
π–Cipher v2.01

Designers: Danilo Gligoroski2 and Hristina Mihajloska3 and Simona

Samardjiska2,3 and H̊akon Jacobsen2 and Mohamed El-Hadedy4 and

Rune Erlend Jensen5 and Daniel Otte 6

Submitter: Hristina Mihajloska

hristina.mihajloska@finki.ukim.mk

29.08.2015

1Since, the name of the cipher contains the Greek letter π, in the software implementations we will
use the name PiCipher. More precisely in this document we propose the following four variants of the
cipher: Pi16Cipher096v2, Pi32Cipher128v2, Pi64Cipher128v2, Pi64Cipher256v2

2ITEM, Norwegian University of Science and Technology, Trondheim, Norway
3FCSE, ”Ss Cyril and Methodius” University, Skopje, Republic of Macedonia
4Department of Computer Science, University of Virginia, Charlottesville, Virginia
5IDI, Norwegian University of Science and Technology, Trondheim, Norway
6Ruhr Universität Bochum, Germany

Changes

Changes in the cipher

π-Cipher v2.0 has one essential tweak and one reduction of the number of rounds in

comparison with π-Cipher v1.0.

1. Padding Rule (essential tweak). In π-Cipher v1.0, the padding rule for the last

block of the AD is the following:

ADa Ð

$

&

%

ADa if |ADa| “ bitrate,

ADa||10
˚ if |ADa| ă bitrate,

and for the last block of the message M is the following:

Mm Ð

$

&

%

Mm if |Mm| “ bitrate,

Mm||10
˚ if |Mm| ă bitrate,

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

We modify the padding rule as following: ”Append 1 in any case, and fill the rest

of the block with 0s”. Thus, the changes will be:

The padding rule for the associated data AD is the following:

PadpADq “ AD1||AD2|| . . . ||ADa||10
˚

and for the message M is the following:

PadpMq “M1||M2|| . . . ||Mm||10
˚

2

3

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

Note that if the associated data AD (the message M) has length that is a multiple

of the rate, then the number of processed blocks of AD (M) is increased by one,

and thus aÐ a` 1 (mÐ m` 1).

2. Reduction of the number of rounds. We decided to reduce the number of

rounds from 4 to 3.

Changes in explanation

We made some improvements in the documentation of the π-Cipher v1.0. This is the list

of changes:

1. We reduce the number of variants of the cipher. Instead of the six variants in

v1.0, now we have just four: π16-Cipher096, π32-Cipher128, π64-Cipher128 and

π64-Cipher256.

2. We add an algorithmic description of the encryption/authentication and decryp-

tion/verification procedures in Section 1.2.

3. In Section 4.2.1 we give clarification about the feature Tag second preimage resis-

tance - resistance against finding second preimage for an authentication tag when

the key is known (insider attack) for short messages.

4. From v2.0 π-Cipher supports the concept of ”open authorship” and that is ex-

plained in the two new paragraphs of the Chapter 6.

5. We add new parts in the documentation of π-Cipher, as follows:

• Section 3.1: The security proof of π-Cipher.

• Section 4.2.2: Explanation of how to use tweakable parameter N for wide

blocks.

• Section 4.2.3: Explanation of how to securely use incremental property of

π-Cipher.

• Section 4.2.4: Rational why we consider π-Cipher to be STREAM OAE2`

design.

Table of Contents

1 Specification 6

1.1 Parameters, variables and constants . 6

1.2 General design properties . 9

1.2.1 Authenticated encryption . 10

1.2.2 Decryption and verification . 17

1.3 The π-function . 17

2 Security goals 30

3 Security analysis 32

3.1 Security proof of π-Cipher . 32

3.1.1 Privacy of π-Cipher . 33

3.1.2 Authenticity of π-Cipher . 38

3.2 Bit diffusion analysis . 41

3.3 Distinguisher for one round of π16-Cipher096 43

4 Features 46

4.1 Main Features . 46

4.2 Extra Features . 49

4.2.1 Tag second preimage resistance - resistance against finding second

preimage for an authentication tag when the key is known (insider

attack) . 49

4.2.2 A wide block tweakable feature of π-Cipher 49

4.2.3 How to securely do incremental encryption (even with nonce misuse) 51

4.2.4 π-Cipher is STREAM OAE2` . 53

4

TABLE OF CONTENTS 5

5 Design rationale 55

5.1 Why parallelism, incrementality and tag second-preimage resistance? . . 55

5.2 Why constants in π–Cipher and how to choose them 56

6 Intellectual property 58

7 Consent 59

Acknowledgments 60

References 61

Chapter 1

Specification

1.1 Parameters, variables and constants

The following parameters and variables are used in the specification of π-Cipher:

πω-Ciphern AEAD cipher defined with ω-bit words and n-bit security.

ω “ 16, 32, 64 Size of binary words in bits that are used in π-Cipher.

π function Main permutation function of the cipher.

M
Message or plaintext.

Thus, M “M1||M2|| . . . ||Mm.

mlen Length of a message less than 264 ´ 1 bytes.

m Number of message blocks.

K Secret key.

klen
Length of a key K in bytes. It can be 12 bytes (96 bits), 16 bytes

(128 bits) or 32 bytes (256 bits).

AD Associated data. This data can not be encrypted or decrypted.

adlen Length of an associated data less than 264 ´ 1 bytes.

6

1.1 Parameters, variables and constants 7

a
Number of associated data blocks.

Thus, AD “ AD1||AD2|| . . . ||ADa.

IS

Internal state, bijectively transformed by the π function.

Throughout this document when IS is used as a common in-

ternal state for many parallel computations, we will use the ab-

breviation CIS (Common Internal State).

Ii
Chunk from the internal state IS. It is a 4-tuple of ω–bit words.

Ii “ pIi1, Ii2, Ii3, Ii4q.

N
The internal state IS is divided into N chunks of length 4 ˆ ω.

N is even number and N ě 4. Thus, IS “ pI1, I2, . . . , INq.

b
Size of IS in bits. It is constrained by the following relation:

b “ N ˆ 4ˆ ω.

rate
Rate of the IS from the sponge construction paradigm point of

view. ISrate “ I1 || I3 || . . . || IN´1.

r Size of ISrate in bits.

capacity
Capacity of the IS from the sponge construction paradigm point

of view. IScapaity “ I2 || I4 || . . . || IN .

c Size of IScapacity in bits.

||||

Operator of interleaved concatenation in order to correctly de-

note a concatenation of ISrate and IScapaity that restores IS i.e.,

IS “ ISrate |||| IScapaity.

PMN
Public message number. The size |PMN | in bits is constrained

by the following relation: 8ˆ klen` |PMN | ` 8 ď b.

SMN
Secret message number. The size |SMN | in bits is constrained

by the following relations: |SMN | “ 0 or |SMN | “ r.

NONCE NONCE “ pPMN,SMNq.

1.1 Parameters, variables and constants 8

C Ciphertext.

clen
Length of the ciphertext in bytes, where clen “ mlen`|SMN |`

tlen (here |SMN | is in bytes).

T
Authentication tag for the message, NONCE and associated

data.

tlen
Length of the authentication tag in bytes. It is constrained by

the following relation: tlen ď r
8
.

R
Tweakable parameter that represents the number of rounds in π

function.

ctr
64-bit counter used in the cipher. It is initialized from the first

64 bits of the IScapacity.

Ð

d

Operation of componentwise addition of two d-dimensional vec-

tors of ω-bit words in pZ2ωq
d.

π-Cipher is designed for different word sizes and different security levels. The recom-

mended variants are presented in Table 4.1.

Table 1.1: Basic characteristics of all variants of the π-Cipher

Word
size ω

(in bits)

klen
(in
bits)

PMN
(in
bits)

SMN
(in bits)

b
(in
bits)

N

rate
(in
bits)

Tag T
(in
bits)

R

π16-Cipher096 16 96 32 0 or 128 256 4 128 ď 128 3
π32-Cipher128 32 128 128 0 or 256 512 4 256 ď 256 3
π64-Cipher128 64 128 128 0 or 512 1024 4 512 ď 512 3
π64-Cipher256 64 256 128 0 or 512 1024 4 512 ď 512 3

1.2 General design properties 9

1.2 General design properties

π-Cipher is parallel, incremental, provably secure, nonce based authenticated encryption

cipher with associated data that offers some level of tag second-preimage resistance. It

involves several solid cryptographic concepts such as:

1. The design belongs to the category of Encrypt-then-MAC authenticated ciphers.

2. Its parallel and incremental design is similar to the design of the counter based

XOR MAC scheme of [2], but in order to achieve the second-preimage resistance

for the MAC tags, instead of XOR operations for the intermediate tag components

we use componentwise additions in pZ2ωq
d.

3. In [5, Sec. 3.3] the authors mention that it is possible to construct an authenticated

encryption using two pass sponge construction [4] that is proven to be secure as

long as the underlying sponge permutation has no structural distinguishers. In

the same paper [5] the duplex sponge construction is introduced. Although these

constructions have the property to be tag second-preimage resistant, neither of

them is incremental. An incremental and parallel two pass scheme is proposed in

[13]. However, the design goal for that scheme was not to be tag second-preimage

resistant. Combining all these ideas, in our design we use a two pass counter based

sponge component that we call triplex component. The used π permutation is based

on ARX (Addition, Rotation and XOR) operations.

CAESAR (Competition for Authenticated Encryption: Security, Applicability, and

Robustness) [3] has the term Robustness as one of its main goals. π-Cipher offers the

following features that can be connected with the robustness:

• Tag second-preimage resistance. π-Cipher offers some level of tag second-

preimage resistance. We say some level, since the computational efforts for finding

a second-preimage for a given pair (message, tag) are not the same as for finding

second-preimages for hash functions (see Section 4.2.1).

• An intermediate level of nonce-misuse resistance. In this case the robustness

is manifested when legitimate key holder uses the same key K, the same associated

data AD, the same public message number PMN but different secret message

numbers SMN1 and SMN2.

1.2 General design properties 10

Triplex

component

internal state

counter

input string

output string

authentication tag

(optional)

Figure 1.1: A general scheme of the triplex component

• Flexible block size. The flexibility of block sizes allows secure authenticated en-

cryption of data in rest (see Section 4.2.2) and secure incremental mode of operation

(see Section 4.2.3).

1.2.1 Authenticated encryption

The encryption/authentication procedure of π-Cipher accepts key K with fixed-length

of klen bytes, message M with mlen bytes and associated data AD with adlen bytes.

The cipher uses a fixed-length public message number PMN and secret message number

SMN . The output of the encryption/authentication procedure is a ciphertext C with

clen bytes and a tag T with fixed-length of tlen bytes. The length clen of the ciphertext C

is a sum of the byte length of the message, the authentication tag and the encrypted secret

message number. The decryption/verification procedure accepts key K, associated data

AD, ciphertext C, public message number PMN and tag T , and returns the decrypted

pair pSMN,Mq if the tag has been verified or K otherwise.

The main building element in the operations of encryption/authentication and de-

cryption/verification is our new construction related to the duplex sponge, called triplex

component. It uses the permutation function π twice, it injects a counter into the in-

ternal state and digests an input string. The triplex component always outputs a tag.

Optionally after the first call of the permutation function it can output a string (that can

be a ciphertext block or a message block). The general scheme of the triplex component

is presented in Figure 1.1.

Because of the differences in the encryption/authentication and decryption/verification

procedures, there are two different variants of the triplex component. We call them e-

1.2 General design properties 11

ciphertext
plaintextcounter

tag

π
fu
n
ct
io
n

π
fu
n
ct
io
n

(a) e-triplex

plaintext
ciphertextcounter

tag

π
fu
n
ct
io
n

π
fu
n
ct
io
n

(b) d-triplex

Figure 1.2: Triplex component

triplex (for the phase of encryption) and d-triplex (for the phase of decryption). The only

difference in these two components is how the input string is treated after the first call

of the permutation function. In the first one, the input string (plaintext) is XORed with

the current internal state and the result proceeds to the second invocation of the permu-

tation function π. In the d-triplex component, the input string (ciphertext) is directly

injected as a part of the internal state before the second invocation of the permutation

function π. The graphical representation of the e-triplex and d-triplex components is

given in Figure 1.2.

The encryption/authentication operation of π-Cipher can be described in four phases:

1. Initialization. In this phase we append a single ”1” (i.e., 0x01 in hexadecimal

byte representation) and the smallest number of 0’s (i.e., 0x00 in hexadecimal

byte representation) to the concatenated value of the key and the public message

number. The length of the result should be less than or equal to the length of the

internal state of the permutation function π. In other words the internal state is

initialized with K||PMN ||10˚, where |K||PMN ||10˚| “ b. Then the internal state

is updated by applying the permutation function π. Because, π-Cipher works in

parallel mode, it has an initial value for the state for all of the parallel parts. We

call it Common Internal State (CIS). The CIS is initialized as:

CIS Ð πpK||PMN ||10˚q.

The next part of this phase is initializing the counter ctr.

1.2 General design properties 12

Since CIS “ CISrate||||CIScapacity we initialize the ctr as the first 64 bits (little

endian representation) of the CIScapacity.

The graphical representation of the Initialization phase is given in Figure 1.3.

2. Processing the associated data.

The associated data AD “ AD1|| . . . ||ADi|| . . . ||ADa is processed block by block

in parallel using e–triplex components. The padding rule for the associated data

AD is the following:

PadpADq “ AD1||AD2|| . . . ||ADa||10
˚

where 1 represents the byte 0x01, and 0 represents the byte 0x00. Note that if the

associated data AD has length that is a multiple of the rate, then the number of

processed blocks of AD is increased by one, and thus aÐ a` 1.

To every block ADi we associate a unique counter calculated as a sum of the initial

counter ctr and the ordinal number of the processed block i. The input to every

e–triplex component is CIS, ctr ` i and ADi, and the output is an intermediate

tag t1
i.

The tag T 1 for the associated data is computed as a component-wise addition ‘d

of a vectors t1
i P pZ2ωq

d of dimension d, where d is the number of ω-bit words in the

rate part. In other words,

T 1 “

a
ð

d
i“1

t1
i “ t1

1 ‘d t
1
2 ‘d . . . ‘d t

1
a

where t1
i “ pt1

i1, t
1
i2, . . . , t

1
idq is a d-dimensional vector of ω-bit words. In the case

where N “ 4, the dimension of these vectors is 8 pd “ 8q.

The final part of this phase is to update the value of the Common Internal State

CIS. Updating the CIS is done by xoring it with the tag T 1 and applying the π

permutation function i.e. by the following expression:

CIS Ð πpCISrate

à

T 1 |||| CIScapacityq

This step is described graphically in Figure 1.4.

1.2 General design properties 13

K||PMN ||10˚

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

I
S
“

00
..
.0

ctr

IScapacity

ISbitrate

Figure 1.3: Initialization step

3. Processing the secret message number. This phase is omitted if the length of

the secret message number SMN is 0 (it is the empty string). If SMN is not the

empty string, then the first step in this phase is a call to the e-triplex component.

The input is the following triplet: pCIS, ctr ` a` 1, SMNq, and the output is the

following pair: pC0, t0q. The second step of this phase is updating the CIS (for free)

which becomes the value of the current internal state after the processing of SMN .

Formally, the updating part can be described by the following two expressions:

IS Ð πpCISrate

à

pctr ` a` 1q |||| CIScapacityq,

CIS Ð πpISrate

à

SMN |||| IScapacityq

The tag produced from this phase is

T 2 “ T 1 ‘d t0.

This phase is described graphically in Figure 1.5.

4. Processing the message. The message M “M1|| . . . ||Mj|| . . . ||Mm is processed

block by block in parallel by e–triplex components. The padding rule for the

message M is the following:

PadpMq “M1||M2|| . . . ||Mm||10
˚

where 1 represents the byte 0x01, and 0 represents the byte 0x00. Note that if the

1.2 General design properties 14

AD1ctr ` 1

t1
1

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

ADactr ` a

t1
a

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T 1

tagT 1

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Figure 1.4: Processing the associated data AD with a blocks in parallel

1.2 General design properties 15

SMNpctr ` aq ` 1

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T 2

C0

t0

tag T 1

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Figure 1.5: Processing the secret message number SMN

message M has length that is a multiple of the rate, then the number of processed

blocks of M is increased by one, and thus mÐ m` 1.

To every block Mj we associate a unique block counter. It can be calculated as:

ctr Ð

$

&

%

ctr ` a` j if |SMN | “ 0,

ctr ` a` 1` j if |SMN | “ r,

where j is the ordinal number of the processed block in the message, and 0 ă j ď m.

The input to every e–triplex component is CIS, block ctr and Mj, and the output

is a pair pCj, tjq. By definition we put that the length of the final ciphertext

block Cm is the same as the length of the un-padded last plaintext block Mm i.e.,

|Cm| “ |Mm|.

The final tag T is obtained as a ‘d sum of all block tags tj and the previously

obtained tag T 2.

T “ T 2 ‘d t1 ‘d . . . ‘d tj ‘d . . . ‘d tm.

where tj “ ptj1, tj2, . . . , tjdq is a d-dimensional vector of ω-bit words. In this case

where N “ 4, the dimension d “ 8.

This phase is described graphically in Figure 1.6.

1.2 General design properties 16

M1
pctr ` a` 1q ` 1

tm

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T

C1

Mm
pctr ` a` 1q `m

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Cm

t1

tag T 2

Figure 1.6: Processing the message M with m blocks in parallel

1.3 The π-function 17

The output of the encryption/authentication procedure is the ciphertext

C “ C0||C1|| . . . ||Cm||T.

The encryption/authentication part is defined in Algorithm 1.

1.2.2 Decryption and verification

The decryption/verification procedure is defined correspondingly. There are four phases

and the only difference is in the last two (so the Initialization phase and Processing

the associated data phase are completely the same as in the encryption/authentication

procedure).

The decryption of SMN is performed in the phase of Processing the secret message

number. Thus, instead of using an e-triplex component, we use a d-triplex component.

The input parameters are: CIS, incremented counter ctr ` a ` 1 and the ciphertext

block C0. The output is a pair pSMN, t0q. The tag is processed in the same way as in

the encryption/authentication procedure. In this phase decrypted value of C0 belongs to

SMN .

For the decryption of the rest of the ciphertext we continue to use a d-triplex com-

ponent (instead of e-triplex). The output is now a decrypted message block and a tag

value.

At the end, the supplied tag value T is compared to the one computed by the algo-

rithm. Only if the tag is correct, the decrypted message is returned.

The decryption/verification part is defined in Algorithm 2.

1.3 The π-function

The core part of every sponge construction is the permutation function, and the whole

security of the primitive relies on it. The design goal for our sponge construction was

to obtain a strong permutation, which for different values of the parameter ω (the bit

size of the words) provides different features, i.e. to be very efficient when ω “ 64 and

lightweight when ω “ 16.

π-Cipher has ARX based permutation function which we denote as π function. It uses

similar operations as the operations used in the hash function Edon-R [7] but instead

1.3 The π-function 18

Algorithm 1: Encryption EKpPMN,AD, SMN,Mq

1 Initialization: K||PMN ||10˚ where |K||PMN ||10˚| “ b
2 CIS ÐÝ πpK||PMN ||10˚q

3 ctr ÐÝ rCIScapacitys
64

4 AD “ AD1||AD2|| . . . ADa, where |ADi| “ r and 1 ď i ď a
5 PadpADq “ AD1||AD2|| . . . ADa||10

˚

6 if |ADa| “ r then |ADa`1| “ 10˚ and aÐÝ a` 1
7 M “M1||M2|| . . .Mm, where |Mi| “ r and 1 ď i ď m
8 PadpMq “M1||M2|| . . .Mm||10

˚

9 if |Mm| “ r then |Mm`1| “ 10˚ and mÐÝ m` 1
10 for i “ 1 to a do
10.1 IS ÐÝ πpCISrate ‘ pctr ` iq||||CIScapacityq

10.2 IS ÐÝ πpISrate ‘ ADi||||IScapacityq

10.3 t1
i ÐÝ ISrate

10.4 T 1 ÐÝ T 1
Ð

d t
1
i

11 CIS ÐÝ πpCISrate ‘ T 1||||CIScapacityq

12 IS ÐÝ πpCISrate ‘ pctr ` a` 1q||||CIScapacityq

13 C0 ÐÝ ISrate ‘ SMN
14 IS ÐÝ πpISrate ‘ SMN ||||IScapacityq

15 t0 ÐÝ ISrate, T
2 ÐÝ T 1

Ð

d t0, T ÐÝ T 2

16 CIS ÐÝ IS
17 for i “ 1 to m do
17.1 IS ÐÝ πpCISrate ‘ pctr ` a` 1` iq||||CIScapacityq

17.2 Ci ÐÝ ISrate ‘Mi

17.3 IS ÐÝ πpISrate ‘Mi||||IScapacityq

17.4 ti ÐÝ ISrate

17.5 T ÐÝ T
Ð

d ti
18 C ÐÝ C0||C1|| . . . ||Cm||T
19 return C

1.3 The π-function 19

Algorithm 2: Decryption DKpPMN,AD,C, T q

1 Initialization: K||PMN ||10˚ where |K||PMN ||10˚| “ b
2 CIS ÐÝ πpK||PMN ||10˚q

3 ctr “ rCIScs64
4 AD “ AD1||AD2|| . . . ADa, where |ADi| “ r and 1 ď i ď a
5 PadpADq “ AD1||AD2|| . . . ADa||10

˚

6 if |ADa| “ r then |ADa`1| “ 10˚ and aÐÝ a` 1
7 for i “ 1 to a do
7.1 IS ÐÝ πpCISrate ‘ pctr ` iq||||CIScapacityq

7.2 IS ÐÝ πpISrate ‘ ADi||||IScapacityq

7.3 t1
i ÐÝ ISrate

7.4 T 1 ÐÝ T 1
Ð

d t
1
i

8 CIS ÐÝ πpCISrate ‘ T 1||||CIScapacityq

9 IS ÐÝ πpCISrate ‘ pctr ` a` 1q||||CIScapacityq

10 SMN ÐÝ ISrate ‘ C0

11 IS ÐÝ πpC0||||IScapacityq

12 t0 ÐÝ ISrate, T
2 ÐÝ T 1

Ð

d t0, TÐÝ T 2

13 CIS ÐÝ IS
14 for i “ 1 to m do
14.1 IS ÐÝ πpCISrate ‘ pctr ` a` 1` iq||||CIScapacityq

14.2 Mi ÐÝ ISrate ‘ Ci

14.3 IS ÐÝ πpCi||||IScapacityq

14.4 ti ÐÝ ISrate

14.5 TÐÝ T
Ð

d ti
15 M ÐÝM1||M2|| . . . ||Mm

16 if T ‰ T then
17 return K
18 return pSMN,Mq

1.3 The π-function 20

X0 X1 X2 X3

X

Y0 Y1 Y2 Y3

Y

const1,µ

r1,1 r1,2 r1,3 r1,4 r2,1 r2,2 r2,3 r2,4

Z0 Z1 Z2 Z3

Z

const2,µ const3,µ const4,µ const1,ν const2,ν const3,ν const4,ν

Figure 1.7: Graphical representation of the ARX operation ˚.

of using 8–tuples here we use 4–tuples. The permutation operates on a b bits state and

updates the internal state through a sequence of R successive transformations - rounds.

The state IS can be represented as a list of N 4-tuples, each of length ω-bits, where

b “ N ˆ 4ˆ ω, i.e.,

IS “ ppIS11, IS12, IS13, IS14q
looooooooooooomooooooooooooon

I1

, pIS21, IS22, IS23, IS24q
looooooooooooomooooooooooooon

I2

, . . . , pISN1, ISN2, ISN3, ISN4q
looooooooooooooomooooooooooooooon

IN

q.

(1.1)

The general permutation function π consists of three main transformations µ, ν, σ :

Z4
2ω Ñ Z4

2ω , where Z2ω is the set of all integers between 0 and 2ω ´ 1. These transforma-

tions do the work of diffusion and nonlinear mixing of the input.

The following operations are applied:

• Addition + modulo 2ω;

1.3 The π-function 21

Table 1.2: The rotation vectors used in µ and ν.

ω ρ1,ω ρ2,ω
16 p 1, 4, 9, 11q p 2, 5, 7, 13q

32 p 5, 11, 17, 23q p 3, 10, 19, 29q

64 p 7, 19, 31, 53q p 11, 23, 37, 59q

• Rotate left (circular left shift) operation, ROTLρpXq, where X is a ω-bit word and

ρ is an integer with 0 ď ρ ă ω;

• Bitwise XOR operation ‘ on ω–bit words.

Let X “ pX0, X1, X2, X3q, Y “ pY0, Y1, Y2, Y3q and Z “ pZ0, Z1, Z2, Z3q be three

4-tuples of ω–bit words.

Further, let us denote by ˚ the following operation:

Z “ X ˚Y ” σpµpXq‘4 νpYqq (1.2)

where ‘4 is the component-wise addition of two 4-dimensional vectors in
`

Z2ω
˘4
.

An algorithmic definition of the ˚ operation over two 4–dimensional vectors X and Y

for different word sizes is given in Table 1.9, Table 1.10 and Table 1.11.

Also a graphical representation of the ˚ operation is given in Figure 1.7.

The following is a formalization of the ˚ operation (adopted from [7]).

The left rotation of a ω–bit word X by ρ positions denoted by ROTLρpXq, can be ex-

pressed as a linear matrix–vector multiplication over the ring pZ2,`, ¨q i.e. ROTLρpXq “

Eρ ¨X where Eρ P Zω
2 ˆZω

2 is a matrix obtained from the identity matrix by rotating its

columns by r positions in the direction top to bottom. Further on, if we have a vector

X P
`

Z2ω
˘4

represented as X “ pX0, X1, X2, X3q and we want to rotate all Xi by ρi

(0 ď i ă 4) positions to the left, then we denote the operation by ROTLρpXq, where

ρ “ pρ0, . . . , ρ3q P t0, 1, . . . , ω ´ 1u4 is a rotation vector. The operation ROTLρpXq can

also be represented as a linear matrix–vector multiplication over the ring pZ2,`, ¨q i.e.

1.3 The π-function 22

Table 1.3: The matrices pA1, A2, pA3 and A4.

pA1 A2
pA3 A4

¨

˚

˚

˝

const1,µω
const2,µω
const3,µω
const4,µω

˛

‹

‹

‚

,

¨

˚

˚

˝

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

˛

‹

‹

‚

¨

˚

˚

˝

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

˛

‹

‹

‚

¨

˚

˚

˝

const1,νω
const2,νω
const3,νω
const4,νω

˛

‹

‹

‚

,

¨

˚

˚

˝

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

˛

‹

‹

‚

¨

˚

˚

˝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

˛

‹

‹

‚

ROTLρpXq “ Dρ ¨X where Dρ P Z4ω
2 ˆ Z4ω

2 ,

Dr “

¨

˚

˚

˚

˚

˝

Eρ0 0 0 0

0 Eρ1 0 0

0 0 Eρ2 0

0 0 0 Eρ3

˛

‹

‹

‹

‹

‚

,

and the submatrices Eρi P Zω
2 ˆZω

2 , 0 ď i ă 4 are obtained from the identity matrix by

rotating its columns by ρi positions in the direction top to bottom, and the submatrices

0 P Zω
2 ˆ Zω

2 are the zero matrices.

Furthermore, we use the following notations:

• pA1, pA3 : Z4
2ω Ñ Z4

2ω are two bijective transformations in Z4
2ω over the ring pZ2ω ,`, ¨q

where ω “ 8, 16, 32, 64. The mappings pAi, i “ 1, 3 can be described as:

pAipXq “ Ci ` Ai ¨X,

where Ci P Z4
2ω , i “ 1, 2 are two constant vectors and A1 and A3 are two 4 ˆ 4 in-

vertible matrices over the ring pZ2ω ,`, ¨q. Also these matrices are MDS (maximum

distance separable) matrices which redound to have maximal diffusion of the bits.

All elements in these two matrices are either 0 or 1, since we want to avoid the

operations of multiplication (as more costly microprocessor operations) in the ring

pZ2ω ,`, ¨q, and stay only with operations of addition.

• A2,A4 : Z4
2ω Ñ Z4

2ω are two linear bijective transformations that are described by

two invertible matrices (we use the same notation: A2,A4) of order q ˆ q over the

ring pZ2,`, ¨q (q “ 4ω). Since we want to apply XOR operations on ω–bit registers,

1.3 The π-function 23

the matrices A2 and A4 will be of the form

¨

˚

˚

˚

˚

˝

B1,1 B1,2 B1,3 B1,4

B2,1 B2,2 B2,3 B2,4

B3,1 B3,2 B3,3 B3,4

B4,1 B4,2 B4,3 B4,4

˛

‹

‹

‹

‹

‚

,

where Bi,j P Zω
2 ˆZω

2 , 1 ď i, j ď 4 are either the identity matrix or the zero matrix

i.e. Bi,j P t0,1u.

Now we give the formal definitions for the permutations: σ, µ and ν.

Definition 1. The transformation σ : Z4
2ω Ñ Z4

2ω is defined as:

σpX0, X1, X2, X3q “ pX3, X0, X1, X2q

Lemma 1. The transformation σ is a permutation.

Definition 2. The transformations µ : Z4
2ω Ñ Z4

2ω and ν : Z4
2ω Ñ Z4

2ω are defined as:

µ ” pA1 ˝ROTLρ1,ω ˝ A2

ν ” pA3 ˝ROTLρ2,ω ˝ A4

where the rotation vectors ρi,ω, i “ 1, 2, ω “ 16, 32, 64 are given in Table 1.2, and the

matrices pA1, A2, pA3 and A4 are given in Table 1.3. In Table 1.3, the symbols 1,0 P

Zω
2 ˆ Zω

2 denote the identity matrix and the zero matrix, and the constants consti,ω, i “

1, 2, ω “ 16, 32, 64 are given (in hexadecimal notation) in Table 1.4 and Table 1.5. The

rationale for choosing these constants is given in Section 5.2.

Table 1.4: List of constants used in µ transformation.

consti,µω µ16 µ32 µ64
1 0xF0E8 0xF0E8E4E2 0xF0E8E4E2E1D8D4D2

2 0xE4E2 0xE1D8D4D2 0xD1CCCAC9C6C5C3B8

3 0xE1D8 0xD1CCCAC9 0xB4B2B1ACAAA9A6A5

4 0xD4D2 0xC6C5C3B8 0xA39C9A999695938E

1.3 The π-function 24

Table 1.5: List of constants used in ν transformation.

consti,νω ν16 ν32 ν64
1 0xD1CC 0xB4B2B1AC 0x8D8B87787472716C

2 0xCAC9 0xAAA9A6A5 0x6A696665635C5A59

3 0xC6C5 0xA39C9A99 0x5655534E4D4B473C

4 0xC3B8 0x9695938E 0x3A393635332E2D2B

Lemma 2. The transformations µ and ν are permutations of Z2ω , ω “ 16, 32, 64.

Proof. The proof follows immediately from the fact that all transformations Ai, i “

1, 2, 3, 4 and ROTLρi,ω , i “ 1, 2, ω “ 16, 32, 64 are expressed by invertible matrices over

the rings pZ2ω ,`, . . . q, ω “ 16, 32, 64 or over the ring pZ2,`, . . . q.

Theorem 1. The operation ˚ : pZ4
2ωq

2 Ñ Z4
2ω defined as:

X ˚Y “ σpµpXq ‘4 νpYqq

is a permutation.

Let us recall equation (1.1) where the internal state is presented as IS “ pI1, I2, . . . , INq.

One round of the π function consists of two consecutive transformations E1 and E2 de-

fined as follows.

Definition 3. The function E1 : pZ4
2ωq

N`1 Ñ pZ4
2ωq

N used in the π function is defined

as:

E1pC, I1, . . . , INq “ pJ1, . . . , JNq, where (1.3)

J1 “ C ˚ I1,

Ji “ Ji´1 ˚ Ii, i “ 2, . . . , N

where C is a 4-tuple of ω-bit constant values.

Definition 4. The function E2 : pZ4
2ωq

N`1 Ñ pZ4
2ωq

N used in π function is defined as:

E2pC, I1, . . . , INq “ pJ1, . . . , JNq, where (1.4)

JN “ IN ˚ C,

JN´i “ IN´i ˚ JN´i`1, i “ 1, . . . , N ´ 1

1.3 The π-function 25

where C is a 4-tuple of ω-bit constant values.

Finally, one round of the π function is defined as:

πpI1, . . . , INq “ E2pC2, E1pC1, I1, . . . , INqq (1.5)

One round of the cipher is graphically described in Figure 1.8. In the figure, the

diagonal arrows can be interpreted as ˚ operations between the source and destination,

and the vertical or horizontal arrows as equality signs ” “ ”.

C1

C2

ININ´1I2I1

JNJN´1J2J1

J1 J2 JN´1 JN

E1

E2

Figure 1.8: One round of π-Cipher

The number of rounds R is a tweakable parameter. For π-Cipher v2.0 we recommend

R “ 3. The complete formula for the π function with R “ 3 is the following:

πpI1, . . . , INq “ E2pC6, E1pC5, E2pC4, E1pC3, E2pC2, E1pC1, I1, . . . , INqqqqqq

The constants C1, C2, . . . , C6 are generated in the same way as the constants of the

˚ operation and their values (in hexadecimal notation) for different word sizes are given

in Table 1.6, Table 1.7 and Table 1.8.

1.3 The π-function 26

Table 1.6: Round constants for π16-Cipher

C1 “ t0xB4B2, 0xB1AC, 0xAAA9, 0xA6A5u
C2 “ t0xA39C, 0x9A99, 0x9695, 0x938Eu
C3 “ t0x8D8B, 0x8778, 0x7472, 0x716Cu
C4 “ t0x6A69, 0x6665, 0x635C, 0x5A59u
C5 “ t0x5655, 0x534E, 0x4D4B, 0x473Cu
C6 “ t0x3A39, 0x3635, 0x332E, 0x2D2Bu

Table 1.7: Round constants for π32-Cipher

C1 “ t0x8D8B8778, 0x7472716C, 0x6A696665, 0x635C5A59u
C2 “ t0x5655534E, 0x4D4B473C, 0x3A393635, 0x332E2D2Bu
C3 “ t0x271E1D1B, 0x170FF0E8, 0xE4E2E1D8, 0xD4D2D1CCu
C4 “ t0xCAC9C6C5, 0xC3B8B4B2, 0xB1ACAAA9, 0xA6A5A39Cu
C5 “ t0x9A999695, 0x938E8D8B, 0x87787472, 0x716C6A69u
C6 “ t0x6665635C, 0x5A595655, 0x534E4D4B, 0x473C3A39u

Table 1.8: Round constants for π64-Cipher

C1 “ t0x271E1D1B170FF0E8, 0xE4E2E1D8D4D2D1CC,
0xCAC9C6C5C3B8B4B2, 0xB1ACAAA9A6A5A39Cu

C2 “ t0x9A999695938E8D8B, 0x87787472716C6A69,
0x6665635C5A595655, 0x534E4D4B473C3A39u

C3 “ t0x3635332E2D2B271E, 0x1D1B170FF0E8E4E2,
0xE1D8D4D2D1CCCAC9, 0xC6C5C3B8B4B2B1ACu

C4 “ t0xAAA9A6A5A39C9A99, 0x9695938E8D8B8778,
0x7472716C6A696665, 0x635C5A595655534Eu

C5 “ t0x4D4B473C3A393635, 0x332E2D2B271E1D1B,
0x170FF0E8E4E2E1D8, 0xD4D2D1CCCAC9C6C5u

C6 “ t0xC3B8B4B2B1ACAAA9, 0xA6A5A39C9A999695,
0x938E8D8B87787472, 0x716C6A696665635Cu

1.3 The π-function 27

Table 1.9: An algorithmic description of the ARX operation ˚ for 16–bit words.

˚ operation for 16–bit words

Input: X “ pX0, X1, X2, X3q and Y “ pY0, Y1, Y2, Y3q

where Xi and Yi are 16–bit variables.
Output: Z “ pZ0, Z1, Z2, Z3q where Zi are 16–bit variables.
Temporary 16–bit variables: T0, . . . , T11.

µ–transformation for X:

1.

T0 Ð ROTL1p0xF0E8 ` X0 ` X1 ` X2q;
T1 Ð ROTL4p0xE4E2 ` X0 ` X1 ` X3q;
T2 Ð ROTL9p0xE1D8 ` X0 ` X2 ` X3q;
T3 Ð ROTL11p0xD4D2 ` X1 ` X2 ` X3q;

2.

T4 Ð T0 ‘ T1 ‘ T3;
T5 Ð T0 ‘ T1 ‘ T2;
T6 Ð T1 ‘ T2 ‘ T3;
T7 Ð T0 ‘ T2 ‘ T3;

ν–transformation for Y :

1.

T0 Ð ROTL2p0xD1CC ` Y0 ` Y2 ` Y3q;
T1 Ð ROTL5p0xCAC9 ` Y1 ` Y2 ` Y3q;
T2 Ð ROTL7p0xC6C5 ` Y0 ` Y1 ` Y2q;
T3 Ð ROTL13p0xC3B8 ` Y0 ` Y1 ` Y3q;

2.

T8 Ð T1 ‘ T2 ‘ T3;
T9 Ð T0 ‘ T2 ‘ T3;
T10 Ð T0 ‘ T1 ‘ T3;
T11 Ð T0 ‘ T1 ‘ T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 Ð T4 ` T8;
Z0 Ð T5 ` T9;
Z1 Ð T6 ` T10;
Z2 Ð T7 ` T11;

1.3 The π-function 28

Table 1.10: An algorithmic description of the ARX operation ˚ for 32–bit words.

˚ operation for 32–bit words

Input: X “ pX0, X1, X2, X3q and Y “ pY0, Y1, Y2, Y3q

where Xi and Yi are 32–bit variables.
Output: Z “ pZ0, Z1, Z2, Z3q where Zi are 32–bit variables.
Temporary 32–bit variables: T0, . . . , T11.

µ–transformation for X:

1.

T0 Ð ROTL5p0x8D8B8778 ` X0 ` X1 ` X2q;
T1 Ð ROTL11p0x7472716C ` X0 ` X1 ` X3q;
T2 Ð ROTL17p0x6A696665 ` X0 ` X2 ` X3q;
T3 Ð ROTL23p0x635C5A59 ` X1 ` X2 ` X3q;

2.

T4 Ð T0 ‘ T1 ‘ T3;
T5 Ð T0 ‘ T1 ‘ T2;
T6 Ð T1 ‘ T2 ‘ T3;
T7 Ð T0 ‘ T2 ‘ T3;

ν–transformation for Y :

1.

T0 Ð ROTL3p0x5655534E ` Y0 ` Y2 ` Y3q;
T1 Ð ROTL10p0x4D4B473C ` Y1 ` Y2 ` Y3q;
T2 Ð ROTL19p0x3A393635 ` Y0 ` Y1 ` Y2q;
T3 Ð ROTL29p0x332E2D2B ` Y0 ` Y1 ` Y3q;

2.

T8 Ð T1 ‘ T2 ‘ T3;
T9 Ð T0 ‘ T2 ‘ T3;
T10 Ð T0 ‘ T1 ‘ T3;
T11 Ð T0 ‘ T1 ‘ T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 Ð T4 ` T8;
Z0 Ð T5 ` T9;
Z1 Ð T6 ` T10;
Z2 Ð T7 ` T11;

1.3 The π-function 29

Table 1.11: An algorithmic description of the ARX operation ˚ for 64–bit words.

˚ operation for 64–bit words

Input: X “ pX0, X1, X2, X3q and Y “ pY0, Y1, Y2, Y3q where Xi and Yi are
64–bit variables.
Output: Z “ pZ0, Z1, Z2, Z3q where Zi are 64–bit variables.
Temporary 64–bit variables: T0, . . . , T11.

µ–transformation for X:

1.

T0 Ð ROTL7p0xF0E8E4E2E1D8D4D2 ` X0 ` X1 ` X2q;
T1 Ð ROTL19p0xD1CCCAC9C6C5C3B8 ` X0 ` X1 ` X3q;
T2 Ð ROTL31p0xB4B2B1ACAAA9A6A5 ` X0 ` X2 ` X3q;
T3 Ð ROTL53p0xA39C9A999695938E ` X1 ` X2 ` X3q;

2.

T4 Ð T0 ‘ T1 ‘ T3;
T5 Ð T0 ‘ T1 ‘ T2;
T6 Ð T1 ‘ T2 ‘ T3;
T7 Ð T0 ‘ T2 ‘ T3;

ν–transformation for Y :

1.

T0 Ð ROTL11p0x8D8B87787472716C ` Y0 ` Y2 ` Y3q;
T1 Ð ROTL23p0x6A696665635C5A59 ` Y1 ` Y2 ` Y3q;
T2 Ð ROTL37p0x5655534E4D4B473C ` Y0 ` Y1 ` Y2q;
T3 Ð ROTL59p0x3A393635332E2D2B ` Y0 ` Y1 ` Y3q;

2.

T8 Ð T1 ‘ T2 ‘ T3;
T9 Ð T0 ‘ T2 ‘ T3;
T10 Ð T0 ‘ T1 ‘ T3;
T11 Ð T0 ‘ T1 ‘ T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 Ð T4 ` T8;
Z0 Ð T5 ` T9;
Z1 Ð T6 ` T10;
Z2 Ð T7 ` T11;

Chapter 2

Security goals

Table 2.1: A list of security goals for the π-Cipher.

Pi16Cipher096v2 Pi32Cipher128v2 Pi64Cipher128v2 Pi64Cipher256v2

Goal
Bits of
security

Bits of
security

Bits of
security

Bits of
security

Confidentiality for the
plaintext

96 128 128 256

Confidentiality for the
secret message number

SMN
96 128 128 256

Integrity for the
plaintext

96 128 128 256

Integrity for the
associated data

96 128 128 256

Integrity for the public
message number PMN

96 128 128 256

Integrity for the secret
message number SMN

96 128 128 256

Confidentiality for the
plaintext M , when

pK,AD, pPMN,SMN1qq

and
pK,AD, pPMN,SMN2qq

96 128 128 256

Integrity for the
plaintext M , when

pK,AD, pPMN,SMN1qq

and
pK,AD, pPMN,SMN2qq

96 128 128 256

We want to emphasize our position that the security level of 80 bits should be con-

sidered as insecure and should be abandoned in future cryptographic designs. This is

30

31

due to the recent reported practical speed of many different computing systems (GPUs,

supercomputers, FPGAs). That is why our lowest level for security is 96 bits of security.

Users have two options for nonces in π-Cipher. A nonce can be NONCE “ PMN

or NONCE “ pPMN,SMNq.

If the legitimate key holder uses the same NONCE to encrypt two different pairs of

(plaintext, associated data) pM1, ADq and pM2, ADq with the same secret key K then the

confidentiality and the integrity of the plaintexts are not preserved in π–Cipher. Thus,

the first six goals in Table 2 are achieved under the assumption that PMN

is always different for any two different pairs of (plaintext, associated data)

pM1, ADq and pM2, ADq with the same secret key K.

Additionally, π-Cipher offers an intermediate level of robustness when a legit-

imate key holder uses the same secret key K, the same associated data AD, the same

public message number PMN but different secret message numbers SMN1 and SMN2

for encrypting two different plaintexts M1 and M2. In that case confidentiality and in-

tegrity of the plaintexts are preserved. However, in that case the confidentiality of

SMN1 and SMN2 is not preserved.

Chapter 3

Security analysis

3.1 Security proof of π-Cipher

The security proof is based on the detailed proof for the sponge based authenticated

ciphers given by Bart Mennink at al. in the ASIACRYPT 2014 paper [11].

Unlike other sponge-based schemes, π-Cipher offers parallelism in the encryption part

and processing the associated data part. The number of parallel chains depends on the

number of data blocks that every part has (a chains in the phase of the associated

data and m chains in the phase of the encryption). However π-Cipher starts with the

initialization phase, where by a padding function pK,Nq is mapped to pK||N ||10˚q and

processed by the π-function. After the initialization part, the state is branched into a

new states and associated data is processed. These a states are merged into one new

state and the newly obtained state is branched into m new states where message blocks

are encrypted. Finally the tag T is computed. For the privacy proof, we consider an

adversary that makes qp permutation queries and qε encryption queries of total length λε.

Let εK be an encryption query, consisting of a associated data blocks, and m message

blocks. So the corresponding state values are given as follows:

¨

˚

˚

˝

sinit;

»

—

—

–

sAD
1,0 sAD

1,1
...

...

sAD
a,0 sAD

a,1

fi

ffi

ffi

fl

; sCIS; sSMN
0 ; sSMN

1 ;

»

—

—

–

sM1,0 sM1,1
...

...

sMm,0 sMm,1

fi

ffi

ffi

fl

˛

‹

‹

‚

Here, if the j-th encryption query is of length a`m, then the number of state values

σϵ,j (calls to the π-function) is 2a ` 2m ` 4 (2 of them is for the processing of SMN).

32

3.1 Security proof of π-Cipher 33

So the total number of π-function evaluations via the encryption queries is:

σε :“
qε
ÿ

j“1

σε,j ď qεp2a` 2m` 4q “ 2λε ` 4qε. (3.1)

Also for decryption queries the number is the same and is denoted as σD and σD,|

analogously.

3.1.1 Privacy of π-Cipher

Theorem 2. Let Π “ pE ,Dq be the proposed authenticated encryption scheme with an

ideal permutation π which operates on b bits. Then,

AdvprivΠ pqp, qε, λεq ď
pqp ` σε ` σDq

2

2b
`

qD
2τ
`

qp ` σε ` σD

2k
`

qpr

2c
`

qεa` qDa

2r
`

c

8eσεqp
2b

`
σDpqp ` σε ` σD{2q

2c
,

where σε is defined in (3.1).

For the privacy proof we need to obtain an upper bound for the advantage of an

adversary who can distinguish the output of the proposed scheme with a random oracle

in the ideal permutation model.

Advpriv
Π pA q “ ∆A pπ

˘, EK ;π˘, $q. (3.2)

With replacing the permutation function π with some random function f from 0, 1b

to 0, 1b and using the PRP/PRF Switching Lemma, we have:

∆A pπ
˘, EK ;π˘, $q ´∆A pf

˘, EK ; f˘, $q ď
pqp ` σεqpqp ` σε ´ 1q

2b`1

ď
pqp ` σεq

2

2b`1
(3.3)

Now we will restrict our attention to an adversary with oracle access to pf˘, tEK , $uq.
Also we assume that the adversary only queries full blocks and that no padding rules are

involved.

3.1 Security proof of π-Cipher 34

To aim the goal we define two collision events, guess and hit. Event guess corresponds

to a primitive call in an encryption query hitting a direct primitive query or the opposite,

while hit corresponds to pairs of primitive calls that collide in encryption queries. So

event is set to bad, if some of the events guess or hit occur.

∆A pf
˘, EK ; f˘, $q ď PrpA f˘,EK sets eventq. (3.4)

We define the probability of event is set as follows:

Prpguess_ hitq “ Prpguess_ hit|␣pkey_multiq `Prpkey_multiqq (3.5)

Event guess. This event may occurs in the i-th permutation query (for i “ 1, ¨ ¨ ¨ , qp)

or in any state evaluation of the j-th encryption query (for j “ 1, ¨ ¨ ¨ , qϵ). Denote that

the state values of the j-th encryption query are as follows:

¨

˚

˚

˝

sinitj ;

»

—

—

–

sAD
j,1,0 sAD

j,1,1
...

...

sAD
j,a,0 sAD

j,a,1

fi

ffi

ffi

fl

; sCIS
j ; sSMN

j,0 ; sSMN
j,1 ;

»

—

—

–

sMj,1,0 sMj,1,1
...

...

sMj,m,0 sMj,m,1

fi

ffi

ffi

fl

˛

‹

‹

‚

(3.6)

We assume that event pguess_ hit_ key_multiq has not been set before and also

event pkey _multiq has not been set by this query before. From the further analysis

we will exclude sinitj from guess event because that case belongs to the key event. For

i “ 1, ¨ ¨ ¨ , qp let ji P t1, ¨ ¨ ¨ , qεu be the number of encryption queries made before the

i-th permutation query. And for j “ 1, ¨ ¨ ¨ , qε let ij P t1, ¨ ¨ ¨ , qpu be the number of

permutation queries made before the j-th encryption query. Here we have two games,

the first one is when we play with the permutation queries, and the other with encryption

queries.

• In the first one the bad event occurs when input to the f˘ pxi, yiq collide with the

elements in set F . So for the forward query xi there are at most ρ state values that

have the same rate part, thus the capacity is unknown to the adversary and the

bad event occurs with probability at most ρ{2c. For the inverse query the situation

is more complicated. We take yi from the set of all encryption queries made before

the i-th permutation query. Therefore the probability that guess is set via a direct

query to the primitive is at most qpρ

2c
`

řqp
i“1

řji
j“1

σϵ,j

2b
.

3.1 Security proof of π-Cipher 35

• In the second one, bad event is set in the j-th encryption query for j P 1, ¨ ¨ ¨ , qε.

In this case we consider the probability that some of the states from (2) sets guess,

assuming that it has not been set before. Thus we have 3 subcases here.

1. The state value sAD
j,k,0 for k “ 1, ¨ ¨ ¨ , a, equals fpsinitj q ‘ ctr ` k where ctr is

some secret value not determined by the adversarial input. By assumption

that fpsinitj q is randomly drawn from t0, 1ub, the probability to guess the state

is at most
aij
2b

(where ij is the number of permutation queries made before

the j-th encryption query). The state value sAD
j,k,1 for k “ 1, ¨ ¨ ¨ , a, equals

fpsAD
j,k,0q ‘ ADk where ADk is a value determined by the adversarial input.

The probability to guess the state is at most
aij
2b
.

2. sCIS
j “ fpsinitj q ‘ T 1 and is guessed with probability at most ij{2

b

3. The same is situation in sSMN
j,0 and sSMN

j,1 , probability is bound to ij{2
b.

4. For the last branching (processing the message) we have the same situation

as in the associated data part.

Concluding, the j-th encryption query sets guess with probability at most
aij
2b

+
aij
2b

+ 3
ij
2b

+
mij
2b

+
mij
2b

. Or summing over all qε encryption queries, we get
řqε

j“1
aij
2b
`

aij
2b
` 3

ij
2b
`

mij
2b
`

mij
2b
“

řqε
j“1

ijp2a`2m`3q

2b
ď

řqε
j“1

ijσε,j

2b
.

Here we use that
řqp

i“1

řji
j“1 σϵ,j ď qpσϵ with assumption that ji always has its maxi-

mum value qϵ and
řqϵ

j“1 ijσϵ,j “
řqϵ

j“1

řσϵ,j

k“1 ij ď qpσϵ with assumption that ij always has

its maximum value qp.

Concluding,

Prpguess|␣pkey_multiqq ď
qpρ

2c
`

qp
ÿ

i“1

ji
ÿ

j“1

σε,j

2b
`

qε
ÿ

j“1

ijσε,j

2b

ď
qpρ

2c
`

2qpσε

2b
. (3.7)

Event hit. We need to find whether the event hit is set, or whether two independent

states (with different parents) collide in the encryption queries. It is clear that for the

initialization state sinit stands: sinitj ‰ sinitj1 because of the uniqueness of the nonce. So

here any state value sj,k hits an initial state value sj1,1 only if rsj,ks
k “ K which happens

with probability σε{2
k. In the other states (σε ´ qϵ) for any two states sj,k, sj1,k1 we have

the following:

3.1 Security proof of π-Cipher 36

• sAD
j,i,0 “ fpsinitj q ‘ pctr ` iq, 1 ď i ď a. Because of the fact that sinitj is always fresh,

collision between sAD
j,i,0 and some older state will happen with probability no more

than a{2b for all i’s. Note that sAD
j,i,0 can never collide with a state from the same

query because of the incremental counter’s value. If sAD
j,i,0 is a new state, then also

it is a new input to f and sAD
j,i,1 is a new one too. It hits a certain older state with

probability 1{2b. If sAD
j,i,1 is new for all i’s, then the output of the function f is

random, and the tag T 1 generated from the associated data phase is random too.

• sCIS
j “ fpsinitj q ‘ T 1 hits a state from an older query with probability at most 1{2b.

Here we have a special case. The state sCIS
j can collide with some of the states sAD

j,i,0

from this query if and only if rpctr ` iq||0˚sr collide with T 1 (they have the same

parent state sinitj q). Probability for this is no more than a{2r.

• sSMN
j,0 “ fpsCIS

j q ‘ pctr ` a ` 1q. This state is new, so it can hit some older state

with probability 1{2b, and the same is for sSMN
j,1 .

• sMj,i,0 “ fpsSMN
j,1 q ‘ pctr ` a ` 1 ` iq, so it is a new state for all parallel instances

i and can collide with some other state from an older query with probability at

most m{2b. However, if sMj,i,0 is a new state, also new states are sMj,i,1 for all i’s and

the output of the function f is random. The tag that is generated at the end is a

random value.

In total, the j-th encryption query sets event hit with probability at most: p2a`3`2mq

2b
pσε,1`

σε,2 ` . . .` σε,j´1q `
a
2r

Summing over all queries,

Prphit|␣pkey_multiqq ď σε{2
k `

qε
ÿ

j“1

p2a` 3` 2mq

2b
pσε,1 ` . . .` σε,j´1q `

a

2r

ď σε{2
k ` σεa{2

r `
pσε´qε

2 q

2b

ď
σε

2k
`

qεa

2r
`
pσε ´ qεq

2

2b`1
(3.8)

Event key. Prpkeyq ď qp{2
k.

Event multi. Event multi(j,k) is used to bound the number of states that collide

in the rate part. So, consider a new state value sj,k´1; then for a fixed state value

3.1 Security proof of π-Cipher 37

x P t0, 1ub it satisfies fpsj,k´1q “ x or sj,k “ fpsj,k´1q ‘ w “ x for some predetermined

value w with probability 2{2b. Now, let α P t0, 1ur, more than ρ state values hit α with

probability at most pσϵ
ρ qp2{2rqρ. According to the Stirling’s approximation for factorials

(n! „
?
2πnpn

e
qn ě pn

e
qn), we have pσϵ

ρ qp2{2rqρ ď p
2eσϵ

ρ2r
qρ. Considering any possible choice

of α we obtain that

Prpmultiq “ 2rp
2eσϵ

ρ2r
qρ. (3.9)

So at the end, to complete the proof we need to make addition of the four bounds as:

Prpguess_ hitq “ Prpguess_ hit|␣pkey _multiq ` Prpkey _multiqq

ď
qp ` σε

2k
`
pσε ´ qεq

2

2b`1
`

qpρ

2c
`

qεa

2r
`

2qpσε

2b
` 2rp

2eσϵ

ρ2r
qρ (3.10)

To simplify previous evaluation and also substitute ρ with some known values, we put

ρ “ maxtr,
b

2eσε2c

qp2r
u and get the following:

Prpguess_ hitq ď
qp ` σε

2k
`
pσε ´ qεq

2

2b`1
`

qpr

2c
`

qεa

2r
`

2qpσε

2b
`

c

8eσεqp
2b

(3.11)

At the end, we have the final bounds for privacy of π-Cipher:

Advpriv
Π pA q ď

pqp ` σεq
2

2b`1
`

qp ` σε

2k
`

qpσε ` pσε ´ qεq
2

2b`1
`

qpr

2c
`

qεa

2r
`

c

8eσεqp
2b

(3.12)

We assume that qpσε`pσε´qεq2

2b`1 ď
pqp`σεq2

2b`1 and get the following:

Advpriv
Π pA q ď

pqp ` σεq
2

2b
`

qp ` σε

2k
`

qpr

2c
`

qεa

2r
`

c

8eσεqp
2b

(3.13)

3.1 Security proof of π-Cipher 38

3.1.2 Authenticity of π-Cipher

Theorem 3. Let Π “ pE ,Dq be the proposed authenticated encryption scheme with an

ideal permutation π which operates on b bits. Then,

AdvauthΠ pqp, qε, λε, qD, λDq ď
pqp ` σε ` σDq

2

2b
`

qD
2τ
`

qp ` σε ` σD

2k
`

qpr

2c
`

qεa` qDa

2r
`

c

8eσεqp
2b

`
σDpqp ` σε ` σD{2q

2c
,

where σε and σD are defined in (3.1).

A forgery of an AE scheme is defined as the ability of an adversary A to generate a

valid (N, AD, C, T) tuple, without directly querying it to the encryption oracle. Also an

adversary attempts to make a decryption queries that does not result in K.

LetΠ “ tE ,Du be π-Cipher authenticated scheme with ideal permutation (π-function)

which operates on bpr`cq bits. The adversary A is given access to the Encryption oracle

EK , Decryption oracle DK , permutation function p and its inverse p´1 oracle. Our goal

is to bound the adversary’s advantage to forge the scheme Π “ tE ,Du:

AdvAuth
Π pA q “ PrpA p˘,EK ,DK forgesq (3.14)

Using the PRP/PRF Switching Lemma and knowing that adversary can ask no more

than qp ` σε ` σD evaluations to the function f , we have:

PrpA p˘,EK ,DK forgesq ´PrpA f˘,EK ,DK forgesq ď
pqp ` σε ` σDqpqp ` σε ` σD ´ 1q

2b`1

ď
pqp ` σε ` σDq

2

2b`1

We will focus on adversary A to have an oracle access to pf˘, EK ,DKq and also that

only makes full-block queries.

For this proof we need the same setting as in the privacy proof, about the guess and

hit events, but here extended with new D-related collision events Dguess and Dhit. The

state values are the same as in 3.6 with a δ appended to the subscript, where δ P tE ,Du.
We observe that:

3.1 Security proof of π-Cipher 39

PrpA f˘,EK ,DK forgesq ď PrpA f˘,EK ,DK forges|␣eventq`

PrpA f˘,EK ,DK sets eventq (3.15)

A bound on the probability that A forges when event does not happen is the same

with the case where A can guess the tag Tj for some decryption query j. The final tag i

s calculated as fpsAD
D,j,1,1q‘ . . . fpsAD

D,j,a,1 ‘ fpsSMN
D,j,1 qq‘ fpsCD,j,1,1q‘ fpsCD,j,m,1q Because the

query is new, and event guess or hit doesn’t happen before, at least one of these states is

a new too, so f ’s output is uniformly distributed, and the final tag gets new value. So,

the j ´ th forgery attempt is successful with probability at most 1{2τ . Summing over all

decryption queries qD we get:

PrpA f˘,EK ,DK forges|␣eventq ď
qp
2τ

Next we need to explain what is the bound on the probability when adversary sets

event. Here, event “ guess_ hit_Dguess_Dhit and

PrpA f˘,EK ,DK sets eventq ď Prpguess_ hit_Dguess_Dhitq

ď Prpguess_ hit_Dguess_Dhit|␣pkey _multiq `Prpkey _multiq (3.16)

Event Dguess. Note that the adversary may freely choose the rate part in decryption

queries and primitive queries (the ciphertext represents the rate part). Dguess sets bad

as soon as there is a primitive state and a decryption state whose capacity parts are

equal.

Dguesspi; j, kq ” xi “ sδ,j,k, where δ “ D which means that an adversary A is not

able to ask a query E . This happens with probability at most qpσD{2
c.

PrpDguess|␣pkey_multiqq ď qpσD{2
c.

Event Dhit. In this case an adversary has an ability to reuse nonces in the decryption

queries. Any decryption state can hit the initial one (where just the key is unknown)

with probability at most σD{2
k. We have several subcases:

1. pN ;AD,Cq “ pNδ,j;ADδ,j, Cδ,jq but T ‰ Tδ,j. This case is with probability 0.

3.1 Security proof of π-Cipher 40

2. pN ;ADq “ pNδ,j;ADδ,jq but C ‰ Cδ,j. Let we say that Cδ,j shares the longest com-

mon prefix l with C and l ă m. In this case sCj,l,0 “ sCδ,j,l,0 and sCj,l,1 “ Cl||rs
C
δ,j,l,1sc ‰

sCδ,j,l,1, thus s
C
j,l,1 is a new state and new input to f . It can hit a certain older state

with probability 1{2c. In total, the j-th decryption query sets event Dhit with

probability at most:
σD,jσε`p

σD,1`...`σD,j´1
2

q

2c

If ciphertexts C ‰ Cδ,j are different in all their blocks, then sSMN
j,0 “ sSMN

δ,j,0 and

sSMN
j,1 “ C0||rs

SMN
δ,j,1 sc ‰ sSMN

δ,j,1 . This means that the state is fresh and can be hit

with some older state with probability 1{2c.

Here we have one subcase, or if SMN is the same. This means that C0 “ Cδ,j,0

and CIS for the message phase is the same fpsSMN
j,1 q “ fpsSMN

δ,j,1 q. So the reasoning

carries over the case where the rest of the ciphertexts is different or they have

longest common prefix.

3. N “ Nδ,j but AD ‰ ADδ,j. The analysis is the same as in the ciphertext case,

except the case where inner collision can be done between the state where CIS

is updated and states from the associated data (a{2r). In the rest the reasoning

carries over for all new future states.

4. N ‰ Nδ,j. The nonce is new so all future states in this query are new. Simplification

can be applied here.

Summing over all queries we get:

PrpDhit|␣pkey_multiqq ď
qD
ÿ

j“1

σεσD,j

2c
` p

řqD
j“1 σD,j

2
q{2c `

qDa

2r
`

σD

2k

ď
σDσε ` σ2

D{2

2c
`

qDa

2r
`

σD

2k

Together with all the bounds from the privacy proof via 3.16 we get:

Prpeventq ď
qp ` σε ` σD

2k
`
pσε ´ qεq

2

2b`1
`

qpr

2c
`

qεa` qDa

2r
`

2qpσε

2b
`

c

8eσεqp
2b

`
qpσD

2c
`

σDσε ` σ2
D{2

2c
(3.17)

At the end, we have the final bounds for integrity of π-Cipher:

3.2 Bit diffusion analysis 41

AdvAuth
Π pA q ď

pqp ` σε ` σDq
2

2b`1
`

qD
2τ
`

qp ` σε ` σD

2k
`
pσε ´ qεq

2

2b`1
`

qpr

2c
`

qεa` qDa

2r
`

qpσε

2b`1
`

c

8eσεqp
2b

`
qpσD

2c
`

σDσε ` σ2
D{2

2c

We assume that qpσε`pσε´qεq2

2b`1 ď
pqp`σε`σDq2

2b`1 and get the following:

AdvAuth
Π pA q ď

pqp ` σε ` σDq
2

2b
`

qD
2τ
`

qp ` σε ` σD

2k
`

qpr

2c
`

qεa` qDa

2r
`

c

8eσεqp
2b

`
σDpqp ` σε ` σD{2q

2c
(3.18)

3.2 Bit diffusion analysis

We give a bit diffusion analysis for the ˚ operation and for one round of the π function

of π16-Cipher, π32-Cipher and π64-Cipher.

In our analysis, we have used two experimental settings:

1. Examining the propagation of a one bit difference in a 10000 randomly generated

X and Y (inputs) of the ˚ operation;

2. Examining the propagation of a one bit difference in a 1000 randomly generated

Internal states IS for one round of the π function.

We performed several experiments for different word sizes (ω “ 16, 32, 64).

In the experimental setting under (1) we generated 10000 random values for X and Y.

First, we measured what is the Hamming distance between outputs Z and Z1 (Z “ X ˚Y

and Z1 “ X1˚Y), where 1 bit is changed in the inputX pHammingDistpX,X1q “ 1q. Af-

ter that we measured the Hamming distance between outputs Z and Z1 of the ˚ operation

(Z “ X ˚Y and Z1 “ X ˚Y1) where 1 bit is changed in Y pHammingDistpY,Y1q “ 1q.

The results for ω “ 16, 32, 64 are shown in Figure 3.1, Figure 3.2 and Figure 3.3.

In the experimental setting under (2) we generated 1000 random values for the Internal

State IS and used just one round of the π function. Here we measure the Hamming

distance between the outputs (πpISq and πpIS 1q), where one bit is changed in the IS

3.2 Bit diffusion analysis 42

0 10 20 30 40 50 60

20

30

40

50

60

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

0 10 20 30 40 50 60

20

30

40

50

60

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

Figure 3.1: Avalanche effect of the ˚ operation for ω “ 16

0 20 40 60 80 100 120

20

40

60

80

100

120

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

0 20 40 60 80 100 120

20

40

60

80

100

120

Position of the changed bits in Y

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

Figure 3.2: Avalanche effect of the ˚ operation for ω “ 32

0 50 100 150 200 250
0

50

100

150

200

250

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

0 50 100 150 200 250
0

50

100

150

200

250

Position of the changed bits in Y

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

Figure 3.3: Avalanche effect of the ˚ operation for ω “ 64

3.3 Distinguisher for one round of π16-Cipher096 43

(HammingDistancepIS, IS 1q “ 1). The results for ω “ 16, 32, 64 are shown in Figure

3.4, Figure 3.5 and Figure 3.6.

0 50 100 150 200 250

150

200

250

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

o
f
π

Figure 3.4: Avalanche effect of one round of the π function where ω “ 16 (Min “

120.732,Avg = 127.255,Max “ 128.731)

3.3 Distinguisher for one round of π16-Cipher096

We describe a distinguisher attack for one round of π16-Cipher096.

For ω “ 16 the size of the part J2 in Figure 3.7 is 64 bits. Thus, by trying all 264 values

for J2 (the graphical representation is in Figure 3.8) we can obtain in a unique way a list

L1 “ tpI1i, I2iq | 0 ď i ă 264u of 264 different values for the pairs pI1i, I2iq (the graphical

representation is in Figure 3.9). We build a similar list L2 “ tpI
1
1i, I

1
2iq | 0 ď i ă 264u for

the next encrypted block. Knowing that the encryption for the next block is by injecting

a counter that was incremented by 1 from the previous counter value, and that it was

injected in the position of I1, while the value of I2 was the same, we build a matching

list L3 “ tpI1i, I
1
1i, I2i, I

1
2iq | 0 ď i ă 264u where I 1

1i ´ I1i “ 1. With probability 1 there

will be a pair of values where I2i “ I 1
2i, while if the values of J1 and J3 were from an

ideal random source, the probability that there will be a pair where I2i “ I 1
2i is very low

(much less than 2´32). In total, the complexity of the attack is 265 computations of the

3.3 Distinguisher for one round of π16-Cipher096 44

0 100 200 300 400 500
200

300

400

500

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

o
f
π

Figure 3.5: Avalanche effect of one round of the π function where ω “ 32 (Min “

226.063,Avg = 256.765,Max “ 251.472)

0 200 400 600 800 1,000

400

600

800

1,000

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th

e
o
u
tp

u
ts

o
f
π

Figure 3.6: Avalanche effect of one round of the π function where ω “ 64 (Min “

400.88,Avg = 485.646,Max “ 515.76)

3.3 Distinguisher for one round of π16-Cipher096 45

operation ˚, and the space is 265 ˆ 16 “ 269 bytes.

For more than one round, or for bigger values of ω, this distinguishing attack is more

complex than the claimed security of the cipher.

C1

C2

I3I2I1

I 1
1

J1 J2 J3 J4

I4

I 1
2 I 1

3 I 1
4

Figure 3.7: One round of π16-Cipher

C1

C2

I3I2I1

I 1
1

J1 J2 J3 J4

I4

I 1
2 I 1

3 I 1
4

Figure 3.8: For J2 we try all possible 264 values.

C1

C2

I3I2I1

I 1
1

J1 J2 J3 J4

I4

I 1
2 I 1

3 I 1
4

Figure 3.9: The blue squares are either guessed ones (that is J2) or obtained in a unique
way from the definition of the operation ˚.

Chapter 4

Features

4.1 Main Features

In this section we discuss the features of π-Cipher loosely following the structure of the

features section http://competitions.cr.yp.to/features.html on the CAESAR web site.

Cipher-structure (Encrypt than MAC). First we want to point out that it is rela-

tively straightforward to show that the π-Cipher is an Encrypt-then-MAC authenticated

cipher. Let us recall the definition for the Encrypt-then-MAC authenticated cipher: We

say that the authenticated cipher is Encrypt-then-MAC if a message M is encrypted

under a secret key K1 and then the tag T is calculated with another secret key K2 as

MACpK2, Cq. The pair pC, T q is the output of the authenticated encryption procedure.

If we describe the e-triplex component used in π-Cipher in a mathematical form we

have the following. First the message M is encrypted producing the ciphertext C as

IS Ð πpCISrate

à

counter |||| CIScapacityq,

C ÐM
à

ISrate.

Then, the tag T is calculated as

tÐ πpC |||| IScapacityqrate.

Here, the value of CISrate

À

counter |||| CIScapacity has the role of K1 in the definition

of Encrypt-then-MAC, and the value of C |||| IScapacity has the role of the pair pK2, Cq

46

http://competitions.cr.yp.to/features.html

4.1 Main Features 47

in the MACpK2, Cq part of the definition of Encrypt-then-MAC.

Associated Data and NONCE reuse. If we encrypt two different plaintexts M1

and M2 with the same secret key K, associated data AD and nonce NONCE “

pPMN,SMNq, then neither the confidentiality nor the integrity of the plaintexts are pre-

served in the π–Cipher. However, as one measure to reduce the risks of a complete reuse of

the NONCE we have adopted the strategy of a composite NONCE “ pPMN,SMNq.

If either PMN or SMN are different, then both the confidentiality and integrity of

plaintexts are preserved.

Plaintext corruption, associated-data corruption, message-number corrup-

tion, ciphertext corruption. We posit that the π-Cipher can straightforwardly be

proven INT-CTXT secure under the assumption that the permutation π is an ideal ran-

dom permutation without any structural distinguishers, based on the security proof in

Section 3.1.

Ciphertext prediction. The best distinguishing attack that we know for the π-Cipher

is for the version π16-Cipher096 with just one round and is described in Section 3.3.

The complexity of the attack is 265 computations of the operation ˚, and the space is

265 ˆ 16 “ 269 bytes.

Replay and reordering. For the π-Cipher, the standard defense against both replay

and reordering is for the sender to use strictly increasing public message numbers PMNs,

and for the receiver to refuse any message whose message number is no larger than the

largest number of any verified message. This requires both the sender and receiver to

keep state.

Sabotage. The π-Cipher puts the encryption of the SMN value as the first block of

the ciphertext C. Thus, in protocols that use the π-Cipher, the receiver can make an

early reject of invalid messages by decrypting the first block (containing the SMN) and

comparing it to its expected value. Only if this check passes the receiver continues with

the rest of the decryption and tag computation. Note however, that this requires the

protocol to not return error messages to the sender, in order to avoid timing attacks.

AES-GCM does not have this property.

4.1 Main Features 48

Plaintext espionage. Since the attacker’s goal here is to figure out the user’s secret

message, the only feasible attack can happen when the size of the secret message is small

by building a table of encrypted secret messages. To defend against this attack the π-

Cipher requires the nonce pair NONCE “ pPMN,SMNq to have a unique value for

every encryption.

Message-number espionage. In the π-Cipher there is a dedicated phase for encrypt-

ing the secret message number SMN , and figuring out the value of SMN is equivalent to

breaking the whole cipher which is infeasible under the assumptions that the permutation

πpq is random.

General input scheduling. The π-Cipher can offer two ways for reducing the latency:

(1) If the key K and the public message number PMN are known in advance and used

repeatedly, then it is possible to precompute phase 1. and store the resulting Common

Internal State (CIS) for subsequent applications of the cipher. (2) If the key K, the

public message number PMN and the associated data AD are known in advance and

used repeatedly, then it is possible to precompute both phase 1. and phase 2. for

subsequent uses. In both cases, in order to preserve the confidentiality and the integrity

of the plaintext, for every encryption the secret message numbers SMN ’s must be unique.

Software performance. For efficient software implementations, we propose to use the

π64-Cipher. On modern Intel CPUs (Sandy Bridge and Haswell) the initial and slightly

optimized implementation (but non-SIMD) achieves the speeds from 6 cpb up to 12 cpb.

Lightweight hardware performance. For a lightweight hardware implementation

we propose to use π16-Cipher096. Our implementation of the π-function on FPGA

Xilinx Virtex7 needs 266 slices achieving a throughput of 4.34 Gpbs at 347 MHz. Also

the message processor is built and it costs 1114 slices working at 250 MHz.

4.2 Extra Features 49

4.2 Extra Features

4.2.1 Tag second preimage resistance - resistance against find-

ing second preimage for an authentication tag when the

key is known (insider attack)

π-Cipher offers some level of tag second-preimage resistance. We say some level, since

the computational efforts for finding a second-preimage for a given pair (message, tag)

are not the same as for finding second-preimages for hash functions. And if the π-Cipher

is used for authenticated encryption of messages with arbitrary length (in the framework

of the maximally allowed size of the messages which is up to 264 bytes), as it was shown

by Leurent in [12] the tag second-preimages can be computed with complexities from 222

using messages that are long 211 blocks up to complexity 245 using messages that are

long 222 blocks. Laurent’s analysis on π-Cipher v1 was based on Wagner’s generalized

birthday attack [14] which complexity can be described as follows. The complexity of

finding a preimage message M “M1||M2|| . . . ||MK of K blocks, where K is smaller than

some predefined big number, is:

min
K

OpK ¨ 2
k

1`lgtKu q (4.1)

If the length of the messages is not restricted, then the minimum in equation (4.1) is

achieved for messages of K “ 2
?
k´1 blocks.

However, there are situations when we need to encrypt relatively short messages. For

example, if we use the π-Cipher in IPSec or TLS with the most common Internet packet

size of 1500 bytes, then for π64-Cipher128 or π64-Cipher256 the encrypted messages will

have “just” 24 packets. In that case the Wagner’s generalized birthday attack in order

to find a second-preimage for a given tag will need 2108 e-triplex invocations and a space

of 2113 bytes. We note that by choosing different values for the tweakable parameter N ,

we can achieve different levels of tag second-preimage resistance.

4.2.2 A wide block tweakable feature of π-Cipher

π-Cipher is designed to be tweakable for different word sizes, different security levels and

different block sizes. The goal of π-Cipher is to achieve both high performance and strong

security.

4.2 Extra Features 50

Authenticated encryption of stored data has its own specifics and differs from authen-

ticated encryption of data in transit. The most notable difference is that an authenticated

encryption algorithm used for data storage has to support independent encryption and

decryption of portions of data. Those portions of data are typically represented as disk

sectors. Old hard disk drives (HDDs) had sectors of 512 bytes but the hard disk pro-

ducers moved to a 4096 (4K) byte sector size with the Advanced Format [10]. The new

AF HDD storage devices read data from or write data to 4K-byte (4,096 bytes) physical

sectors on the HDD media.

In contrast to the hard disk, a Solid State Drive (SSD) consists of semiconductor

memory building blocks, and it contains no mechanical parts. The smallest unit of an

SSD is a page, and it can be of size as small as 2KB, 4KB, 8KB, 16KB etc. It is not

possible to read less than one page at once [8]. Several pages on the SSD are summarized

to a block. For example, the Samsung SSD 840 EVO has blocks of size 2048KB, and

each block contains 256 pages of 8KB each.

Table 4.1: Wide block characteristics of π64-Cipher256

klen
(in bits)

PMN
(in bits)

SMN
(in bits)

Rate in
Bytes N

Tag T
(in bits) R

wide block of 512B 256 512 0 512 32 256 2
wide block of 2KB 256 512 0 2048 128 256 2
wide block of 4KB 256 512 0 4096 256 256 2
wide block of 8KB 256 512 0 8192 512 256 2
wide block of 16KB 256 512 0 16384 1024 256 2

Using the encryption algorithm that can encrypt one sector (one page) as one block

of message will be an advantage. From this perspective, we can use very efficiently π64-

Cipher256 by tuning the parameter N to define arbitrary big block sizes that match the

disk sector (page) sizes. For example, if N “ 256 (instead of the recommended value

N “ 4) we can encrypt a whole sector of 4KB as one block. The sector number can be

used as a part of the counter that is used in the π-Cipher when processing each block, the

authenticated tag for that block can be stored in the data structure associated with that

disk sector, and all those disk sectors can be processed independently and in parallel.

For encrypting standard old hard disk drives (HDDs) where the sector size is 512

4.2 Extra Features 51

bytes the rate of the cipher should be 512B and parameter should be N “ 32 to process

one sector at once.

Having all this in mind, we recommend 5 instances of π64-Cipher256 with parameters

N that fits the sizes of older and modern disk sectors. The recommended variants are

presented in Table 4.1. Note that the number of rounds here is 2.

4.2.3 How to securely do incremental encryption (even with

nonce misuse)

According to the paper ”General Overview of the First-Round CAESAR Candidates for

Authenticated Ecryption” [1] by Abed, Forler and Lucks, for the ”Incremental Authenti-

cated Encryption” they took the following (in our opinion correct) criteria:

”Note that some schemes may provide this property under the requirement

of reusing the nonce. We consider nonce misuse to be an erroneous usage

which should not be encouraged to obtain a nice feature. Hence, we denote

scheme to provide incremental authenticated encryption only if the nonce is

used only once and never is repeated.”

By this criteria, they correctly categorized π-Cipher as non-incremental cipher.

In this note we explain how π-Cipher can be used as incremental authenticated cipher,

that complies with the criteria of Abed, Forler and Lucks for incremental authenticated

encryption. It comes with a costs of an additional data overhead of 64 bits per encrypted

block. That data overhead serves as an update counter UpdCtr, that records the history

of updates for every data block.

The default block sizes for π-Cipher are 128, 256 or 512 bits. Adding a data overhead

of 64 bits for every data block would be an enormous and unacceptable overhead of 50%,

25% or 12.5%. Luckily, π-Cipher is designed to be tweakable for different block sizes. We

have already described variants of π64-Cipher256 with block sizes of 512B, 2KB, 4KB,

8KB and 16KB. For those sizes the corresponding percentage of the overhead of 64 bits

is: 1.5%, 0.39%, 0.19%, 0.09% and 0.04%. For even bigger block sizes, this overhead can

become negligible.

Note that in case that the user do not want to keep in memory the precomputed

values for CIS and ctr` a` 1 then he/she has to execute again the Initialization phase

4.2 Extra Features 52

M1pctr ` a ` 1q ` 1||UpdCtr1

tm

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
o
m
m
o
n
In
te
rn

a
l
S
ta
te

C
I
S

tag T

C1

Mm
pctr ` a ` 1q ` m||UpdCtrm

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
o
m
m
o
n
In
te
rn

a
l
S
ta
te

C
I
S

Cm

t1

tag T 2

Figure 4.1: Processing the message M with m blocks in parallel. Here the 64-bit update
counters UpdCtri are injected into the sponge state.

4.2 Extra Features 53

Algorithm 1 - Incremental tag update operation

Input. The common internal state CIS, ctr ` a ` 1, the block index i, the
old block Mi, the update counter for that block UpdCtri, the new block M 1

i
and the old tag value T .

Output. A new ciphertext block Ci and a new tag T .

1. For the old block Mi, calculate:
IS Ð πpCISrate ‘ ppctr ` a ` 1q ` i ∥ UpdCtriq ∥∥ CIScapacityq;
Ci Ð Mi

À

ISrate;
ti Ð πpCi ∥∥ IScapacityqrate ;

2. Increase the value of the update counter UpdCtri Ð UpdCtri ` 1

3. For the new block M 1
i , calculate:

IS Ð πpCISrate ‘ ppctr ` a ` 1q ` i ∥ UpdCtriq ∥∥ CIScapacityq;
C1

i Ð M 1
i

À

ISrate;
t1
i Ð πpC1

i ∥∥ IScapacityqrate ;

4. Combine T , ti and t1
i via a combining group operation

Ð

d to get the final
authentication tag value T 1 “ T

Ñ

d ti
Ð

d t
1
i;

5. Replace: Ci Ð C1
i and T Ð T 1;

6. Output Ci and T .

Table 4.2: Incremental authentication encryption update with π-Cipher.

with the secret key K and the nonce part PMN , then will have to process the associated

data and finally to encrypt again SMN .

As it is shown in Step 1 and Step 3, the incremental authentication encryption

mode works in such a way that the 64-bit update counters UpdCtri are injected in

the permutation state concatenated to the block counters. That means that the vectors

pPMN,SMN, ctr, UpdCtriq form a unique nonce, for every block Mi, thus there is no

nonce repetition and misuse. A graphical presentation of the encryption phase in this

incremental authenticated encryption mode of π-Cipher is given in Figure 4.1.

4.2.4 π-Cipher is STREAM OAE2`

Recently, Rogaway et al., [9] have introduced the definition of Online Authenticated-

Encryption 2 and its STREAM OAE2 sub-variant. Their definition as they say effectively

does capture best-possible security for a users choice of plaintext segmentation and cipher-

text expansion. They also mention that the sponge duplex construction in [5] resembles

OAE2.

If we have in mind that π-Cipher is based on the duplex construction of [5], with the

additional cryptographic mechanisms that strengthen its robustness such as the features:

4.2 Extra Features 54

• tag second preimage resistance

• wide block tweakability

• incrementability

• use of SMN that guarantees confidentiality and integrity even when the K, AD

and PMN are reused

it is clear why we consider π-Cipher has STREAM OAE2` design.

Chapter 5

Design rationale

Disclaimer: ”The designer/designers have not hidden any weaknesses in this cipher.”

5.1 Why parallelism, incrementality and tag second-

preimage resistance?

While AES-GCM can be parallelized it is not a tag second-preimage resistant. In our

presentation at DIAC 2013 [6] we located several reasons why MACs should retain some

hash properties when the key is known. We argued that since the Robustness is one of the

main goals of the future AEAD standard, tag second-preimage resistance should be one

of the features that an AEAD cipher should posses. We also gave two realistic scenarios

(”Secure audit logs” and Multi-cast authentication) when the lack of tag second-preimage

resistance in authenticated encryption can be exploited.

While the proposed sponge constructions of authenticated encryption offer tag second-

preimage resistance, they lack some of the properties that are also useful and desired (such

as parallelizability and incrementality). As a result of this line of reasoning, we designed

a cipher for authenticated encryption that is parallel, incremental and offers a certain

level of tag second-preimage resistance.

55

5.2 Why constants in π–Cipher and how to choose them 56

5.2 Why constants in π–Cipher and how to choose

them

In order to avoid the existence of some trivial fixed points in the permutation function π,

we decided to use constants in the affine bijective transformations xA1 and xA3 from µ and

ν permutations. The reason why we choose these constants is that they are represented

as a sequence of equal distribution of 0s and 1s. Having these constants in xA1 and xA3 we

are not aware of any point X such that

πpXq “ X.

The size and value of the constants depend on the length of the words in the π–Cipher.

First we generate the set Constants of all possible 8-bit (1 byte) candidates with equal

distribution of 0s and 1s in their binary representation. The total number of elements in

this set is 70, and is given by:

Constants “ t0xF0, 0xE8, 0xE4, 0xE2, 0xE1, 0xD8, 0xD4, 0xD2, 0xD1, 0xCC,

0xCA, 0xC9, 0xC6, 0xC5, 0xC3, 0xB8, 0xB4, 0xB2, 0xB1, 0xAC,

0xAA, 0xA9, 0xA6, 0xA5, 0xA3, 0x9C, 0x9A, 0x99, 0x96, 0x95,

0x93, 0x8E, 0x8D, 0x8B, 0x87, 0x78, 0x74, 0x72, 0x71, 0x6C,

0x6A, 0x69, 0x66, 0x65, 0x63, 0x5C, 0x5A, 0x59, 0x56, 0x55,

0x53, 0x4E, 0x4D, 0x4B, 0x47, 0x3C, 0x3A, 0x39, 0x36, 0x35,

0x33, 0x2E, 0x2D, 0x2B, 0x27, 0x1E, 0x1D, 0x1B, 0x17, 0x0Fu

The constants used in the πω–Ciphers with different word sizes consist of a concate-

nation of a consecutive 8-bit elements from the set Constants.

π16–Cipher uses eight 16-bit constants for the ˚ operation and eight 4-tuples of 16-bit

constants for the rounds. We start from the first element of the set 0xF0 and take 16

successive byte values up to the value 0xB8 and form the constants for the ˚ operation.

After that, we take every eight successive byte values to form one round constant. We

repeat this procedure 6 times and generate the constants C1, C2, . . . , C6 for the rounds.

Since π32–Cipher uses eight 32-bit constants for the ˚ operation and eight 4-tuples

of 32-bit constants for the rounds, we take 32 successive byte values starting from the

5.2 Why constants in π–Cipher and how to choose them 57

first one 0xF0 and form the constants for the ˚ operation. The next 128 consecutive byte

values are used for generating constants for the rounds. Because we need 128 bytes for

the round constants of π32–Cipher and have 70 elements in the set, for the 71st byte we

take the value of the first element in the set Constants again.

π64–Cipher uses eight 64-bit constants for the ˚ operation. They are taken as 64

successive byte values from the set, starting from the first one 0xF0. Since π64–Cipher

uses 4–tuples of 8 bytes round constants, we take them successively starting from the

value 0x27 in the set Constants.

The values of both constants (for the ˚ operation and for rounds) for different π–

Ciphers are given in Section 1.3.

Chapter 6

Intellectual property

We, the designers of the π-Cipher hereby declare that, to the best of our knowledge, the

design of the algorithm that we have submitted for the CAESAR competition, is not

covered by any patents. We also hereby declare that we intend never to cover the design

of the π-Cipher by any patent.

If any of this information changes, the submitter/submitters will promptly (and within

at most one month) announce these changes on the crypto-competitions mailing list.

π-Cipher stands for the concept of ”open authorship”. It is very similar concept to

the concept of open source projects, but we introduce it in the area of the intellectual

efforts of crypto designs. In essence, it gives opportunity to all people that contribute

anyhow in the development of π-Cipher (for example if a tweak is introduced due to an

analysis of the cipher, or if a new mode of operation is proposed, or new implementations

are produced), then all those contributors have an opportunity (if they want) to ask to

be added to the list of designers for new versions or variants of π-Cipher.

The members of the π-Cipher v2.0 and further versions will be listed in chronological

order as they joined the list of designers.

58

Chapter 7

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection com-

mittee regarding the selection or non-selection of this submission as a second-round can-

didate, a third-round candidate, a finalist, a member of the final portfolio, or any other

designation provided by the committee. The submitter/submitters understand that the

committee will not comment on the algorithms, except that for each selected algorithm

the committee will simply cite the previously published analyses that led to the selec-

tion of the algorithm. The submitter/submitters understand that the selection of some

algorithms is not a negative comment regarding other algorithms, and that an excellent

algorithm might fail to be selected simply because not enough analysis was available

at the time of the committee decision. The submitter/submitters acknowledge that the

committee decisions reflect the collective expert judgments of the committee members

and are not subject to appeal. The submitter/submitters understand that if they disagree

with published analyses then they are expected to promptly and publicly respond to those

analyses, not to wait for subsequent committee decisions. The submitter/submitters un-

derstand that this statement is required as a condition of consideration of this submission

by the CAESAR selection committee.

59

Acknowledgments

We would like to thank Gaëtan Leurent and Thomas Fuhr for their detailed observation

on the π-Cipher, pointing out the problem with the padding function in v1.0, and giving

us a note for removing a bug in the reference C code. Also we would like to thank Bart

Mennink for his valuable and excellent advices in the process of proving the security of

π-Cipher.

Much of the work on this cipher was done while Hristina Mihajloska was visiting

Danilo Gligoroski’s group at Department of Telematics, NTNU. This visit was supported

from ICT COST Action - IC1306 Cryptography for Secure Digital Interaction as a Short

Term Scientific Mission (STSM).

60

References

[1] Farzaneh Abed, Christian Forler, and Stefan Lucks. General Overview of the
First-Round CAESAR Candidates for Authenticated Ecryption. Cryptology ePrint
Archive, Report 2014/792, 2014. http://eprint.iacr.org/.

[2] Mihir Bellare, Roch Guérin, and Phillip Rogaway. Xor macs: New methods for
message authentication using finite pseudorandom functions. In Don Coppersmith,
editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 15–28.
Springer, 1995.

[3] D. J. Bernstein. Cryptographic competitions: Caesar call for submissions, draft
5 (2013.12.01). Cryptographic competitions: CAESAR, 2013. Available at http:
//competitions.cr.yp.to/caesar-call-5.html.

[4] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indif-
ferentiability of the sponge construction. In Nigel P. Smart, editor, EUROCRYPT,
volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In Proceedings
of the 18th International Conference on Selected Areas in Cryptography, SAC’11,
pages 320–337, 2012.

[6] Danilo Gligoroski, Hristina Mihajloska, and H̊akon Jacobsen. Should MAC’s retain
hash properties when the key is known in the next AEAD? Presentation at DIAC
2013, 2013. http://2013.diac.cr.yp.to/slides/gligoroski.pdf.

[7] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan Knapskog,
Ljupco Kocarev, Aleš Drápal, and Vlastimil Klima. Cryptographic hash function
EDON-R1. In 1st International Workshop on Security and Communication Net-
works, pages 85–95, Trondheim, Norway, May 2009. IEEE.

[8] Emmanuel Goossaert. Coding for ssds part 3: Pages, blocks, and the flash
translation layer, February, 2014. http://codecapsule.com/2014/02/12/

coding-for-ssds-part-3-pages-blocks-and-the-flash-translation-layer/.

61

http://eprint.iacr.org/
http://competitions.cr.yp.to/caesar-call-5.html
http://competitions.cr.yp.to/caesar-call-5.html
http://2013.diac.cr.yp.to/slides/gligoroski.pdf
http://codecapsule.com/2014/02/12/coding-for-ssds-part-3-pages-blocks-and-the-flash-translation-layer/
http://codecapsule.com/2014/02/12/coding-for-ssds-part-3-pages-blocks-and-the-flash-translation-layer/

REFERENCES 62

[9] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizr. On-
line Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. Cryptology
ePrint Archive, Report 2015/189, 2015. http://eprint.iacr.org/.

[10] IDEMA. The Advent of Advanced Format. idema.org, 2013. http://www.idema.

org/?page_id=2369.

[11] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2 c/2 security in sponge-
based authenticated encryption modes. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology ASIACRYPT 2014, volume 8873 of Lecture Notes in Com-
puter Science, pages 85–104. Springer Berlin Heidelberg, 2014.

[12] Gaëtan Leurent. Tag Second-preimage Attack against π-cipher, March 2014. https:
//hal.inria.fr/hal-00966794.

[13] Pawel Morawiecki and Josef Pieprzyk. Parallel authenticated encryption with the
duplex construction. Cryptology ePrint Archive, Report 2013/658, 2013. http:

//eprint.iacr.org/.

[14] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

http://eprint.iacr.org/
http://www.idema.org/?page_id=2369
http://www.idema.org/?page_id=2369
https://hal.inria.fr/hal-00966794
https://hal.inria.fr/hal-00966794
http://eprint.iacr.org/
http://eprint.iacr.org/

	Specification
	Parameters, variables and constants
	General design properties
	Authenticated encryption
	Decryption and verification

	The -function

	Security goals
	Security analysis
	Security proof of -Cipher
	Privacy of -Cipher
	Authenticity of -Cipher

	Bit diffusion analysis
	Distinguisher for one round of 16-Cipher096

	Features
	Main Features
	Extra Features
	Tag second preimage resistance - resistance against finding second preimage for an authentication tag when the key is known (insider attack)
	A wide block tweakable feature of -Cipher
	How to securely do incremental encryption (even with nonce misuse)
	-Cipher is STREAM OAE2+

	Design rationale
	Why parallelism, incrementality and tag second-preimage resistance?
	Why constants in �Cipher and how to choose them

	Intellectual property
	Consent
	Acknowledgments
	References

