integer 𝑛) is denoted as {0, 1}𝑛, the set of all binary strings whose lengths
are variable but upper-bounded by 𝐿 is denoted by {0, 1}≤𝐿 and the set of all binary strings of arbitrary but
finite length is denoted by {0, 1}*. For two strings 𝑋 and 𝑌 we use 𝑋||𝑌 and 𝑋𝑌 analogously to denote
the string obtained by concatenating 𝑌 to 𝑋. For an 𝑚-bit binary string 𝑋 = 𝑋𝑚−1 · · ·𝑋0 we denote the
left-most bit by msb(𝑋) = 𝑋𝑚−1 and the right-most bit by lsb(𝑋) = 𝑋0; let 𝑋[𝑖 · · · 𝑗] = 𝑋𝑖 · · ·𝑋𝑗 denote

5



a substring of X, for 0 ≤ 𝑗 ≤ 𝑖 ≤ (𝑚 − 1). Let 1𝑛0𝑚 denote concatenation of 𝑛 ones by 𝑚 zeros. For a
non-negative integer 𝑖 let ⟨𝑖⟩𝑚 denote binary representation of 𝑖 by an 𝑚-bit string.

For a binary string 𝑋 = 𝑋𝑚−1 · · ·𝑋0, let 𝑋 ≪ 𝑛 denote the left-shift operation, where the 𝑛 left-most
bits are discarded and the 𝑛 vacated right bits are set to 0; that is, 𝑋 ≪ 𝑛 = 𝑋𝑚−𝑛−1 · · ·𝑋00𝑛. We let
𝑋 ≫ 𝑛 denote the (unsigned) right-shift operation where the 𝑛 right-most bits are discarded and the 𝑛
vacated left bits are set to 0; i.e., 𝑋 ≫ 𝑛 = 0𝑛𝑋𝑚−1 · · ·𝑋𝑛. We let 𝑋 ≫𝑠 𝑛 denote the signed right-shift
operation where the 𝑛 right-most bits are discarded and the 𝑛 vacated left bits are filled with the left-most
bit (which is considered as the sign bit); for example, 1001100≫𝑠 3 = 1111001. If the left-most bit of 𝑋 is
0 then we have 𝑋 ≫𝑠 𝑛 = 𝑋 ≫ 𝑛.
¬𝑋 means bitwise complement of 𝑋. For two binary strings 𝑋 and 𝑌 , let 𝑋 ∧ 𝑌 and 𝑋 ∨ 𝑌 denote,

respectively, bitwise AND and bitwise OR of the strings.
The special symbol ⊥ means that the value of a variable is undefined; we also overload this symbol and

use it to signify an error. Let |𝑍| denote the number of elements of 𝑍 if 𝑍 is a set, and the length of 𝑍
in bits if 𝑍 is a binary string. The empty string is denoted by 𝜀 and we let |𝜀| = 0. For 𝑋 ∈ {0, 1}* let
𝑋[1]||𝑋[2] · · · ||𝑋[𝑚] 𝑏← 𝑋 denote partitioning 𝑋 into blocks 𝑋[𝑖] such that |𝑋[𝑖]| = 𝑏 for 1 ≤ 𝑖 ≤ 𝑚− 1 and
|𝑋[𝑚]| ≤ 𝑏; let 𝑚 = |𝑋|𝑏 denote length of 𝑋 in 𝑏-bit blocks.

For two binary strings 𝑋 = 𝑋𝑚−1 · · ·𝑋0 and 𝑌 = 𝑌𝑛−1 · · ·𝑌0, the notation 𝑋 ⊕ 𝑌 denotes bitwise xor
of 𝑋𝑚−1 · · ·𝑋𝑚−1−ℓ and 𝑌𝑛−1 · · ·𝑌𝑛−1−ℓ where ℓ = 𝑚𝑖𝑛 {𝑚− 1, 𝑛− 1}. That is, 𝑋 ⊕ 𝑌 is a binary string
whose length is equal to the length of the shorter operand and is obtained by xoring the shorter operand
with an equal length left-most substring of the longer operand consisting of its left-most bits. Clearly, if 𝑋
and 𝑌 have the same length then 𝑋 ⊕ 𝑌 simply means their usual bitwise xor. For any string 𝑋, define
𝑋 ⊕ 𝜀 = 𝜀⊕𝑋 = 𝜀.

The Field with 2𝑛 Points. Let (𝐺𝐹 (2𝑛),⊕, .) denote the Galois Field with 2𝑛 points. When considering
a point 𝛼 in 𝐺𝐹 (2𝑛) it can be represented in any of the following equivalent ways: (1) as an integer
between 0 and 2𝑛, (2) as a binary string 𝛼𝑛−1 · · ·𝛼0 ∈ {0, 1}𝑛, or (3) as a formal polynomial 𝛼(𝑋) =
𝛼𝑛−1𝑋𝑛−1 + · · · + 𝛼1𝑋 + 𝛼0 with binary coefficients. For example, in 𝐺𝐹 (2256): the string 025410, the
number 2 and the polynomial 𝑋 are different representations of the same field element; the string 025411,
the number 3 and the polynomial 𝑋 + 1 represent the same field element, and so forth.

The addition “⊕” and multiplication “.” of two elements in 𝐺𝐹 (2𝑛) are defined as follows. The addition
of two elements 𝛼, 𝛽 ∈ 𝐺𝐹 (2𝑛) simply means the element obtained by bitwise xoring their represenations
as binary strings. For example, 2 ⊕ 1 = 0𝑛−210 ⊕ 0𝑛−201 = 0𝑛−211 = 3, 2 ⊕ 3 = 1, 1 ⊕ 1 = 0, and
so forth. (Note that the addition operation in 𝐺𝐹 (2𝑛) is different from the addition of integers module
2𝑛.) To multiply two elements, first choose and fix an irreducible polynomial 𝑃𝑛(𝑋) of degree 𝑛 over
GF(2); for example, choose the lexicographically first polynomial among the irreducible polynomials of
degree 𝑛 over GF(2) with a minimum number of nonzero coefficients. For example, for 𝑛 = 256 we use
𝑃256(𝑋) = 𝑋256 + 𝑋10 + 𝑋5 + 𝑋2 + 1, for 𝑛 = 512 we use 𝑃512(𝑋) = 𝑋512 + 𝑋8 + 𝑋5 + 𝑋2 + 1.

To multiply two elements 𝛼 and 𝛽 in 𝐺𝐹 (2𝑛) denoted by 𝛼 · 𝛽 consider them as polynomials 𝛼(𝑋) =
𝛼𝑛−1𝑋𝑛−1 + · · ·+ 𝛼1𝑋 + 𝛼0 and 𝛽(𝑋) = 𝛽𝑛−1𝑋𝑛−1 + · · ·+ 𝛽1𝑋 + 𝛽0, form their product in GF(2) to get
𝛾(𝑋) and take the remainder of dividing 𝛾(𝑋) by the irreducible polynomial 𝑃𝑛(𝑋).

It is easy to multiply an arbitrary field element 𝛼 by the element 2 (i.e. 𝑋). We describe this for
𝐺𝐹 (2256)and 𝐺𝐹 (2512). Let 𝛼(𝑋) = 𝛼𝑛−1𝑋𝑛−1 + · · · + 𝛼1𝑋 + 𝛼0 then multiplying by 𝑋 we get 𝛼𝑛𝑋𝑛 +
𝛼𝑛−1𝑋𝑛−1 · · · + 𝛼1𝑋 + 𝛼0𝑋; so if msb(𝛼) = 0 then 2.𝛼 = 𝑋.𝛼 = 𝛼 ≪ 1. If msb(𝛼) = 1 then we need
to reduce the result by module 𝑃𝑛(𝑋), i.e. we have to add 𝑋𝑛 to 𝛼 ≪ 1. For 𝑛 = 256 using 𝑃256(𝑋) =
𝑋256 + 𝑋10 + 𝑋5 + 𝑋2 + 1, we have 𝑋256 = 𝑋10 + 𝑋5 + 𝑋2 + 1 = 024510000100101, so adding 𝑋256

means xoring with 024510000100101. For 𝑛 = 512 using 𝑃512(𝑋) = 𝑋512 + 𝑋8 + 𝑋5 + 𝑋2 + 1, we have
𝑋512 = 𝑋8 + 𝑋5 + 𝑋2 + 1 = 0503100100101, so adding 𝑋512 means xoring with 0503100100101. In summary,
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for 𝐺𝐹 (2256)

2.𝛼 =
{︃

𝛼≪ 1 if msb(𝛼) = 0
(𝛼≪ 1)⊕ 024510000100101 if msb(𝛼) = 1 (1)

= (𝛼≪ 1)⊕ ((𝛼≫𝑠 255) ∧ 024510000100101) (2)

and for 𝐺𝐹 (2512)

2.𝛼 =
{︃

𝛼≪ 1 if msb(𝛼) = 0
(𝛼≪ 1)⊕ 0503100100101 if msb(𝛼) = 1 (3)

= (𝛼≪ 1)⊕ ((𝛼≫𝑠 511) ∧ 0503100100101) (4)

We note that the results computed in (1) and (2) are the same but an implementation using (2) will not
be susceptible to the timing attacks unlike one which uses (1). Similarly, an implementation using (4) is
aimed for timing attack resistance.

Syntax of Keyed and Keyless Compression Functions. We denote a keyed compression function
by 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛, where 𝑚 and 𝑛 are two positive integers, and the keyspace 𝒦
is a non-empty set of strings. We write 𝐹𝐾(𝐻, 𝑀) = 𝐹 (𝐾; 𝐻, 𝑀) for every 𝐾 ∈ 𝒦, 𝐻 ∈ {0, 1}𝑛 and
𝑀 ∈ {0, 1}𝑚. We can alternatively think of 𝐹𝐾 as a single argument function whose domain is {0, 1}𝑛+𝑚

and write 𝐹𝐾(𝐻||𝑀) = 𝐹𝐾(𝐻, 𝑀). If |𝒦| = 1 we assume that 𝒦 = {𝜀}, i.e. it only consists of the empty
string, and in this case we call 𝐹 a keyless compression function. Time𝐹 denotes the time complexity of
computing 𝐹𝐾(𝑋) for any 𝐾 ∈ 𝒦 and 𝑋 ∈ {0, 1}𝑛+𝑚, plus the time complexity for sampling from 𝒦.

Given a keyless compression function 𝐹 ′ : {0, 1}𝑛 × {0, 1}𝑏 → {0, 1}𝑛 (e.g. sha-256 : {0, 1}256 ×
{0, 1}512 → {0, 1}256) we convert it to a keyed compression function 𝐹 by borrowing 𝑘 bits of its 𝑏-bit input
block; i.e. we define 𝐹𝐾(𝐻, 𝑀) = 𝐹 ′(𝐻, 𝐾||𝑀).

Concrete Security Conventions. As usual in the concrete-security definitions, we use the resource
parametrized function Advxxx

Π (r) to denote the maximal value of the adversarial advantage (i.e. Advxxx
Π (r) =

𝑚𝑎𝑥𝐴 {Advxxx
Π (𝐴)} ) over all adversaries 𝐴, against the xxx property of a primitive or scheme Π, that use

resources bounded by r. The resource parameter r, depending on the notion, may include time complexity
(𝑡), length of queries and number of queries that an adversary makes to its oracles. If a resource parameter is
irrelevant in the context then we omit it; e.g. for information-theoretic security bounds the time complexity
𝑡 is omitted.

Let 𝐴 be an adversary that returns a binary value; by 𝐴𝑓(.)(𝑋) ⇒ 1 we refer to the event that 𝐴 on
input 𝑋 and access to an oracle function 𝑓(.) returns 1. By time complexity of an algorithm we mean the
running time, relative to some fixed model of computation plus the size of the description of the algorithm
using some fixed encoding method.

Pseudorandom Functions (PRFs) and Tweakable PRFs. Let Func(𝑚, 𝑛) = {𝑓 : {0, 1}𝑚 → {0, 1}𝑛}
be the set of all functions from 𝑚-bit strings to 𝑛-bit strings. A random function (RF) 𝑅 with 𝑚-bit
input and 𝑛-bit output is a function selected uniformly at random from Func(𝑚, 𝑛). We denote this by
𝑅

$← Func(𝑚, 𝑛).
Let Func𝒯 (𝑚, 𝑛) be the set of all functions

{︁ ̃︀𝑓 : 𝒯 × {0, 1}𝑚 → {0, 1}𝑛
}︁

, where 𝒯 is a set of tweaks. A
tweakable RF with the tweak space 𝒯 , 𝑚-bit input and 𝑛-bit output is a map ̃︀𝑅 : 𝒯 × {0, 1}𝑚 → {0, 1}𝑛

selected uniformly at random from Func𝒯 (𝑚, 𝑛); i.e. ̃︀𝑅 $← Func𝒯 (𝑚, 𝑛). Clearly, if 𝒯 = {0, 1}𝑡 then
|Func𝒯 (𝑚, 𝑛)| = |Func(𝑚+ 𝑡, 𝑛)|, and hence, ̃︀𝑅 can be instantiated using a random function 𝑅 with (𝑚+ 𝑡)-
bit input and 𝑛-bit output. We use ̃︀𝑅⟨𝑇 ⟩(.) and ̃︀𝑅(𝑇, .) interchangeably, for every 𝑇 ∈ 𝒯 . Notice that each
tweak 𝑇 names a random function ̃︀𝑅⟨𝑇 ⟩ : {0, 1}𝑚 → {0, 1}𝑛 and distinct tweaks name distinct (independent)
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Let 𝐹 : 𝒦 × {0, 1}𝑚 → {0, 1}𝑛 be a keyed function and let ̃︀𝐹 : 𝒦 × 𝒯 × {0, 1}𝑚 → {0, 1}𝑛 be a
keyed and tweakable function, where the key space 𝒦 is some nonempty set. Let 𝐹𝐾(.) = 𝐹 (𝐾, .) and̃︀𝐹 ⟨𝑇 ⟩

𝐾 (.) = ̃︀𝐹 (𝐾, 𝑇, .). Let 𝐴 be an adversary. Then:

Advprf
𝐹 (𝐴) = Pr

[︂
𝐾

$← 𝒦 : 𝐴𝐹𝐾(.) ⇒ 1
]︂
− Pr

[︂
𝑅

$← Func(𝑚, 𝑛) : 𝐴𝑅(.) ⇒ 1
]︂

Adṽ︁prf̃︀𝐹 (𝐴) = Pr
[︂
𝐾

$← 𝒦 : 𝐴
̃︀𝐹 ⟨.⟩

𝐾 (.) ⇒ 1
]︂
− Pr

[︂ ̃︀𝑅 $← Func𝒯 (𝑚, 𝑛) : 𝐴
̃︀𝑅⟨.⟩(.) ⇒ 1

]︂

The resource parametrized advantage functions are defined accordingly, considering that the adversarial
resources of interest here are the time complexity (𝑡) of the adversary and the total number of queries (𝑞)
asked by the adversary (note that we just consider fixed-input-length functions, so the lengths of queries
are fixed and known). We say that 𝐹 is (𝑡, 𝑞; 𝜖)-PRF if Advprf

𝐹 (𝑡, 𝑞) ≤ 𝜖. We say that ̃︀𝐹 is (𝑡, 𝑞; 𝜖)-tweakable
PRF if Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ 𝜖.

3 Security Goals
OMD is a nonce-based AEAD. Therefore, we aim to achieve the security notions for AEAD schemes as
formalized in [18].

Nonce Respecting Adversaries. Let 𝐴 be an adversary. We say that 𝐴 is nonce-respecting if it
never repeats a nonce in its encryption queries. That is, if 𝐴 queries the encryption oracle ℰ𝐾(·, ·, ·) on
(𝑁1, 𝐴1, 𝑀1) · · · (𝑁𝑞, 𝐴𝑞, 𝑀𝑞) then 𝑁1, · · · , 𝑁𝑞 must be distinct.

In the following, we define the conventional security properties of an AEAD; namely, the privacy notion
(“confidentiality for the plaintext”) and the authenticity notion (“integrity for the nonce, associated data,
and plaintext”).

Privacy of AEAD Schemes. Let Π = (𝒦, ℰ ,𝒟) be a nonce-based AEAD scheme. Let 𝐴 be a nonce-
respecting adversary. 𝐴 is provided with an oracle which can be either a real encryption oracle ℰ𝐾(·, ·, ·)
such that on input (𝑁, 𝐴, 𝑀) returns C = ℰ𝐾(𝑁, 𝐴, 𝑀), or a fake encryption oracle $(·, ·, ·) which on any
input (𝑁, 𝐴, 𝑀) returns |C| fresh random bits. The advantage of 𝐴 in mounting a chosen plaintext attack
(CPA) against the privacy property of Π is measured as follows:

Advpriv
Π (𝐴) = Pr[𝐾 $←− 𝒦 : 𝐴ℰ𝐾(·,·,·) ⇒ 1]− Pr[𝐴$(·,·,·) ⇒ 1].

This privacy notion, also called indistinguishability of ciphertext from random bits under CPA (IND$-CPA),
is defined originally in [21] and is a stronger variant of the classical IND-CPA notion [4, 7] for conventional
symmetric-key encryption schemes.

Resource parameters for the CPA adversary. Let the CPA-adversary 𝐴 make queries (𝑁1, 𝐴1, 𝑀1)
· · · (𝑁𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀𝑞𝑒). We define the resource parameters of 𝐴 as (𝑡, 𝑞𝑒, 𝜎𝐴, 𝜎𝑀 , 𝐿𝑚𝑎𝑥) where 𝑡 is the time
complexity, 𝑞𝑒 is the total number of encryption queries, 𝜎𝐴 =

∑︀𝑞
𝑖=1 |𝐴𝑖| is the total length of associated

data in bits, 𝜎𝑀 =
∑︀𝑞

𝑖=1 |𝑀𝑖| is the total length of messages in bits, and 𝐿𝑚𝑎𝑥 is the maximum length of
each query in bits.

We remind that absence of a resource parameter means that the parameter is irrelevant in the context
and hence omitted.

Authenticity of AEAD Schemes. Let Π = (𝒦, ℰ ,𝒟) be a nonce-based AEAD scheme. Let 𝐴 be a
nonce-respecting adversary. We stress that nonce-respecting is only regarded for the encryption queries; that
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is, 𝐴 can repeat nonces during its decryption queries and it can also ask an encryption query with a nonce
that was already used in a decryption query. Let 𝒜 be provided with the encryption oracle ℰ𝐾(·, ·, ·) and
the decryption oracle 𝒟𝐾(·, ·, ·); that is, we consider adversaries that can mount chosen ciphertext attacks
(CCA). We say that 𝐴 forges if it makes a decryption query (𝑁, 𝐴,C) such that 𝒟𝐾(𝑁, 𝐴,C) ̸= ⊥ and no
previous encryption query ℰ𝐾(𝑁, 𝐴, 𝑀) returned C.

Advauth
Π (𝐴) = Pr[𝐾 $←− 𝒦 : 𝐴ℰ𝐾(·,·,·), 𝒟𝐾(·,·,·) forges].

This authenticity notion, also called integrity of ciphertext (INT-CTXT) under CCA attacks, is defined
originally in [7].

Resource parameters for the CCA adversary. Let the CCA-adversary 𝐴 make encryption queries
(𝑁1, 𝐴1, 𝑀1) · · · (𝑁𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀𝑞𝑒) and decryption queries (𝑁 ′

1, 𝐴′
1,C′

1) · · · (𝑁 ′
𝑞𝑣

, 𝐴′
𝑞𝑣

,C′
𝑞𝑣

). We define the re-
source parameters of 𝐴 as (𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎𝐴, 𝜎𝑀 , 𝜎𝐴′ , 𝜎C′ , 𝐿𝑚𝑎𝑥), where 𝑡 is the time complexity, 𝑞𝑒 and 𝑞𝑣 are
respectively the total number of encryption queries and decryption queries, 𝐿𝑚𝑎𝑥 is the maximum length of
each query in bits, 𝜎𝐴 =

∑︀𝑞𝑒
𝑖=1 |𝐴𝑖|, 𝜎𝑀 =

∑︀𝑞𝑒
𝑖=1 |𝑀𝑖|, 𝜎𝐴′ =

∑︀𝑞𝑣
𝑖=1 |𝐴′

𝑖| and 𝜎C′ =
∑︀𝑞𝑣

𝑖=1(|C′
𝑖| − 𝜏).

We remind that absence of a resource parameter means that the parameter is irrelevant in the context
and hence omitted.

Remark 1 The use of the aforementioned privacy (IND$-CPA) and authenticity (INT-CTXT) goals to
define security of AE schemes dates back to [7] where it was shown that if an AE scheme satisfies the
combination of IND-CPA and INT-CTXT properties then it will also fulfill indistinguishability under the
strongest form of chosen-ciphertext attack (IND-CCA) which, in turn, is equivalent to non-malleability
under chosen-ciphertext attack (NM-CCA).

Remark 2 The nonce-respecting assumption on the adversary is justified as follows. The nonce would
typically be a counter (message number) maintained by the sender who encrypts the messages. In practice,
an implementation must make sure that no nonce gets repeated within a session (i.e., the lifetime of the
current encryption key). As the nonce 𝑁 is needed both to encrypt and to decrypt; it would be typically
communicated in clear between the sender and the receiver. Note that nonce-respecting is only assumed
with respect to the encryption queries, reflecting the fact that the sender who encrypts a message is the
party that is responsible for providing fresh nonces and the receiver may be stateless.

Remark 3 OMD v1.0 requires the nonce-respecting condition: it does not provide security if the nonce is
repeated.

3.1 Quantitative Security Level of OMD-sha256

Using the concrete security bounds in Section 5 and letting 𝑛 = 256 (the hash size for sha-256) one can
calculate the quantitative security (privacy and authenticity) levels of OMD-sha256 for any set of fixed
values for the adversarial resource parameters. For this purpose, we make the assumption that the function
𝐹𝐾(𝐻, 𝑀) = sha-256(𝐻, 𝐾||0256−𝑘||𝑀) is a PRF providing a 𝑘-bit security; as (to the best of our knowledge)
there is no known attack with complexity less than 2𝑘 against it. We note that having only a single (input,
output) pair for 𝐹𝐾 one can mount an offline exhaustive search attack with time complexity 2𝑘.

For the privacy property of OMD-sha256 (i.e. “confidentiality for the plaintext”) the security bound
falls off in 3𝜎2

𝑒
2256 ; that is, if the adversary has online data complexity about 𝜎𝑒 = 2127, where 𝜎𝑒 denotes the

total number of blocks in all inputs for encryption and decryption as defined in Section 3. According to the
CAESAR call for submissions, algorithms should provide the intended “number of bits of security”. We note
that, giving a single measure for the bit security level of OMD-sha256 is a bit tricky as the terms determining
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the security bound and the resources are different in nature (e.g. we have both offline complexity and online
complexity); nevertheless, one can roughly consider 𝑚𝑖𝑛 {𝑘, 127} as the bit security.

For the authenticity property of OMD-sha256 (i.e. “integrity for the public message number, the associ-
ated data and the plaintext”) the security bound falls off in 3𝜎2

2256 + 𝑞𝑣ℓ𝑚𝑎𝑥

2256 + 𝑞𝑣

2𝜏 ; that is, if the adversary has
online data complexity about 𝜎𝑒 = 2127, or 𝑞𝑣ℓ𝑚𝑎𝑥 = 2256, or 𝑞𝑣 = 2𝜏 (we refer to Section 3 for definitions
of the resource parameters). As a single measure for the bit security of OMD-sha256 for the authenticity
goal, one can roughly consider 𝑚𝑖𝑛 {𝑘, 127, 𝜏}.

Remark 4 We note that a single measure for the “bit security level” should be interpreted carefully re-
garding the different online/offline nature of the resources used for complexity measures. For example, just
based on our bit security levels for OMD-sha256 one may think that a key length (𝑘) larger than 127 bits
or larger than the tag length (𝜏) is not useful, but this is not true because, for example, while the role of 𝜏
is to prevent online attacks, a large 𝑘 can help prevent (mainly) offline key recovery attacks (that may only
use one online query).

3.2 Quantitative Security Level of OMD-sha512

Using the concrete security bounds in Section 5 and letting 𝑛 = 512 (the hash size for sha-512) one can
calculate the quantitative security (privacy and authenticity) levels of OMD-sha512 for any set of fixed
values for the adversarial resource parameters. For this purpose, we make the assumption that the function
𝐹𝐾(𝐻, 𝑀) = sha-512(𝐻, 𝐾||0512−𝑘||𝑀) is a PRF providing a 𝑘-bit security; as (to the best of our knowledge)
there is no known attack with complexity less than 2𝑘 against it. We note that having only a single (input,
output) pair for 𝐹𝐾 one can mount an offline exhaustive search attack with time complexity 2𝑘.

For the privacy property of OMD-sha512 (i.e. “confidentiality for the plaintext”) the security bound
falls off in 3𝜎2

𝑒
2512 ; that is, if the adversary has online data complexity about 𝜎𝑒 = 2255, where 𝜎𝑒 denotes the

total number of blocks in all inputs for encryption and decryption as defined in Section 3. According to the
CAESAR call for submissions, algorithms should provide the intended “number of bits of security”. We note
that, giving a single measure for the bit security level of OMD-sha512 is a bit tricky as the terms determining
the security bound and the resources are different in nature (e.g. we have both offline complexity and online
complexity); nevertheless, one can roughly consider 𝑚𝑖𝑛 {𝑘, 255} as the bit security.

For the authenticity property of OMD-sha512 (i.e. “integrity for the public message number, the associ-
ated data and the plaintext”) the security bound falls off in 3𝜎2

2512 + 𝑞𝑣ℓ𝑚𝑎𝑥

2512 + 𝑞𝑣

2𝜏 ; that is, if the adversary has
online data complexity about 𝜎𝑒 = 2255, or 𝑞𝑣ℓ𝑚𝑎𝑥 = 2512, or 𝑞𝑣 = 2𝜏 (we refer to Section 3 for definitions
of the resource parameters). As a single measure for the bit security of OMD-sha512 for the authenticity
goal, one can roughly consider 𝑚𝑖𝑛 {𝑘, 255, 𝜏}.

Remark 5 We note that a single measure for the “bit security level” should be interpreted carefully re-
garding the different online/offline nature of the resources used for complexity measures. For example, just
based on our bit security levels for OMD-sha512 one may think that a key length (𝑘) larger than 255 bits
or larger than the tag length (𝜏) is not necessary, but this is not true because, for example, while the role
of 𝜏 is to prevent online attacks, a large 𝑘 can help prevent (mainly) offline key recovery attacks (that may
only use one online query).

4 Specification of OMD
OMD is a compression function mode of operation for nonce-based authenticated encryption with associated
data (AEAD). We use the syntax of AEAD schemes following [18].
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Syntax of an AEAD Scheme. A nonce-based authenticated encryption with associated data, AEAD
for short, is a symmetric key scheme Π = (𝒦, ℰ ,𝒟). The key space 𝒦 is some non-empty finite set. The
encryption algorithm ℰ : 𝒦×𝒩×𝒜×ℳ→ 𝒞∪{⊥} takes four arguments, a secret key 𝐾 ∈ 𝒦, a nonce 𝑁 ∈ 𝒩 ,
an associated data (a.k.a. header data) 𝐴 ∈ 𝒜 and a message 𝑀 ∈ ℳ, and returns either a ciphertext
C ∈ 𝒞 or a special symbol ⊥ indicating an error. The decryption algorithm 𝒟 : 𝒦×𝒩 ×𝒜×𝒞 →ℳ∪{⊥}
takes four arguments (𝐾, 𝑁, 𝐴,C) and either outputs a message 𝑀 ∈ℳ or an error indicator ⊥.

For correctness of the scheme, it is required that 𝒟(𝐾, 𝑁, 𝐴,C) = 𝑀 for any C such that C =
ℰ(𝐾, 𝑁, 𝐴, 𝑀). It is also assumed that if algorithms ℰ and 𝒟 receive parameter not belonging to their
specified domain of arguments they will output ⊥. We write ℰ𝐾(𝑁, 𝐴, 𝑀) = ℰ(𝐾, 𝑁, 𝐴, 𝑀) and similarly
𝒟𝐾(𝑁, 𝐴,C) = 𝒟(𝐾, 𝑁, 𝐴,C).

We assume that the message and associated data can be any binary string of arbitrary but finite length;
i.e. ℳ = {0, 1}* and 𝒜 = {0, 1}*, but the key and nonce are some fixed-length binary strings, i.e. 𝒩 =
{0, 1}|𝑁 | and 𝒦 = {0, 1}𝑘, where the positive integers |𝑁 | and 𝑘 are respectively the nonce length and the
key length of the scheme in bits. We assume that |ℰ𝐾(𝑁, 𝐴, 𝑀)| = |𝑀 |+ 𝜏 for some positive fixed constant
𝜏 ; that is, we will have C = 𝐶||Tag where |𝐶| = |𝑀 | and |Tag| = 𝜏 . We call 𝐶 the core ciphertext and Tag
the tag.

Remark 6 According to the CAESAR call for proposals “An authenticated cipher is a function with five
byte-string inputs and one byte-string output. The five inputs are a variable-length plaintext, variable-
length associated data, a fixed-length secret message number, a fixed-length public message number, and a
fixed-length key. The output is a variable-length ciphertext.” OMD considers the “public message number”
as the nonce and does not support a secret message number.

4.1 The OMD Mode of Operation

To use OMD one must specify a keyed compression function 𝐹 : 𝒦× ({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛 and a tag
length 𝜏 ≤ 𝑛; where the key space 𝒦 = {0, 1}𝑘 and 𝑚 ≤ 𝑛 where the case 𝑚 = 𝑛 is the optimal choice from
efficiency viewpoint. At first glance, requiring 𝑚 ≤ 𝑛 may look a bit odd as usually a compression function
has a larger input block length than its output (hash) length, so we first explain this restriction based on
the following two observations:

∙ It will be clear from the description of OMD in the sequel that at each call to the compression function
only 𝑛 random bits (namely, the output bits of the compression function) are available for encrypting
an 𝑚-bit message block, hence we must have 𝑚 ≤ 𝑛. The optimal case is when 𝑚 = 𝑛, so no random
bits are wasted. We notice that this limitation applies to any compression function based AE, therefore
a compression function based AE scheme (like OMD) will be usually less efficient than a blockcipher
based AE (like OCB) “unless” one uses a dedicated compression function which is more efficient than
the blockcipher.

∙ In practice, the compression function of standard hash functions (e.g. SHA-1 or the SHA-2 family)
are keyless, i.e. do not have a dedicated key input, therefore one will need to use 𝑘 bits of their
𝑏-bit message block to get a keyed function. So, there will be no efficiency waste in each call to the
compression function if 𝑚 = 𝑛 and 𝑏 = 𝑛 + 𝑘; for example, when the key length is 256 bits and the
compression function of SHA-256 is used.

We let OMD-𝐹 denote the OCB mode of operation using a keyed compression function 𝐹𝐾 : {0, 1}𝑛 ×
{0, 1}𝑚 → {0, 1}𝑛 with 𝑚 ≤ 𝑛 and an unspecified tag length. We let OMD[𝐹, 𝜏 ] denote the OMD mode of
operation using keyed compression function 𝐹𝐾 and tag length 𝜏 . The encryption algorithm of OMD[𝐹, 𝜏 ]
inputs four arguments (secret key 𝐾 ∈ {0, 1}𝑘, nonce 𝑁 ∈ {0, 1}|𝑁 |, associated data 𝐴 ∈ {0, 1}*, message
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𝑀 ∈ {0, 1}*) and outputs C = 𝐶||Tag ∈ {0, 1}|𝑀 |+𝜏 . The decryption algorithm of OMD[𝐹, 𝜏 ] inputs
four arguments (secret key 𝐾 ∈ {0, 1}𝑘, nonce 𝑁 ∈ {0, 1}|𝑁 |, associated data 𝐴 ∈ {0, 1}*, ciphertext
𝐶||Tag ∈ {0, 1}*) and either outputs the whole 𝑀 ∈ {0, 1}|𝐶|−𝜏 at once or an error message (⊥). Note that
we have either 𝐶 = 𝐶1 · · ·𝐶ℓ or 𝐶 = 𝐶1 · · ·𝐶ℓ−1𝐶* depending on whether the message length in bits is a
multiple of the block length 𝑚 or not, respectively.

Figure 1 depicts the construction of the encryption algorithm of OMD[𝐹, 𝜏 ]. The construction of the
decryption algorithm is straightforward and almost the same as the encryption algorithm except a tag
comparison (verification) at the end of the decryption process. Figure 2 describes the encryption and
decryption algorithms of OMD[𝐹, 𝜏 ]. We remind that for two binary strings 𝑋 = 𝑋𝑚−1 · · ·𝑋0 and 𝑌 =
𝑌𝑛−1 · · ·𝑌0, the notation 𝑋 ⊕ 𝑌 denotes bitwise xor of 𝑋𝑚−1 · · ·𝑋𝑚−1−ℓ and 𝑌𝑛−1 · · ·𝑌𝑛−1−ℓ where ℓ =
𝑚𝑖𝑛 {𝑚− 1, 𝑛− 1}.

Computing the masking values. As seen from the description of OMD in Figure 1, before each call to
the underlying keyed compression function we xor a masking value denoted as Δ𝑁,𝑖,𝑗 (the top and middle
parts of Figure 1) and Δ̄𝑖,𝑗 (the bottom part of Figure 1). In the following, we describe how these masks are
generated. We note that there are both security and efficient related criteria to be satisfied by the method
to compute the masking values. We only explain the efficiency criterion for computing the masks here; the
security related properties will be made clear in Section 5. By an efficient masking scheme, we mean a
scheme in which the mask value needed for processing a block can be efficiently computed from the mask
value used for processing the previous block.

There are different ways to compute the masking values to satisfy both the security and efficiency criteria;
for example, we refer to [12,17,19]. We use the method proposed in [17].

In the following, all multiplications are in 𝐺𝐹 (2𝑛), ntz(𝑖) denotes the number of trailing zeros (i.e. the
number of rightmost bits that are zero) in the binary representation of a positive integer 𝑖.

Initialization. Δ𝑁,0,0 = 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁 |, 0𝑚); Δ̄0,0 = 0𝑛; 𝐿* = 𝐹𝐾(0𝑛, ⟨𝜏⟩𝑚); 𝐿[0] = 4.𝐿*, and 𝐿[𝑖] =
2.𝐿[𝑖− 1] for 𝑖 ≥ 1. We note that the values 𝐿[𝑖] can be preprocessed and stored (for a fast implemen-
tation) in a table for 0 ≤ 𝑖 ≤ ⌈log2(ℓ𝑚𝑎𝑥)⌉, where ℓ𝑚𝑎𝑥 is the the bound on the maximum number of
𝑚-bit blocks in any message that can be encrypted or decrypted. Alternatively, (if there is a memory
restriction) they can be computed on-the-fly for 𝑖 ≥ 1. It is also possible to precompute and store
some values and then compute the others as needed on-the-fly.

Masking sequence for processing the message. For 𝑖 ≥ 1: Δ𝑁,𝑖,0 = Δ𝑁,𝑖−1,0 ⊕ 𝐿[ntz(𝑖)]; Δ𝑁,𝑖,1 =
Δ𝑁,𝑖,0 ⊕ 2.𝐿*; and Δ𝑁,𝑖,2 = Δ𝑁,𝑖,0 ⊕ 3.𝐿*.

Masking sequence for processing the associate data. Δ̄𝑖,0 = Δ̄𝑖−1,0⊕𝐿[ntz(𝑖)] for 𝑖 ≥ 1; and Δ̄𝑖,1 =
Δ̄𝑖,0 ⊕ 𝐿* for 𝑖 ≥ 0.

4.2 OMD-sha256: Primary Recommendation for Instantiating OMD

Our primary recommendation to instantiate OMD is called OMD-sha256 and uses the underlying compres-
sion function of SHA-256 [1]. This is intended to be the appropriate choice for implementations on 32-bit
machines. The compression function of SHA-256 is a map sha-256 : {0, 1}256 × {0, 1}512 → {0, 1}256. On
input a 256-bit chaining block 𝑋 and a 512-bit message block 𝑌 , it outputs a 256-bit digest 𝑍, i.e. let
𝑍 = sha-256(𝑋, 𝑌 ). The description of sha-256 is provided in subsection 4.4.

To use OMD with sha-256, we use the first 256-bit argument 𝑋 for chaining values as usual. In our
notation (see Figure 1) this means that 𝑛 = 256. We use the 512-bit argument 𝑌 (the message block
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∆̄1,0 ∆̄a−1,0 ∆̄a,0

Computing Taga for an associate data whose length is
not a multiple of the input length. The final block is
padded to make it a full block.

FK

A∗||10n+m−|A∗|−1

n + m
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Taga

FK

A1
n + m
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Aa−1
n + m

n m

n bits

∆̄1,0 ∆̄a−1,0 ∆̄a−1,1

Tage

n bits

τ bits

Taga

Tag

Figure 1: The encryption process of OMD[𝐹, 𝜏 ] using a keyed compression function 𝐹𝐾 : ({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 with 𝑚 ≤ 𝑛. (TOP) The encryption process when the message length is a multiple of the block
length 𝑚 and no padding is required. (Middle) The encryption process when the message length is not
a multiple of the block length and the final block 𝑀* is padded to make a full block 𝑀*||10𝑚−|𝑀*|−1 .
(Bottom, Left) Computing the intermediate value 𝑇𝑎 when the bit length of the associated data is a
multiple of the input length 𝑛 + 𝑚. (Bottom, Right) Computing 𝑇𝑎 when the bit length of the associated
data is not a multiple of 𝑛 + 𝑚 and the final block is padded to make a full block 𝐴*||10𝑛+𝑚−|𝐴*|−1 is
needed. The output ciphertext is 𝐶||Tag. For operation ⊕ see our convention in Section 2. Five types
of key-dependent masking values (corresponding to five mutually exclusive tweak sets) are used; these are
denoted by Δ𝑁,𝑖,0, Δ𝑁,𝑖,1, Δ𝑁,𝑖,2, Δ̄𝑖,0 and Δ̄𝑗,1, for 𝑖 ≥ 1 and 𝑗 ≥ 0, where 𝑁 is the nonce. Note that the
masks used in computing 𝑇𝑎 do not depend on the nonce.
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1: Algorithm Initialize(𝐾)
2: 𝐿* ← 𝐹𝐾(0𝑛, ⟨𝜏⟩𝑚)
3: 𝐿[0]← 4.𝐿* ◁ 2.(2.𝐿*), doubling in 𝐺𝐹 (2𝑛)
4: for 𝑖← 1 to ⌈log2(ℓ𝑚𝑎𝑥)⌉ do
5: 𝐿[𝑖] = 2.𝐿[𝑖− 1] ◁ doubling in 𝐺𝐹 (2𝑛)
6: return

1: Algorithm HASH𝐾(𝐴)
2: 𝑏← 𝑛 + 𝑚

3: 𝐴1||𝐴2 · · ·𝐴ℓ−1||𝐴ℓ
𝑏← 𝐴, where |𝐴𝑖| = 𝑏 for

1 ≤ 𝑖 ≤ ℓ− 1 and |𝐴ℓ| ≤ 𝑏
4: Tag𝑎 ← 0𝑛

5: Δ← 0𝑛

6: for 𝑖← 1 to ℓ− 1 do
7: Δ← Δ⊕ 𝐿[ntz(𝑖)]
8: Left← 𝐴𝑖[𝑏− 1 · · ·𝑚]; Right← 𝐴𝑖[𝑚− 1 · · · 0]
9: Tag𝑎 ← Tag𝑎 ⊕ 𝐹𝐾(Left⊕Δ, Right)

10: if |𝐴ℓ| = 𝑏 then
11: Δ← Δ⊕ 𝐿[ntz(ℓ)]
12: Left← 𝐴ℓ[𝑏− 1 · · ·𝑚]; Right← 𝐴ℓ[𝑚− 1 · · · 0]
13: Tag𝑎 ← Tag𝑎 ⊕ 𝐹𝐾(Left⊕Δ, Right)
14: else
15: Δ← Δ⊕ 𝐿*
16: Left← 𝐴ℓ||10𝑏−|𝐴ℓ|−1[𝑏− 1 · · ·𝑚]
17: Right← 𝐴ℓ||10𝑏−|𝐴ℓ|−1[𝑚− 1 · · · 0]
18: Tag𝑎 ← Tag𝑎 ⊕ 𝐹𝐾(Left⊕Δ, Right)
19: return Tag𝑎

1: Algorithm ℰ𝐾(𝑁, 𝐴, 𝑀)
2: if |𝑁 | > 𝑛− 1 then
3: return ⊥
4: 𝑀1||𝑀2 · · ·𝑀ℓ−1||𝑀ℓ

𝑚← 𝑀 , where |𝑀𝑖| = 𝑚 for
1 ≤ 𝑖 ≤ ℓ− 1 and |𝑀ℓ| ≤ 𝑚

5: Δ← 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁|, 0𝑚) ◁ initialize Δ𝑁,0,0
6: 𝐻 ← 0𝑛

7: Δ← Δ⊕ 𝐿[0] ◁ compute Δ𝑁,1,0
8: 𝐻 ← 𝐹𝐾(𝐻 ⊕Δ, ⟨𝜏⟩𝑚)
9: for 𝑖← 1 to ℓ− 1 do

10: 𝐶𝑖 ← 𝐻 ⊕𝑀𝑖

11: Δ← Δ⊕ 𝐿[ntz(𝑖 + 1)]
12: 𝐻 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀𝑖)

13: 𝐶ℓ ← 𝐻 ⊕𝑀ℓ

14: if |𝑀ℓ| = 𝑚 then
15: Δ← Δ⊕ 2.𝐿*
16: Tag𝑒 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀ℓ)
17: else if |𝑀ℓ| ̸= 0 then
18: Δ← Δ⊕ 3.𝐿*
19: Tag𝑒 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀ℓ||10𝑚−|𝑀ℓ|−1)
20: else
21: Tag𝑒 ← 𝐻

22: Tag𝑎 ← HASH𝐾(𝐴)
23: Tag← (Tag𝑒 ⊕ Tag𝑎)[𝑛− 1 · · ·𝑛− 𝜏 ]
24: C← 𝐶1||𝐶2|| · · · ||𝐶ℓ||Tag
25: return C

1: Algorithm 𝒟𝐾(𝑁, 𝐴,C)
2: if |𝑁 | > 𝑛− 1 or |C| < 𝜏 then
3: return ⊥
4: 𝐶1||𝐶2 · · ·𝐶ℓ−1||𝐶ℓ||Tag 𝑚← C, where |𝐶𝑖| = 𝑚 for

1 ≤ 𝑖 ≤ ℓ− 1, |𝐶ℓ| ≤ 𝑚 and |Tag| = 𝜏
5: Δ← 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁|, 0𝑚) ◁ initialize Δ𝑁,0,0
6: 𝐻 ← 0𝑛

7: Δ← Δ⊕ 𝐿[0] ◁ compute Δ𝑁,1,0
8: 𝐻 ← 𝐹𝐾(𝐻 ⊕Δ, ⟨𝜏⟩𝑚)
9: for 𝑖← 1 to ℓ− 1 do

10: 𝑀𝑖 ← 𝐻 ⊕ 𝐶𝑖

11: Δ← Δ⊕ 𝐿[ntz(𝑖 + 1)]
12: 𝐻 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀𝑖)
13: 𝑀ℓ ← 𝐻 ⊕ 𝐶ℓ

14: if |𝐶ℓ| = 𝑚 then
15: Δ← Δ⊕ 2.𝐿*
16: Tag𝑒 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀ℓ)
17: else if |𝐶ℓ| ≠ 0 then
18: Δ← Δ⊕ 3.𝐿*
19: Tag𝑒 ← 𝐹𝐾(𝐻 ⊕Δ, 𝑀ℓ||10𝑚−|𝑀ℓ|−1)
20: else
21: Tag𝑒 ← 𝐻

22: Tag𝑎 ← HASH𝐾(𝐴)
23: Tag′ ← (Tag𝑒 ⊕ Tag𝑎)[𝑛− 1 · · ·𝑛− 𝜏 ]
24: if Tag′ = Tag then
25: return 𝑀 ←𝑀1||𝑀2|| · · · ||𝑀ℓ

26: else
27: return ⊥

Figure 2: Definition of OMD[𝐹, 𝜏 ]. The function 𝐹 : 𝒦×({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛 is a keyed compression
function with 𝒦 = {0, 1}𝑘 and 𝑚 ≤ 𝑛. The tag length is 𝜏 ∈ {0, 1, · · · , 𝑛}. Algorithms ℰ and 𝒟 can be
called with arguments 𝐾 ∈ 𝒦, 𝑁 ∈ {0, 1}≤𝑛−1, and 𝐴, 𝑀,C ∈ {0, 1}*. ℓ𝑚𝑎𝑥 is the bound on the maximum
number of blocks in any input to the encryption or decryption algorithms.
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in sha-256) to input both a 256-bit message block and the key 𝐾 which can be of any length 𝑘 ≤ 256
bits. If 𝑘 < 256 then let the key be 𝐾||0256−𝑘. That is, we define the keyed compression function 𝐹𝐾 :
{0, 1}256 × {0, 1}256 → {0, 1}256 needed in OMD as 𝐹𝐾(𝐻, 𝑀) = sha-256(𝐻, 𝐾||0256−𝑘||𝑀) .

The parameters of OMD-sha256 are as follows:

∙ The message block length in bits is 𝑚 = 256; i.e. |𝑀𝑖| = 256. If needed, we pad the final block of the
message with 10* (i.e., a single 1 followed by the minimal number of 0’s needed) to make its length
exactly 256 bits.

∙ The key length in bits can be 80 ≤ 𝑘 ≤ 256; but 𝑘 < 128 is not recommended. If needed, we pad the
key 𝐾 with 0256−𝑘 to make its length exactly 256 bits.

∙ The nonce (public message number) length in bits can be 96 ≤ |𝑁 | ≤ 255. We always pad the nonce
with 10255−|𝑁 | to make its length exactly 256 bits.

∙ The secret message number length in bits is 0; that is, our scheme does not support secret message
numbers.

∙ The associated data block length in bits is 2𝑛 = 512; i.e. |𝐴𝑖| = 512. If needed, we pad the final block
of the associated data with 10* (i.e., a single 1 followed by the minimal number of 0’s needed) to make
its length exactly 512 bits.

∙ The tag length in bits can be 32 ≤ 𝜏 ≤ 256; but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 5 for the security bounds.

4.3 OMD-sha512: Secondary Recommendation for Instantiating OMD

Our secondary recommendation to instantiate OMD is called OMD-sha512 and uses the underlying com-
pression function of SHA-512 [1]. This is intended to be the appropriate choice for implementations on
64-bit machines. The compression function of SHA-512 is a map sha-512 : {0, 1}512×{0, 1}1024 → {0, 1}512.
On input a 512-bit chaining block 𝑋 and a 1024-bit message block 𝑌 , it outputs a 512-bit digest 𝑍, i.e. let
𝑍 = sha-512(𝑋, 𝑌 ). The description of sha-512 is provided in subsection 4.4.

To use OMD with sha-512, we use the first 512-bit argument 𝑋 for chaining values as usual. In our
notation (see Figure 1) this means that 𝑛 = 512. We use the 1024-bit argument 𝑌 (the message block
in sha-512) to input both a 512-bit message block and the key 𝐾 which can be of any length 𝑘 ≤ 512
bits. If 𝑘 < 512 then let the key be 𝐾||0512−𝑘. That is, we define the keyed compression function 𝐹𝐾 :
{0, 1}512 × {0, 1}512 → {0, 1}512 needed in OMD as 𝐹𝐾(𝐻, 𝑀) = sha-512(𝐻, 𝐾||0512−𝑘||𝑀) .

The parameters of OMD-sha512 are set as follows:

∙ The message block length in bits is 𝑚 = 512; i.e. |𝑀𝑖| = 512. If needed, we pad the final block of the
message with 10* (i.e., a single 1 followed by the minimal number of 0’s needed) to make its length
exactly 512 bits.

∙ The key length in bits can be 80 ≤ 𝑘 ≤ 512; but 𝑘 < 128 is not recommended. If needed, we pad the
key 𝐾 with 0512−𝑘 to make its length exactly 512 bits.

∙ The nonce (public message number) length in bits can be 96 ≤ |𝑁 | ≤ 511. We always pad the nonce
with 10511−|𝑁 | to make its length exactly 512 bits.

∙ The secret message number length in bits is 0; that is, our scheme does not support secret message
numbers.

15



∙ The associated data block length in bits is 2𝑛 = 1024; i.e. |𝐴𝑖| = 1024. If needed, we pad the final
block of the associated data with 10* (i.e., a single 1 followed by the minimal number of 0’s needed)
to make its length exactly 1024 bits.

∙ The tag length in bits can be 32 ≤ 𝜏 ≤ 512; but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 5 for the security bounds.

4.4 Compression Functions of SHA-256 and SHA-512

The CAESAR call for submissions has mentioned that “The cipher definition is required to be self-contained,
including all information necessary to implement the cipher from scratch, except that the following functions
are free to be used without being defined: AES-128 with 128-bit key, 128-bit input, and 128-bit output;
AES-192 with 192-bit key, 128-bit input, and 128-bit output; AES-256 with 256-bit key, 128-bit input, and
128-bit output.”

Therefore, in this section we include a description of the compression functions of the standard SHA-
256 and SHA-512 hash functions from NIST FIPS PUB 180-4 [1]. We refer to the underlying compression
functions of these standard hash functions as sha-256 and sha-512, respectively.

4.4.1 Preliminaries

In the following, by “word” we mean a group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on
the compression function algorithm. Namely, in sha-256 each word is a 32-bit string and in sha-512 each
word is a 64-bit string.

ROTRn(x): The rotate right (circular right shift) operation, where 𝑥 is a 𝑤-bit word and 𝑛 an integer
with 0 ≤ 𝑛 < 𝑤, is defined by ROTR𝑛(𝑥) = (𝑥≫ 𝑛) ∨ (𝑥≪ 𝑤 − 𝑛)

SHRn(x): The right shift operation, where 𝑥 is a 𝑤-bit word and 𝑛 an integer with 0 ≤ 𝑛 < 𝑤, is defined
by SHR𝑛(𝑥) = (𝑥≫ 𝑛).

The addition 𝑥 + 𝑦 of two 𝑤-bit words 𝑥 and 𝑦 is defined as follows. The words 𝑥 and 𝑦 represent integers
𝑋 and 𝑌 , where 0 ≤ 𝑋 < 2𝑤 and 0 ≤ 𝑌 < 2𝑤. Compute 𝑍 = (𝑋 + 𝑌 ) mod 2𝑤. Then 0 ≤ 𝑍 < 2𝑤. Convert
the integer 𝑍 to a word 𝑧 and define 𝑧 = 𝑥 + 𝑦.

4.4.2 The sha-256 Compression Function

sha-256 uses six logical functions, where each function operates on 32-bit words, which are represented as
𝑥, 𝑦, and 𝑧and outputs a 32-bit word as a result. These functions are defined as follows:

𝐶ℎ : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32, 𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (¬𝑥 ∧ 𝑧)

𝑀𝑎𝑗 : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32, 𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧)⊕ (𝑦 ∧ 𝑧)

Σ{256}
0 : {0, 1}32 → {0, 1}32, Σ{256}

0 (𝑥) = ROTR2(𝑥)⊕ ROTR13(𝑥)⊕ ROTR22(𝑥)

Σ{256}
1 : {0, 1}32 → {0, 1}32, Σ{256}

1 (𝑥) = ROTR6(𝑥)⊕ ROTR11(𝑥)⊕ ROTR25(𝑥)

𝜎
{256}
0 : {0, 1}32 → {0, 1}32, 𝜎

{256}
0 (𝑥) = ROTR7(𝑥)⊕ ROTR18(𝑥)⊕ SHR3(𝑥)

𝜎
{256}
1 : {0, 1}32 → {0, 1}32, 𝜎

{256}
1 (𝑥) = ROTR17(𝑥)⊕ ROTR19(𝑥)⊕ SHR10(𝑥)
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During the process of compression, a sequence of 64 constant 32-bit words, 𝐾
{256}
0 , ..., 𝐾

{256}
63 are used. These

32-bit words represent the first 32 bits of the fractional parts of the cube roots of the first 64 prime numbers.
In hex, these constant words are (from left to right):

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

The Compression Process. The sha-256 compression function is defined as follows:

sha-256 : {0, 1}256 × {0, 1}512 −→ {0, 1}256, sha-256(𝐻, 𝑀) = 𝐶

Let 𝐻 be the 256-bit hash input (chaining input) and 𝑀 be the 512-bit message input. These two inputs are
represented respectively by an array of 8 32-bit words 𝐻0 · · ·𝐻7 and an array of 16 32-bit words 𝑀0 · · ·𝑀15.
The 256-bit output value 𝐶 is also represented as an array of 8 32-bit words 𝐶0 · · ·𝐶7.

The compression function processes as below:

1. Prepare the message schedule, {𝑊𝑡}:

𝑊𝑡 =
{︃

𝑀𝑡 0 ≤ 𝑡 ≤ 15
𝜎

{256}
1 (𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎

{256}
0 (𝑊𝑡−15) + 𝑊𝑡−16 16 ≤ 𝑡 ≤ 63

2. Initialize the eight working variables, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ with the hash input value 𝐻:
𝑎 = 𝐻0
𝑏 = 𝐻1
𝑐 = 𝐻2
𝑑 = 𝐻3
𝑒 = 𝐻4
𝑓 = 𝐻5
𝑔 = 𝐻6
ℎ = 𝐻7

3. For 𝑡 = 0 to 63, do:
{
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𝑇1 = ℎ + Σ{256}
1 (𝑒) + 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾

{256}
𝑡 + 𝑊𝑡

𝑇2 = Σ{256}
0 (𝑎) + 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)

ℎ = 𝑔
𝑔 = 𝑓
𝑓 = 𝑒
𝑒 = 𝑑 + 𝑇1
𝑑 = 𝑐
𝑐 = 𝑏
𝑏 = 𝑎
𝑎 = 𝑇1 + 𝑇2

}

4. Compute the 256-bit output (hash) value 𝐶 = 𝐶0 · · ·𝐶7 as:
𝐶0 = 𝑎 + 𝐻0
𝐶1 = 𝑏 + 𝐻1
𝐶2 = 𝑐 + 𝐻2
𝐶3 = 𝑑 + 𝐻3
𝐶4 = 𝑒 + 𝐻4
𝐶5 = 𝑓 + 𝐻5
𝐶6 = 𝑔 + 𝐻6
𝐶7 = ℎ + 𝐻7

4.4.3 The sha-512 Compression Function

sha-512 uses six logical functions, where each function operates on 64-bit words, which are represented as
𝑥, 𝑦, and 𝑧and outputs a 64-bit word as a result. These functions are defined as follows:

𝐶ℎ : {0, 1}64 × {0, 1}64 × {0, 1}64 → {0, 1}64, 𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (¬𝑥 ∧ 𝑧)

𝑀𝑎𝑗 : {0, 1}64 × {0, 1}64 × {0, 1}64 → {0, 1}64, 𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⊕ (𝑥 ∧ 𝑧)⊕ (𝑦 ∧ 𝑧)

Σ{512}
0 : {0, 1}64 → {0, 1}64, Σ{256}

0 (𝑥) = ROTR28(𝑥)⊕ ROTR34(𝑥)⊕ ROTR39(𝑥)

Σ{512}
1 : {0, 1}64 → {0, 1}64, Σ{256}

1 (𝑥) = ROTR14(𝑥)⊕ ROTR18(𝑥)⊕ ROTR41(𝑥)

𝜎
{512}
0 : {0, 1}64 → {0, 1}64, 𝜎

{256}
0 (𝑥) = ROTR1(𝑥)⊕ ROTR8(𝑥)⊕ SHR7(𝑥)

𝜎
{512}
1 : {0, 1}64 → {0, 1}64, 𝜎

{256}
1 (𝑥) = ROTR19(𝑥)⊕ ROTR61(𝑥)⊕ SHR6(𝑥)

During the process of compression, a sequence of 80 constant 64-bit words 𝐾
{512}
0 , ..., 𝐾

{512}
79 is used. These

64-bit words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime numbers.
In hex, these constant words are (from left to right):
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428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

The Compression Process. The sha-512 compression function is defined as follows:

sha-512 : {0, 1}512 × {0, 1}1024 −→ {0, 1}512, sha-512(𝐻, 𝑀) = 𝐶

Let 𝐻 be the 512-bit hash input (chaining input) and 𝑀 be the 1024-bit message input. These two inputs are
represented respectively by an array of 8 64-bit words 𝐻0 · · ·𝐻7 and an array of 16 64-bit words 𝑀0 · · ·𝑀15.
The 512-bit output value 𝐶 is also represented as an array of 8 64-bit words 𝐶0 · · ·𝐶7.

The compression function processes as described below:

1. Preparing the message schedule, {𝑊𝑡}:

𝑊𝑡 =
{︃

𝑀𝑡 0 ≤ 𝑡 ≤ 15
𝜎

{512}
1 (𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎

{512}
0 (𝑊𝑡−15) + 𝑊𝑡−16 16 ≤ 𝑡 ≤ 79

2. Initialize the eight working variables, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ with the hash input value 𝐻:
𝑎 = 𝐻0
𝑏 = 𝐻1
𝑐 = 𝐻2
𝑑 = 𝐻3
𝑒 = 𝐻4
𝑓 = 𝐻5
𝑔 = 𝐻6
ℎ = 𝐻7

3. For 𝑡 = 0 to 79, do:
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{

𝑇1 = ℎ + Σ{512}
1 (𝑒) + 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾

{512}
𝑡 + 𝑊𝑡

𝑇2 = Σ{512}
0 (𝑎) + 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)

ℎ = 𝑔
𝑔 = 𝑓
𝑓 = 𝑒
𝑒 = 𝑑 + 𝑇1
𝑑 = 𝑐
𝑐 = 𝑏
𝑏 = 𝑎
𝑎 = 𝑇1 + 𝑇2

}

4. Computing the 512-bit output (hash) value 𝐶 = 𝐶0 · · ·𝐶7 as:
𝐶0 = 𝑎 + 𝐻0
𝐶1 = 𝑏 + 𝐻1
𝐶2 = 𝑐 + 𝐻2
𝐶3 = 𝑑 + 𝐻3
𝐶4 = 𝑒 + 𝐻4
𝐶5 = 𝑓 + 𝐻5
𝐶6 = 𝑔 + 𝐻6
𝐶7 = ℎ + 𝐻7
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5 Security Analysis
Theorem 1 provides the security bounds of OMD.

Theorem 1 Fix 𝑛 ≥ 1 and 𝜏 ∈ {0, 1, · · · , 𝑛}. Let 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a PRF, where
the key space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛. Then

Advpriv
OMD[𝐹,𝜏 ](𝑡, 𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) ≤ Advprf

𝐹 (𝑡′, 2𝜎𝑒) + 3𝜎2
𝑒

2𝑛

Advauth
OMD[𝐹,𝜏 ](𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤ Advprf

𝐹 (𝑡′, 2𝜎) + 3𝜎2

2𝑛
+ 𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛
+ 𝑞𝑣

2𝜏

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, ℓ𝑚𝑎𝑥 denotes the max-
imum number of 𝑚-bit blocks in an encryption or decryption query, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐, and
𝜎𝑒 and 𝜎 are the total number of calls to the underlying compression function 𝐹 in all queries asked by the
CPA and CCA adversaries against the privacy and authenticity of the scheme, respectively.

The proof is obtained by combing Lemma 2 in subsection 5.1 with Lemma 3 and Lemma 4 in subsec-
tion 5.2.

Remark 7 Referring to subsection 3 for definitions of the resource parameters, it can be seen that: 𝜎𝑒 =
⌈𝜎𝑀 /𝑚⌉+⌈𝜎𝐴/(𝑛 + 𝑚)⌉+𝑞𝑒+2; 𝜎 = ⌈(𝜎𝑀 + 𝜎C′)/𝑚⌉+⌈(𝜎𝐴 + 𝜎𝐴′)/(𝑛 + 𝑚)⌉+𝑞+2; and ℓ𝑚𝑎𝑥 = ⌈𝐿𝑚𝑎𝑥/𝑚⌉.

5.1 Generalization of OMD based on Tweakable Random Functions

Figure 3 shows the OMD[ ̃︀𝑅, 𝜏 ] scheme which is a generalization of 𝑂𝑀𝐷[𝐹, 𝜏 ] using a tweakable random
function ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛. The tweak space 𝒯 consists of five mutually exclusive sets
of tweaks; namely, 𝒯 = 𝒩 × N × {0} ∪ 𝒩 × N × {1} ∪ 𝒩 × N × {2} ∪ N × {0} ∪ N × {1}, where
𝒩 = {0, 1}|𝑁 | is the set of nonces and N is the set of positive integers.

Lemma 2 Let OMD[ ̃︀𝑅, 𝜏 ] be the scheme shown in Figure 3. Then

Advpriv
OMD[̃︀𝑅,𝜏 ]

(𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) = 0

Advauth
OMD[̃︀𝑅,𝜏 ](𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤ 𝑞𝑣ℓ𝑚𝑎𝑥

2𝑛
+ 𝑞𝑣

2𝜏

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, ℓ𝑚𝑎𝑥 denotes the max-
imum number of 𝑚-bit blocks in an encryption or decryption query, and 𝜎𝑒 and 𝜎 are the total number of
calls to the underlying tweakable random function ̃︀𝑅 in all queries asked by the CPA and CCA adversaries
against the privacy and authenticity of the scheme, respectively.

The proof of the privacy bound is straightforward. Let 𝐴 be a CPA adversary that asks (encryp-
tion) queries (𝑁1, 𝐴1, 𝑀1) · · · (𝑁 𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀 𝑞𝑒) where all 𝑁𝑥 values (for 1 ≤ 𝑥 ≤ 𝑞𝑒) are distinct due to the
nonce-respecting assumption on the adversary 𝐴. Referring to Figure 3, this means that we are applying
independent random functions ̃︀𝑅𝑁𝑥,𝑖,𝑗 each to a single point, hence the images that the adversary sees (i.e.
C𝑥 for 1 ≤ 𝑥 ≤ 𝑞𝑒) are fresh uniformly random values.

The authenticity bound can be shown by a straightforward but lengthy case analysis. First we consider
the single verification case where the adversary only makes one decryption (verification) query and then we
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Computing Taga for an associate data whose length is
a multiple of the input length (i.e. |Aa| = n + m).

Computing Taga for an associate data whose length is
not a multiple of the input length. The final block is
padded to make it a full block.

Encrypting a message whose length is not a multiple of the block length. The final
message block is padded to make it a full block.

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

M1 M2 M`−1 M∗||10m−|M∗|−1〈τ〉m

M1 M2 M3 M∗

C∗C3C1

R̃〈N,1,0〉

C2

Tage
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,2〉

A∗||10n+m−|A∗|−1Aa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a−1,1〉

n + m

n m

n + m

n m

n + m

n m

AaAa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a,0〉

n + m

n m

n + m

n m

n + m

n m

M1 M2 M`−1 M`〈τ〉m

M1 M2 M3 M`

C`C3C1

R̃〈N,1,0〉

C2

TageH0 = 0n
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,1〉H1 H2 H3 H`

H1 H2 H3 H`
H0 = 0n

Tage

Taga

n bits

τ bits
Tag

Figure 3: The OMD[ ̃︀𝑅, 𝜏 ] scheme using a tweakable random function ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚)→ {0, 1}𝑛

(i.e. ̃︀𝑅 $← Func𝒯 (𝑛 + 𝑚, 𝑛)). The tweak space 𝒯 consists of five mutually exclusive sets of tweaks; namely,
𝒯 = 𝒩 ×N× {0} ∪ 𝒩 ×N× {1} ∪ 𝒩 ×N× {2} ∪ N× {0} ∪ N× {1}, where 𝒩 = {0, 1}|𝑁 | is the set of
nonces, N is the set of positive integers.
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will use the generic result of Bellare et al. [5] to get a bound against adversaries that make multiple (say 𝑞𝑣)
verification queries. Let 𝐴 be a CCA adversary making encryption queries (𝑁1, 𝐴1, 𝑀1) · · · (𝑁 𝑞𝑒 , 𝐴𝑞𝑒 , 𝑀 𝑞𝑒).
Let 𝑀 𝑖 = 𝑀 𝑖

1 · · ·𝑀 𝑖
ℓ𝑖

or 𝑀 𝑖 = 𝑀 𝑖
1 · · ·𝑀 𝑖

ℓ𝑖−1𝑀 𝑖
* be the message queries and 𝐴𝑖 = 𝐴𝑖

1 · · ·𝐴𝑖
𝑎𝑖

or 𝐴𝑖 =
𝐴𝑖

1 · · ·𝐴𝑖
𝑎𝑖−1𝐴𝑖

* be the associated data queries. Let C𝑖 = 𝐶𝑖||Tag𝑖 be the ciphertext received for query
(𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖) . That is, we use superscripts to indicate query numbers and subscripts to denote the block
indices in each query.

Let (𝑁, 𝐴,C) be the forgery attempt by the adversary, where 𝑁 ∈ {0, 1}|𝑁 | is the nonce, 𝐴 = 𝐴1 · · ·𝐴𝑎

or 𝐴 = 𝐴1 · · ·𝐴𝑎−1𝐴* is the associate data, C = 𝐶||Tag is the ciphertext where 𝐶 = 𝐶1 · · ·𝐶ℓ (where
|𝐶𝑖| = 𝑚 for 1 ≤ 𝑖 ≤ ℓ) or 𝐶 = 𝐶1 · · ·𝐶ℓ−1𝐶* (where |𝐶𝑖| = 𝑚 for 1 ≤ 𝑖 ≤ ℓ − 1 and |𝐶*| < 𝑚), and
Tag = (Tag𝑒⊕Tag𝑎)[𝑛− 1 · · ·𝑛− 𝜏 ] ∈ {0, 1}𝜏 is the tag. Let 𝑀 = 𝑀1 · · ·𝑀ℓ or 𝑀 = 𝑀1 · · ·𝑀ℓ−1𝑀* denote
the corresponding decrypted messages, respectively. Note that no superscripts are used for the strings in
the alleged forgery by the adversary. We have the following disjoint cases:

Case 1: 𝑁 /∈
{︀
𝑁1, · · ·𝑁 𝑞𝑒

}︀
. Adversary has to find a correct Tag that is the first 𝜏 bits of the valuẽ︀𝑅⟨𝑁,𝑥,𝑦⟩(final input) ⊕ Tag𝑎 but has not seen any image under ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(.), hence the probability that

the adversary can succeed in doing this is 2−𝜏 . By “final input” we mean 𝐻ℓ||𝑀ℓ or 𝐻ℓ||𝑀*||10𝑚−|𝑀*|−1

when |𝐶| ≠ 0 in which case the final tweak used to generate Tag𝑒 will be either ⟨𝑁, ℓ, 1⟩ or ⟨𝑁, ℓ, 2⟩
(depending on whether the final block is a full block or not); otherwise (i.e. for empty message) the
“final input” will be 𝐻0|| ⟨𝜏⟩𝑚 and hence the final tweak used to generate Tag𝑒 will be ⟨𝑁, 1, 0⟩.

Case 2: 𝑁 = 𝑁 𝑖, |𝐶| ≠ |𝐶𝑖|, and one of |𝐶| and |𝐶𝑖| is a multiple of 𝑚 but the other is not. We can ignore
all queries other than the 𝑖th query since the responses to such queries are random and unrelated
(because of using different nonces) to the adversary’s task to make the alleged forgery 𝑁, 𝐴,C with
𝑁 = 𝑁 𝑖. That is, we can assume that adversary has only made a single encryption query (𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖)
and received 𝐶𝑖||Tag𝑖. Then as in Case 1 the adversary has to find a correct Tag, i.e. the first 𝜏 bits
of the value ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(final input)⊕ Tag𝑎, but has not seen any image under ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(.). Note that we
can even give Tag𝑎 to the adversary. More precisely, consider the case that |𝐶𝑖| is a multiple of 𝑚 but
|𝐶| is not; then adversary must guess the first 𝜏bits of the value ̃︀𝑅⟨𝑁,ℓ,2⟩(final input)⊕ Tag𝑎, but has
seen no image under ̃︀𝑅⟨𝑁,ℓ,2⟩(.). Similarly, in the case that |𝐶| is a multiple of 𝑚 but |𝐶𝑖| is not, the
adversary must guess the first 𝜏 bits of the value ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(final input)⊕Tag𝑎 for (𝑁, 𝑥, 𝑦) = (𝑁, 1, 0) if
|𝐶| = 0 or (𝑁, 𝑥, 𝑦) = (𝑁, ℓ, 1) if |𝐶| ≠ 0, but the adversary has seen no image under ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(.) under
either case.Therefore, the probability that the adversary can succeed in guessing Tag is 2−𝜏 .

Case 3: 𝑁 = 𝑁 𝑖, |𝐶| ̸= |𝐶𝑖|, and either both |𝐶| and |𝐶𝑖| are multiple of 𝑚 or none of them is. We
may ignore all queries but the 𝑖th query as responses to such queries are unrelated to the adversary’s
task at hand. If both |𝐶| and |𝐶𝑖| are multiple of 𝑚 then |𝐶| ≠ |𝐶𝑖| means that ℓ ̸= ℓ𝑖, so from
(the top of) Figure 3 it can be easily seen that in this case even if the adversary knows Tag𝑎 it must
still guess the first 𝜏 bits of the output of the random function ̃︀𝑅⟨𝑁,ℓ,1⟩ while it has seen no image
of this function; the probability to succeed in guessing Tag is clearly 2−𝜏 . Now, let’s consider the
case that neither |𝐶| nor |𝐶𝑖| is a multiple of 𝑚 then |𝐶| ≠ |𝐶𝑖| means that we have two cases:
(1) ℓ ̸= ℓ𝑖, and (2) ℓ = ℓ𝑖 but |𝐶*| ̸= |𝐶𝑖

*|. In the first case, it can be seen the adversary must
guess the first 𝜏 bits of the random function ̃︀𝑅⟨𝑁,ℓ,2⟩ while has seen no image of this function; the
chance to do so is clearly 2−𝜏 . In the second case, the adversary must guess the first 𝜏 bits of̃︀𝑅⟨𝑁,ℓ,2⟩((𝑀* ⊕ 𝐶*)||(𝑀*||10𝑚−|𝑀*|−1)) while it has seen (𝜏 bits of) a single image of this function for
one different domain point, namely ((𝑀 𝑖

* ⊕ 𝐶𝑖
*)||(𝑀 𝑖

*||10𝑚−|𝑀 𝑖
*|−1); the probability to succeed in this

case is again 2−𝜏 . (Note that |𝑀*| = |𝐶*|. Using 10* padding for processing messages whose length is
not a multiple of 𝑚 is essential for this part.)

Case 4: 𝑁 = 𝑁 𝑖, |𝐶| = |𝐶𝑖|, and 𝐴 ̸= 𝐴𝑖. We can ignore all queries except the 𝑖th query because the
responses to such queries are random and unrelated to the adversary’s task to make the alleged forgery
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𝑁, 𝐴,C with 𝑁 = 𝑁 𝑖. That is, we can assume that adversary has only made a single encryption query
(𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖) and received 𝐶𝑖||Tag𝑖. It aims to forge using the same nonce but a different associated
data 𝐴. The adversary must find a correct Tag = (Tag𝑒 + Tag𝑎)[𝑛 − 1 · · ·𝑛 − 𝜏 ]. We consider two
subcases: (4a) |𝐴| ≠ 0 and (4b) |𝐴| = 0.

(4a). In this case, let’s assume that we even provide the adversary with all the functions ̃︀𝑅⟨𝑁,𝑥,𝑦⟩(.),
so that the adversary can compute the correct value of Tag𝑒. Then the adversary’s task will
reduce to guessing a correct value for the first 𝜏 bits of Tag𝑎. The only relevant information that
the adversary has is the first 𝜏 bits of Tag𝑖

𝑎. We show that even if the whole Tag𝑖
𝑎 is given to the

adversary, the chance to correctly guess the first 𝜏 bits of Tag𝑎 is still 2−𝜏 . This is done by a
simple case analysis:

1. if only one of |𝐴| and |𝐴𝑖| is a multiple of 𝑛 + 𝑚 then it is easy to see from Figure 3 that the
probability to guess the first 𝜏 bits of Tag𝑎 is still 2−𝜏 ;

2. if 𝑎 ̸= 𝑎𝑖 then again from Figure 3 we can see that the probability to guess the first 𝜏 bits of
Tag𝑎 is 2−𝜏 ;

3. otherwise, we have 𝑎 = 𝑎𝑖 and either both |𝐴| and |𝐴𝑖| are multiple of 𝑛 + 𝑚 or neither of
them is a multiple of 𝑛 + 𝑚. These two cases are similar. Let’s consider the first one. As we
have 𝐴 ̸= 𝐴𝑖 then it must be the case that for some 𝑗 we have 𝐴𝑗 ̸= 𝐴𝑖

𝑗 . So, the 𝑗th value
xored to Tag𝑎 , i.e. ̃︀𝑅⟨𝑗,0⟩(𝐴𝑗) is a fresh 𝑛-bit random value; hence the adversary’s chance to
guess the first 𝜏 bits of Tag𝑎 is 2−𝜏 .

(4b). In this case the adversary has seen 𝐶𝑖||Tag𝑖, where Tag𝑖 = (Tag𝑖
𝑒 ⊕ Tag𝑖

𝑎)[𝑛 − 1 · · ·𝑛 − 𝜏 ].
To get the forged tuple (𝑁, 𝜀, 𝐶||Tag) be accepted and decrypted, it must find the value of
Tag = Tag𝑒[𝑛− 1 · · ·𝑛− 𝜏 ] (as Tag𝑎 = 0𝑛 in this case). Now let’s give the adversary all functions̃︀𝑅⟨𝑁,𝑥,0⟩(.) for 1 ≤ 𝑥 ≤ ℓ. Even in this case, the adversary has seen no image of the functioñ︀𝑅⟨𝑁,𝑥,𝑗⟩(.) for 𝑗 ∈ {1, 2}, since the value Tag𝑖 = Tag𝑖

𝑒⊕Tag𝑖
𝑎 that adversary has seen does not reveal

any information about Tag𝑖
𝑒 noting that Tag𝑖

𝑎 is random and unrevealed to the adversary. So, the
probability that the adversary can correctly guess the first 𝜏 bits of Tag𝑒 = ̃︀𝑅⟨𝑁,ℓ,𝑗⟩(final input)
for 𝑗 = {1, 2} is 2−𝜏 . (Note that 𝑗 = 1 when |𝐶| is a multiple of 𝑚 and 𝑗 = 2 when |𝐶| is not a
multiple of 𝑚).

Case 5: 𝑁 = 𝑁 𝑖, 𝐴 = 𝐴𝑖, and |𝐶| = |𝐶𝑖| = ℓ𝑚 is a multiple of 𝑚. We can again ignore all queries except the
𝑖th query. Let’s assume that we make all functions ̃︀𝑅⟨𝑥,𝑦⟩ (for 𝑥 ≥ 1 and 𝑦 ∈ {0, 1}) used in processing
the associate data public to the adversary; i.e assume that the adversary even knows the values of Tag𝑎

and Tag𝑖
𝑎. Now remember that the adversary must not repeat the known tuple (𝑁 𝑖, 𝐴𝑖, 𝐶𝑖||Tag𝑖) as

its decryption query, so it must be the case that 𝐶 ̸= 𝐶𝑖 as otherwise any Tag ̸= Tag𝑖 will be incorrect
and rejected. Therefore, we may assume that the alleged forgery will be of the form (𝑁, 𝐴, 𝐶||Tag)
such that 𝐶𝑗 ̸= 𝐶𝑖

𝑗 for some 1 ≤ 𝑗 ≤ ℓ. Now referring to (the top of) Figure 3 it is easy to see that if
𝐶ℓ ̸= 𝐶𝑖

ℓ then the probability that the adversary can correctly guess the value of Tag is 2−𝜏 ; otherwise
there are two cases: (1) if 𝐻ℓ ̸= 𝐻 𝑖

ℓ the chance that Tag is correct is 2−𝜏 ; (2) if the event 𝐻ℓ = 𝐻 𝑖
ℓ

happens then adversary can simply use Tag = Tag𝑖, but this event only happens with probability at
most ℓ2−𝑛 noting that |𝐻𝑖| = 𝑛 (note that we credit the adversary for any possible collision in the
iteration, there are ℓ blocks and the probability of each collision under the random function is 2−𝑛).
So, the total success probability in this case is bounded by 1

2𝜏 + ℓ
2𝑛 .

Case 6: 𝑁 = 𝑁 𝑖, 𝐴 = 𝐴𝑖, and |𝐶| = |𝐶𝑖| is not a multiple of 𝑚. It is easy to see from Figure 3 that
the analysis of this case is the same as that of Case 5 and the success probability of the adversary is
bounded by 1

2𝜏 + ℓ
2𝑛 .
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Finally, using the results of Bellare et al. [5] we get the bound against adversaries that make 𝑞𝑣 decryption
(verification) queries as 𝑞𝑣

2𝜏 + 𝑞𝑣ℓ
2𝑛 .

5.2 Instantiating Tweakable RFs with PRFs

We proceed to complete the proof of Theorem 1 in two steps.

5.2.1 Step 1.

Replace the tweakable RF ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 in OMD with a tweakable PRF ̃︀𝐹 :
𝒦 × 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚)→ {0, 1}𝑛, where 𝒦 = {0, 1}𝑘. The following lemma states the classical bound
on the security loss induced by this replacement step. The proof is a straightforward reduction and omitted
here.

Lemma 3 Let ̃︀𝑅 : 𝒯 ×({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛 be a tweakable RF and ̃︀𝐹 : 𝒦×𝒯 ×({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 be a tweakable PRF. Then

Advpriv
OMD[̃︀𝐹 ,𝜏 ]

(𝑡, 𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) ≤ Advpriv
OMD[̃︀𝑅,𝜏 ]

(𝑞𝑒, 𝜎𝑒, ℓ𝑚𝑎𝑥) + Adṽ︁prf̃︀𝐹 (𝑡′, 𝜎𝑒)

Advauth
OMD[̃︀𝐹 ,𝜏 ](𝑡, 𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) ≤ Advauth

OMD[̃︀𝑅,𝜏 ](𝑞𝑒, 𝑞𝑣, 𝜎, ℓ𝑚𝑎𝑥) + Adṽ︁prf̃︀𝐹 (𝑡′′, 𝜎)

where 𝑞𝑒 and 𝑞𝑣 are, respectively, the number of encryption and decryption queries, 𝑞 = 𝑞𝑒 +𝑞𝑣, ℓ𝑚𝑎𝑥 denotes
the maximum number of 𝑚-bit blocks in an encryption or decryption query, 𝑡′ = 𝑡 + 𝑐𝑛𝜎𝑒 and 𝑡′′ = 𝑡 + 𝑐′𝑛𝜎
for some constants 𝑐, 𝑐′, and 𝜎𝑒 and 𝜎 are the total number of calls to the underlying compression function
𝐹 in all queries asked by the CPA and CCA adversaries against the privacy and authenticity of the scheme,
respectively.

5.2.2 Step 2.

We instantiate a tweakable PRF using a PRF by means of XORing (part of) the input by a mask generated
as a function of the key and tweak as shown in Fig. 4. This method to tweak a PRF is (essentially) the XE
method of [19]. In OMD the tweaks are of the form 𝑇 = (𝛼, 𝑖, 𝑗) where 𝛼 ∈ 𝒩 ∪ {𝜀}, 1 ≤ 𝑖 ≤ 2𝑛−8 and
𝑗 ∈ {0, 1, 2}. We note that not all combinations are used; for example, if 𝛼 = 𝜀 (empty) which corresponds
to processing of the associate data in Figure 1 then 𝑗 ̸= 2. The masking function Δ𝐾(𝑇 ) = Δ𝐾(𝛼, 𝑖, 𝑗)
outputs an 𝑛-bit mask such that the following two properties hold for any fixed string 𝐻 ∈ {0, 1}𝑛:

1. Pr[Δ𝐾(𝛼, 𝑖, 𝑗) = 𝐻] ≤ 2−𝑛 for any (𝛼, 𝑖, 𝑗)

2. Pr[Δ𝐾(𝛼, 𝑖, 𝑗)⊕Δ𝐾(𝛼′, 𝑖′, 𝑗′) = 𝐻] ≤ 2−𝑛 for (𝛼, 𝑖, 𝑗) ̸= (𝛼′, 𝑖′, 𝑗′)

where the probabilities are taken over random selection of the secret key 𝐾.
It is easy to verify that these two properties are satisfied by the specific masking scheme of OMD as

described in Section 4.

Lemma 4 Let 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a function family with key space 𝒦. Let ̃︀𝐹 :
𝒦×𝒯 ×({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛 be defined by ̃︀𝐹 ⟨𝑇 ⟩

𝐾 (𝑋||𝑌 ) = 𝐹𝐾((𝑋⊕Δ(𝑇 ))||𝑌 ) for every 𝑇 ∈ 𝒯 , 𝐾 ∈ 𝒦,
𝑋 ∈ {0, 1}𝑛 , 𝑌 ∈ {0, 1}𝑚 and Δ𝐾(𝑇 ) is the masking function of OMD as defined in Section 4. If 𝐹 is PRF
then ̃︀𝐹 is tweakable PRF; more precisely

Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ Advprf
𝐹 (𝑡′, 2𝑞) + 3𝑞2

2𝑛

.
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Figure 4: Building a tweakable PRF ̃︀𝐹 ⟨𝑇 ⟩
𝐾 : {0, 1}𝑛×{0, 1}𝑚 → {0, 1}𝑛 using a PRF 𝐹𝐾 : {0, 1}𝑛×{0, 1}𝑚 →

{0, 1}𝑛. There are several efficient ways to define the masking function Δ(𝑇 ) [12,17,19]; we use the method
of [17].

The proof is a simple adaptation of a similar result on the security of the XE construction (to tweak a
blockcipher) in [17]. As we use a PRF rather than PRP, our bound has two main terms. The first term is
a single birthday bound loss of 0.5𝑞2

2𝑛 to take care of the case that a collision might happen when computing
the initial mask Δ𝑁,0,0 = 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁 |, 0𝑚) using a PRF (𝐹 ) rather than a PRP (as in [17]). The
analysis of the remaining term (i.e. 2.5𝑞2

2𝑛 ) is essentially the same as the similar part in [17], but we note
that in the context of our construction as we are directly dealing with PRFs unlike [17] in which PRPs are
used, the bound obtained here does not have any loss terms caused by the switching (PRF<>PRP) lemma.
Therefore, instead of the 6𝑞2

2𝑛 bound in [17] (from which 3.5𝑞2

2𝑛 is due to using the switching lemma) our bound
has only 2.5𝑞2

2𝑛 .

6 Features
Using only a single well-known primitive. OMD is designed as a mode of operation for a keyed com-
pression function. Together with blockciphers and permutations, compression functions are among the most
well-known and widely used symmetric key primitives. We have a rich source of secure compression functions
thanks to more than two decades of public research and standardization activities on hash functions.

Provable security based on a single widely-accepted standard assumption. The security goals
of privacy and authenticity for OMD are achieved provably in the sense of reduction-based cryptography;
that is, any attack against these security goals will imply an attack against the classical PRF property of
the underlying compression function. We note that any keyed compression function (either a dedicated-key
one or keyed via some part of its input) must provide the classical PRF property when its key is secret as
otherwise it will be considered useless for any secret key application, e.g. for being used as a MAC. That
is, the base PRF assumption on the compression function upon which the security of OMD relies is highly
assured for compression functions of the practical, standard hash functions, thanks to the vast amount of
cryptanalytic work on these functions.

Requiring minimal basic operations in addition to the core primitive. The only operations that
OMD needs in addition to its core compression function are the basic operations of bitwise xoring two binary
strings and shifting a binary string.
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Integrated (one-pass) AEAD scheme. In OMD the mechanisms for providing privacy and authenticity
of the message are coupled in a single pass of (a variant of) the Merkle-Damgård iteration of the compression
function. This is aimed to make OMD as much efficient as possible (up to the limits that are inherent to
any compression function based AEAD scheme).

Online Encryption. OMD encryption is online; that is, it outputs a stream of ciphertext as a stream of
plaintext arrives with a constant latency and using constant memory. After receiving an indication that the
plaintext is over, the final part of ciphertext together with the tag is output.

Internally Online Decryption. OMD decryption is internally online: one can generate a stream of
plaintext bits as the stream of ciphertext bits comes in, but no part of the plaintext stream will be revealed
before the whole ciphertext stream is decrypted and the tag is verified to be correct. That is, nothing about
the decrypted plaintext should be made available to adversaries if the tag is incorrect signifying that the
queried ciphertext is invalid.

Flexible key size. OMD-sha256 can support any key length between 80 bits and 256 bits. This will be
useful for applications requiring unconventional key lengths, e.g. 96-bit keys.

Efficient. If implemented with a member of the SHA family, OMD can take advantage of the newly
introduced Intel R○ instructions that support performance acceleration of the Secure Hash Algorithm (SHA)
on Intel R○ Architecture processors. In particular, our main recommended scheme for CAESAR, called
OMD-sha256, is aimed to get the most out of these new performance accelerating instructions.

Resistance against software-level timing attacks. Most AES software implementations risk leaking
their keys through cache timing [10] unless they are implemented on machines with Intel R○ CPUs supporting
the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we note that the only operations
in OMD-sha256 are: bitwise XOR, AND and OR of two binary strings (32-bit words in the compression
function of SHA-256 and 256-bit words in the OMD iteration), fixed-distance (left and right) shift of a binary
string (32-bit words in the compression function of SHA-256 and 256-bit words in the OMD iteration), and
32-bit addition (of words in the compression function of SHA-256). These operations have the virtue of
taking constant time on typical CPUs in which case the implementations can avoid software-level timing
based side-channel leaks.

7 Design Rationale
The main design rationales behind OMD are the following:

Provable security. We aimed to have a scheme with a sound security guarantee in the style of reduction-
based provable security relying only on a single well-established standard assumption on the underlying
primitive, namely the PRF assumption on the keyed compression function. The security goals of privacy
and authenticity for OMD are achieved provably; that is, any attack against these security goals will imply
an attack against the classical PRF property of the underlying compression function. We note that any good
keyed compression function (either a dedicated-key one or keyed via some part of its input) must provide
the classical PRF property when its key is secret as otherwise it will be considered useless for almost any
secret key application, e.g. for being used as the compression function of a hash function in the standard
HMAC algorithm. That is, the base PRF assumption on the compression function upon which the security
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of OMD relies is highly assured for compression functions of the practical, standard hash functions, thanks
to the vast amount of cryptanalytic work on these functions.

Simple structure. Simplicity is important in any cryptographic algorithm: the easier an algorithm is
to understand, the easier it is to analyze and to get confidence on its security, and also less prone it is to
implementation errors. Therefore, simplicity was one of our core design goals. The high level structure
of OMD is quite simple and resembles the well-known structures for hash functions and MACs, namely,
the part that is processing the message resembles the Merkle-Damgård iteration where at each iteration
random bits are derived from the chaining values to be used for encryption and a key-dependent offset value
is xored to the chaining values. The part for processing the associated data is inspired by the XMACC
scheme(counter-based XOR MAC scheme) [6] and is a simple adaptation of the similar hashing process in
the OCB3 algorithm [17]. We note that when the message is empty then OMD acts almost the same as
XMACC on the associated data.

No trapdoor. The designers have not hidden any weaknesses in this cipher. Any attack against security
of OMD means an attack against the specific compression function that is used for instantiating OMD.
For example, attacking OMD-sha256 will imply attacking the compression function of SHA-256 in the PRF
sense.

8 Intellectual Property
The owners of OMD are the same as the designers and submitters of the algorithm as listed on the first
page of this submission. There are no patents, patent applications, planned patent applications, or other
intellectual-property constraints relevant to use of OMD. If any of this information changes, the submitters
will promptly (and within at most one month) announce these changes on the crypto-competitions mailing
list.

9 Consent
The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selection or
non-selection of this submission as a second-round candidate, a third-round candidate, a finalist, a member
of the final portfolio, or any other designation provided by the committee. The submitters understand that
the committee will not comment on the algorithms, except that for each selected algorithm the committee
will simply cite the previously published analyses that led to the selection of the algorithm. The submitters
understand that the selection of some algorithms is not a negative comment regarding other algorithms,
and that an excellent algorithm might fail to be selected simply because not enough analysis was available
at the time of the committee decision. The submitters acknowledge that the committee decisions reflect
the collective expert judgments of the committee members and are not subject to appeal. The submitters
understand that if they disagree with published analyses then they are expected to promptly and publicly
respond to those analyses, not to wait for subsequent committee decisions. The submitters understand
that this statement is required as a condition of consideration of this submission by the CAESAR selection
committee.
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A Changes from version 1.0
The specification of OMD for the 2nd round of the CAESAR competition received a minor tweak in the
initialization stage of computing the masking values; namely, the value 𝐿* used to compute the Δ𝑁,𝑖,𝑗 and
Δ̄𝑖,𝑗 masking offsets is now defined to be 𝐿* = 𝐹𝐾(0𝑛, ⟨𝜏⟩𝑚) (instead of 𝐿* = 𝐹𝐾(0𝑛, 0𝑚) in version 1.0)
where ⟨𝜏⟩𝑚 is the length of the authentication tag in bits, represented as an 𝑚-bit string. The changes
in the submission documentation from version 1.0 that correspond to this tweak are on page 12 (in the
Initialization step for computing the masking values) and page 14 (in Algorithm Initialize in Fig. 2).

We remark this change in the way 𝐿* is computed has no impact on the existing security analysis. As
the tag length 𝜏 is defined to be a parameter of OMD, it will be a constant for every instance. Moreover,
because the nonce is always padded to a non-zero block, the inputs to the compression function 𝐹𝐾 used to
derive Δ𝑁,0,0 and (0𝑛, ⟨𝜏⟩𝑚) can never collide. These two properties are sufficient for the analysis to carry
over as long as log2(𝑛) < 𝑚, which is a requirement that is met in any practical setting.

The reason for introducing this tweak was a possible misuse scenario mentioned by Dobraunig et al. [13],
in which an adversary can interact with several instances of OMD that share all the parameters except the
tag length, while using the same secret key. Although it was labeled as an “attack” by Dobraunig et al.,
we noted that this phenomenon is not an attack per se because it assumes that OMD is used in a way that
does not comply with the specification (i.e. incorrectly). Nevertheless, considering this as a type of misuse
scenario, the simple tweak we propose for OMD version 2.0 prevents any tag-length misusing attack of this
kind by making every call to the compression function depend on 𝜏 .
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