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PRIMATEs v1.02: Submission to CAESAR

Changes From v1.01

1. Clarification of the bounds on collision producing trails (Sect. 4.4.2).

Changes From v1.0

1. Included a ranking of the parameters as required by the CAESAR competition.

2. Removed statements describing APE’s nonce as being optional.

3. Improved the descriptions of the algorithms, layout, and wording.

4. Added figures for both fractional and integral, associated data and message cases.

All security analysis performed on the schemes in v1.0 and the reference
software implementation provided as v1 also holds for the schemes in v1.01
and v1.02.
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PRIMATEs v1.02: Submission to CAESAR

Notation

Set K := {0, 1}k, T := {0, 1}τ , N := {0, 1}ν , R := {0, 1}r, C := {0, 1}c, and C
1
2 :=

{0, 1}c/2. Given the state X ∈ R ×C, Xr ∈ R denotes its rate part and Xc ∈ C its
capacity part. We write 0r ∈ R for a shorthand of 00 · · · 0 ∈ R.

The bitwise XOR operation of the bit strings a1 and a2 is denoted by a1⊕a2. Both
a1 ‖ a2 and a1a2 denote the concatenation of the bit strings a1 and a2.

An element of R is called a block. Let R∗ denote the set of strings whose length
is a non-negative multiple of r and at most 2c/2 blocks. Given a plaintext (message)
M ∈ {0, 1}∗, we divide it into blocks and write M [1]M [2] · · ·M [w] ← M , where each
M [i] for i < w is a block and M [w] is a string of length less than or equal to a block.
We refer messages with 0 < |M [w]| < r as fractional messages (as opposed to integral
messages where |M [w]| = r). When we write M ‖ 10∗, we mean that M is padded
with a 1-bit and then zeros until the length of the resulting string is a multiple of r.
By definition, an empty input message M = ∅ is also padded to the one zero-length
block M [1]← 10r−1.

By bMcn we denote the n most significant bits of M (the n leftmost bits) whereas
by dMen we denote the n least significant bits.

Authenticated encryption with associated data (AEAD).

An authenticated encryption algorithm with associated data consists of a key gener-
ation K, an encryption E and a decryption D algorithm. The encryption algorithm
E takes as input a key K ∈ K, associated data A ∈ R∗, and a message M ∈ R∗,
and returns a ciphertext C ∈ R∗ and a tag T ∈ T, as (C, T ) ← EK(A,M). The
decryption algorithm D takes as input a key K ∈ K, associated data A ∈ R∗, a ci-
phertext C ∈ R∗, and a tag T ∈ T, and returns either a message M ∈ R∗ or the reject
symbol ⊥, as M/⊥ ← DK(A,C, T ). The two functionalities E and D are sound, in
the sense that

DK(A, EK(A,M)) = M,

for all K, A and M .

Nonce-based AEAD.

Whenever the AEAD scheme takes an additional nonce N ∈ N argument both in
encryption and decryption we speak of nonce-based AEAD. The encryption algorithm
is then defined as (C, T ) ← EK(N,A,M) and the decryption algorithm as M/⊥ ←
DK(N,A,C, T ) with the soundness condition DK(N,A, EK(N,A,M)) = M holding
for all N , K, A, and M .

Nonces.

A nonce N ∈ N is an unique non-repeating value, e.g. a counter. The nonces in this
work are public values and we alternatively refer to them as public message numbers.
We do not use secret message numbers. How the sender and receiver generate and
synchronize nonces is left implicit as long as the uniqueness condition is satisfied.
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s = 80 bits s = 120 bits

b (state size) 200 bits 280 bits

c (capacity size) 160 bits 240 bits

r (rate size) 40 bits 40 bits

permutations PRIMATE-80 PRIMATE-120

Table 1: The security levels for the PRIMATEs family.

1 Parameters

The authenticated encryption family PRIMATEs is defined by the following two pa-
rameters:

1. The mode of operation Scheme ∈ {APE,HANUMAN,GIBBON}.

2. The security level s ∈ {80, 120} bits;

The security level will regularly be expressed in terms of bits (80 or 120 bits). The
security level determines: the state size b, where the state consists of a rate part
with r and a capacity part with c bits; and the permutation family PRIMATE-s. The
PRIMATE-s : {0, 1}b → {0, 1}b family consists of four permutations p1, p2, p3, and
p4. On the other hand, each mode of operation determines the key length k, the tag
length τ , the nonce length ν, and the subset of permutations from PRIMATE-s.

For the purpose of the CAESAR competition, we rank the PRIMATEs as follows:

1. APE-120

2. HANUMAN-120

3. GIBBON-120

4. APE-80

5. HANUMAN-80

6. GIBBON-80

We note, however, that the different PRIMATEs serve different security goals, as we
will clarify in this document.

1.1 Recommended Parameters

We recommend a security level s of either 80 or 120 bits for PRIMATEs family, as
shown in Table 1.

In Table 2, we provide the respective key, tag and nonce values for the three modes
where Scheme-s indicates the mode under s = 80 and s = 120 bits respectively. For
HANUMAN and GIBBON we have identical values as compared to APE.
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APE-s HANUMAN-s GIBBON-s

k (key size) 2s s s

τ (tag size) 2s s s

ν (nonce size) s s s

PRIMATE p1 p1, p4 p1, p2, p3

Table 2: Key,tag and nonce values for the three modes of the PRIMATEs family.

When any of the parameters of the PRIMATEs are modified, a new key must be
chosen uniformly at random. The length of plaintext and associated data processing
is discussed in Sect. 2. Our recommendation for lightweight authenticated encryp-
tion is HANUMAN. For lightweight applications where speed is critical we recommend
GIBBON and for lightweight environments where additional security requirements are
needed or security is critical we recommend APE. The primary recommended security
level is s = 120, whereas we recommend s = 80 for extremely lightweight applications.
The primary recommended mode on the other hand is APE followed by HANUMAN
and GIBBON. Hence, in this document, we prioritize security. APE is robust even when
the nonce is misused whereas HANUMAN is secure as long as the nonce is unique and
non-repeating. GIBBON is the most efficient at the cost of weaker security guaran-
tees. As such, for different applications HANUMAN or GIBBON may be preferred over
APE. We also note that a possible weakness observed in one of the modes, does not
necessarily apply to the other modes.

2 Specification of PRIMATEs

We now provide the specifications of APE, HANUMAN and GIBBON. In this document,
we specify that the message and associated data can consist of a non-integer number of
bytes. However, due to restrictions on the API imposed by the CAESAR competition,
all implementations that will be provided during the competition only support an
integer number of bytes.

2.1 APE

The APE algorithm is described in Fig. 1. In APE, as opposed to HANUMAN and
GIBBON, we treat the nonce the same way as the associated data whenever present.
APE supports variable length associated data and plaintexts. As discussed in Sect. 3
we recommend the associated data and the plaintexts to be of size at most 2c/2 bits.
For APE-80 this is approximately 277 bytes and for APE-120 this is 2117 bytes. The
APE algorithm uses the permutation p1 together with its inverse p−1

1 for decryption.
The key is used twice for: (1) part of the capacity of the initial state; and (2) after the
tag generation. The fractional message cases are dealt with differently as compared to
the integral data as elaborated below:

Consider a message M and denote its last block by M [w], where |M [w]| = |M | mod
r. We distinguish among three cases:
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Algorithm 1: EK(N,A,M)

Input: K ∈ C, N ∈ C
1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1 V ← 0r ‖ K
2 N [1]N [2] · · ·N [y]← N
3 for i = 1 to y do
4 V ← p1

(
N [i]⊕ Vr ‖ Vc

)
5 end
6 if A 6= ∅ then
7 A[1]A[2] · · ·A[u]← A
8 A[u]← A[u] ‖ 10∗

9 for i = 1 to u do
10 V ← p1

(
A[i]⊕ Vr ‖ Vc

)
11 end
12 end
13 V ← V ⊕ (0b−1 ‖ 1)
14 M [1]M [2] · · ·M [w]←M
15 l← |M [w]|
16 M [w]←M [w] ‖ 10∗

17 for i = 1 to w do
18 V ← p1

(
M [i]⊕ Vr ‖ Vc

)
19 C[i]← Vr

20 end
21 C ← C[1]C[2] · · ·C[w − 2]
22 C ← C ‖ bC[w − 1]cl
23 C ← C ‖ C[w]
24 T ← Vc ⊕K
25 return (C, T )

Algorithm 2: DK(N,A,C, T )

Input: K ∈ C, N ∈ C
1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
Output: M ∈ {0, 1}∗ or ⊥

1 IV ← 0r ‖ K
2 N [1]N [2] · · ·N [y]← N
3 for i = 1 to y do
4 IV ← p1

(
N [i]⊕ IVr ‖ IVc

)
5 end
6 if A = ∅ then
7 A[1]A[2] · · ·A[u]← A
8 A[u]← A[u] ‖ 10∗

9 for i = 1 to u do
10 IV ← p1

(
A[i]⊕ IV r ‖ IV c

)
11 end
12 end
13 C[1]C[2] · · ·C[w]← C
14 l← |C[w]|
15 C[w]← dC[w − 1]er−l ‖ C[w]
16 C[w − 1]← bC[w − 1]cl
17 C[0]← IVr

18 V ← p−1
1

(
C[w] ‖ K ⊕ T

)
19 M [w]← bVrcl ⊕ C[w − 1]
20 V ← V ⊕M [w]10∗ ‖ 0c

21 for i = w − 1 to 1 do
22 V ← p−1

1

(
V

)
23 M [i]← C[i− 1]⊕ Vr

24 V ← C[i− 1] ‖ Vc

25 end
26 M ←M [1]M [2] · · ·M [w]
27 if IVc = Vc ⊕ (0c−1 ‖ 1) then
28 return M
29 else
30 return ⊥
31 end

Figure 1: The APE encryption EK(A,M) and decryption DK(A,C, T ) algorithms for
fractional messages with w ≥ 2.

• |M [w]| ≤ r−1 and w = 1 (Figs. 6 and 7). Note that the corresponding ciphertext
will be of r bits. This is required for decryption to be possible;

• |M [w]| ≤ r−1 and w ≥ 2 (Figs. 8 and 9). Note that the ciphertext C[w−1] is of
size equal to M [w]. The reason we opt for this design property is the following:
despite M [w] being smaller than r bits, we require its corresponding ciphertext
to be r bits for decryption to be possible. As a consequence ciphertext C[w− 1]
is of size equal to M [w];

• |M [w]| = r (Figs. 10 and 11). In this special case where M is an integral message,
we employ a form of ‘10*’-padding. Instead of occupying an extra message block
for this, the usual ‘10*’-padding spills over into the capacity. This can be seen
as an XOR of 10 · · · 00 into the capacity part of the state.

The adjustments have no influence on the decryption algorithm D, except if |M | ≤ r
for which a slightly more elaborate function is needed. Note that the spilling of the
padding in case |M [w]| = r causes security to degrade by half a bit: intuitively, APE
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is left with a capacity of c′ = c − 1 bits. We have opted for this degradation over an
efficiency loss due to an additional round.

A similar spilling of the padding is also applied to the fractional associated data
as indicated in Figs. 7, 9 and 11.

2.2 HANUMAN

The HANUMAN algorithm is described in Fig. 2. HANUMAN supports variable length
associated data and plaintexts. As discussed in Sect. 3 we recommend the associated
data and the plaintexts to be of size at most 2c/2 bits. For HANUMAN-80 this is
approximately 277 bytes and for HANUMAN-120 this is 2117 bytes. The algorithm uses
two independent permutations, p1 and p4. The key is used twice for: (1) a part of
the capacity of the initial state; and (2) after the tag truncation. A fractional input
message (resp. associated data) is padded as usual by applying 10∗ padding to the
message (resp. associated data). In the case when |M [w]| = r with M is an integral
message, instead of occupying an extra message block for this, we employ the ‘10*’
spill over into the capacity, which also can be seen as an XOR of 10 · · · 00 into the
capacity part of the state. The encryption procedure of HANUMAN for all choices of
A and M are illustrated in Figs. 12, 13, 14 and 15.

Algorithm 3: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1

(
0r ‖ K ‖ N

)
2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u] ‖ 10∗

5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)
7 end
8 V ← p1

(
A[u]⊕ Vr ‖ Vc

)
9 end

10 M [1]M [2] · · ·M [w]←M
11 `← |M [w]|
12 M [w]←M [w] ‖ 10∗

13 for i = 1 to w do
14 C[i]←M [i]⊕ Vr

15 V ← p1

(
C[i] ‖ Vc)

16 end
17 C ← C[1]C[2] · · ·C[w − 1]bC[w]c`
18 T ← bVcc c

2
⊕K

19 return (C, T )

Algorithm 4: DK(N,A,C, T )

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r ‖ K ‖ N

)
2 if A 6= ∅ then
3 A[1]A[2] · · ·A[u]← A
4 A[u]← A[u] ‖ 10∗

5 for i = 1 to u− 1 do
6 V ← p4

(
A[i]⊕ Vr ‖ Vc

)
7 end
8 V ← p1

(
A[u]⊕ Vr ‖ Vc

)
9 end

10 C[1]C[2] · · ·C[w]← C
11 `← |C[w]|
12 for i = 1 to w − 1 do
13 M [i]← C[i]⊕ Vr

14 V ← p1

(
C[i] ‖ Vc)

15 end
16 M [w]← bVrc` ⊕ C[w]
17 V ← p1

(
(M [w] ‖ 10∗ ⊕ Vr) ‖ Vc)

18 M ←M [1]M [2] · · ·M [w − 1]M [w]
19 T ′ ← bVcc c

2
⊕K

20 return T = T ′ ? M : ⊥

Figure 2: The HANUMAN encryption EK(N,A,M) and decryption DK(N,A,C, T )
algorithms for fractional messages.

2.3 GIBBON

The GIBBON algorithm is described in Fig. 3. GIBBON supports variable length asso-
ciated data and plaintexts. As discussed in Sect. 3 we recommend the associated data
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and the plaintexts to be of size at most 2c/2 bits. For GIBBON-80 this is approximately
277 bytes and for GIBBON-120 this is 2117 bytes. The algorithm uses three independent
permutations, p1, p2 and p3. The key K is used for: (1) a part of the capacity of the
initial state; (2) after the initialization (first p1 iteration); (3) before the finalization
(last p1 iteration); and (4) after the tag truncation. A fractional input message (resp.
associated data) is padded as usual by applying 10∗ padding to the message (resp.
associated data). In the case when |M [w]| = r with M an integral message, instead
of occupying an extra message block for this, we employ the ‘10*’ spill over into the
capacity, which also can be seen as an XOR of 10 · · · 00 into the capacity part of the
state. The encryption procedure of GIBBON for all choices of A and M are illustrated
in Figs. 16, 17, 18 and 19.

Algorithm 5: EK(N,A,M)

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

M ∈ {0, 1}∗
Output: C ∈ {0, 1}∗, T ∈ C

1
2

1 V ← p1

(
0r ‖ K ‖ N

)
2 V ← Vr ‖ (K ‖ 0

c
2 )⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V

)
5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u] ‖ 10∗

7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)
9 end

10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 M [1]M [2] · · ·M [w]←M
13 `← |M [w]|
14 M [w]←M [w] ‖ 10∗

15 V ← p3

(
V

)
16 for i = 1 to w do
17 C[i]←M [i]⊕ Vr

18 V ← p3

(
C[i] ‖ Vc)

19 end
20 V ← p1

(
Vr ‖ (K ‖ 0

c
2 )⊕ Vc

)
21 C ← C[1]C[2] · · ·C[w − 1]bC[w]c`
22 T ← bVcc c

2
⊕K

23 return (C, T )

Algorithm 6: DK(N,A,C, T )

Input: K ∈ C
1
2 , N ∈ C

1
2 , A ∈ {0, 1}∗,

C ∈ {0, 1}∗, T ∈ C
1
2

Output: M ∈ {0, 1}∗ or ⊥
1 V ← p1

(
0r ‖ K ‖ N

)
2 V ← Vr ‖ (K ‖ 0

c
2 )⊕ Vc

3 if A 6= ∅ then
4 V ← p2

(
V

)
5 A[1]A[2] · · ·A[u]← A
6 A[u]← A[u] ‖ 10∗

7 for i = 1 to u− 1 do
8 V ← p2

(
A[i]⊕ Vr ‖ Vc

)
9 end

10 V ← A[u]⊕ Vr ‖ Vc

11 end
12 C[1]C[2] · · ·C[w]← C
13 `← |C[w]|
14 V ← p3

(
V

)
15 for i = 1 to w − 1 do
16 M [i]← C[i]⊕ Vr

17 V ← p3

(
C[i] ‖ Vc)

18 end
19 M [w]← bVrc` ⊕ C[w]
20 V ← p3

(
(M [w] ‖ 10∗ ⊕ Vr) ‖ Vc)

21 M ←M [1]M [2] · · ·M [w − 1]M [w]
22 V ← p1

(
Vr ‖ (K ‖ 0

c
2 )⊕ Vc

)
23 T ′ ← bVcc c

2
⊕K

24 return T = T ′ ? M : ⊥

Figure 3: The GIBBON encryption EK(N,A,M) and decryption DK(N,A,C, T ) algo-
rithms for fractional messages.

2.4 PRIMATE Permutation

The underlying permutation of PRIMATEs which is called PRIMATE is inspired by [8].
It has two different sizes (we write PRIMATE-80 for a 200-bit permutation and PRIMATE-
120 for a 280-bit one) as well as 4 variants of each size (referred to as p1, p2, p3 and
p4). PRIMATE is designed according to the wide trail strategy [11] and its structure
resembles the data transform part of the Rijndael block cipher [12]. PRIMATE-80 and
PRIMATE-120 operate on a 5 × 8 and a 7 × 8 state of 5-bit elements, respectively.
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The first row of the state (5 bytes) is the rate of the state whereas the rest of the
state is the capacity for both sizes. The state and each individual element possess
big-endian encoding. PRIMATE update the internal state by means of the sequence of
transformations

CA ◦MC ◦ SR ◦ SE .

The four permutations p1, p2, p3 and p4 of PRIMATE are defined by means of different
round constants, which are generated by a 5-bit LFSR, and different number of rounds
as shown in the following table.

p1 p2 p3 p4

Number of rounds 12 6 6 12

Initial value of the LFSR 1 24 30 24

2.4.1 SubElements (SE).

The SubElements step is the only non-linear transformation of PRIMATE. It is a per-
mutation consisting of a 5-bit S-box applied to each element of the state (shown below
for PRIMATE-80).

a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,j bi,jS-box

The S-box is an almost bent (AB) permutation as defined in Table 3. The maximum
differential and linear probability for this S-box is 2−4, which is best attainable [10]
and, thus, optimal in this sense. This particular S-box has been chosen from the AB
permutation set such that the area of both plain and shared implementation provide
a good tradeoff, cf. [8].

Table 3: 5-bit S-box (decimal).
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

2.4.2 ShiftRows (SR).

The ShiftRows step is an element transposition that cyclically shifts the rows of the
state over different offsets. Row i is shifted left by si = {0, 1, 2, 4, 7} positions for
PRIMATE-80 (shown below) and by si = {0, 1, 2, 3, 4, 5, 7} positions for PRIMATE-120.
Since ShiftRows is only wiring in hardware, its overall cost is negligible.
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a4,0 b4,0

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a4,1 b4,1

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a4,2 b4,2

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a4,3 b4,3

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a4,4 b4,4

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a4,5 b4,5

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a4,6 b4,6

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a4,7 b4,7

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,0 ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 bi,0 bi,1 bi,2 bi,3 bi,4 bi,5 bi,6 bi,7≪ si

2.4.3 MixColumns (MC).

The MixColumns step is operating on the state column by column. It is a left-
multiplication by a 5 × 5 (resp. 7 × 7) matrix over F25

∼= F2[x]/(x5 + x2 + 1).
The main design goal of the MixColumns transformation is to follow the wide trail
strategy and that it can be implemented efficiently. Therefore, we use a recursive
approach [3, 14, 15, 22] to generate an MDS matrix that has a maximum (6 and 8 re-
spectively) branch number (the smallest nonzero sum of active inputs and outputs of
each column).
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2.4.4 ConstantAddition (CA).

In this transformation the state is modified by combining the second element of the
second row with a predefined constant by a bitwise XOR operation. The purpose of
adding round constants is to make each round different and to break the symmetry of
the other transformations. Furthermore, it provides a natural opportunity to make the
parts for processing associated data and message different from each other if needed.
A 5-bit Fibonacci LFSR with taps in the first (i.e. the most significant) bit and
the fourth bit is used to generate the round constants rc. Therefore, the hardware
implementation of ConstantAddition is in fact very cheap.
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3 Security Claims

The designers claim the following levels of security, expressed in bits:

Scheme-s Scheme-80 Scheme-120

confidentiality of M c/2 80 120
integrity of M c/2 80 120
integrity of A c/2 80 120
integrity of N c/2 80 120

The claimed security levels correspond to the birthday bound security on the capacity
of PRIMATEs-80 and PRIMATEs-120, respectively (see also Sect. 4). The security of
GIBBON and HANUMAN relies on the uniqueness of the nonce, whereas APE is robust
against nonce reuse. Technically, this implies that all security results of APE only hold
up to common prefix: under the same associated data and nonce, two messages with
the same prefix (in r-bit blocks) have the same corresponding ciphertext blocks. We
refer to [1] for the technicalities.

The designers claim that APE offers certain additional security benefits. Most
importantly, it is secure under the release of unverified plaintext (RUP). This means
that APE is still secure if the decryption algorithm is implemented so as to output
the decrypted plaintext before successful verification. This scenario arises for example
when devices have insufficient memory to store the entire plaintext [13], or when the
decrypted plaintext needs to be processed early due to real-time requirements [9, 21].
We refer to [2] for more information on the security under the release of unverified
plaintext.

APE-s APE-80 APE-120

confidentiality under RUP c/2 80 120
integrity under RUP c/2 80 120

4 Security Analysis

PRIMATEs are indistinguishable from an ideal authenticated encryption scheme up to
about 2c/2 primitive calls; implying that PRIMATEs achieve a security level of c/2 bits.
This result is proven in the ideal model, where the underlying primitive permutations
PRIMATE are assumed to be perfectly random permutations.
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4.1 APE

The security results for APE can be found in [1]. APE is the first and currently the only
misuse resistant permutation based authenticated encryption. The security results for
APE apply both in the cases when nonces are unique values (full security) and also
when nonces are reused (full security up to common prefix, the maximum attainable
for single pass schemes). As a mode of operation for a permutation, APE is secure in
the ideal model. Considering a distinguisher whose queries are of total length at most
m blocks, APE is proven secure in the ideal model up to a bound of m2

2r+c + 2m(m+1)
2c

(integral messages) and m2

2r+c + 2m(m+1)
2c−1 (for fractional messages) [1].

We can also look at APE as a mode of operation for a block cipher where we replace
the operation (0r ‖ K)⊕ p1 ⊕ (0r ‖ K) with that of a block cipher (see [1] for a more
detailed explanation). This version of APE is secure in the standard model, meaning
if the underlying block cipher is a secure strong pseudorandom permutation (SPRP),
then APE with a block cipher is secure as well. The bounds from the ideal model also
hold in the standard model, up to twice the SPRP security of EK . We interpret this
result to mean that if (0r ‖ K)⊕ p1 ⊕ (0r ‖ K) with p1 instantiated by a PRIMATE is
a secure SPRP, then APE with a PRIMATE is secure as well.

In the same vein, a formal security proof for APE in the case unverified plaintext
is given in [2]. In more detail, the authors introduce a security model for the analysis
of authenticated encryption schemes in the case when unverified plaintext is released
upon decryption. In this model APE is proven to be secure upon release of unverified
plaintext with no security loss (compared to the above-mentioned bounds).

Taking c = 160, r = 40 for APE-80 or c = 240, r = 40 for APE-120, the security
levels approach the ones claimed in Sect. 3, but not exactly. For instance, for APE-80
we claim 80-bit security, while the proven security bound (fractional case) satisfies
m2

2r+c + 2m(m+1)
2c = 1

2
for m ≈ 279.5. Similarly, for the fractional case the security bound

equals 1
2

for m ≈ 279. The difference is due to the security model and proof techniques
applied.

4.2 HANUMAN

HANUMAN follows a design similar to that of SpongeWrap [7]. The scheme constructs
a keystream which depends on the nonce (public message number) and message, with
which the message is then XORed to produce the ciphertext. As long as the nonce
remains unique for each encryption, confidentiality will be achieved since the keystream
will be close to uniformly random, assuming the PRIMATE permutations are close to
ideal. Note that if the nonce is repeated, then the XOR of the first message blocks can
be determined from the XOR of the ciphertexts. Associated data is processed via an
independent permutation in order to prevent forgery attacks in which a message is first
encrypted as associated data, and then again as plaintext. Attacks can be found if a
collision occurs in the capacity, yet this is expected to happen only after roughly 2c/2

total queries to the underlying permutations. It is also assumed that if the verification
step of the algorithm reveals that the ciphertext has been tampered with, then the
algorithm returns no information beyond the verification failure.

11



PRIMATEs v1.02: Submission to CAESAR

4.3 GIBBON

The structure of GIBBON is similar to the MonkeyWrap [5] construction. The scheme
generates a stream of a ciphertext and a tag depending on the nonce (public message
number) and the message. Security is achieved as long as the nonce is used only once
with the same key. It is also assumed that if the verification step of the algorithm
reveals that the ciphertext has been tampered with, then the algorithm returns no
information beyond the verification failure. In particular, no plaintext blocks are
returned. A state recovery for GIBBON does not lead to trivial key recovery and also
does not lead to trivial universal forgery attacks due to the key additions.

4.4 PRIMATE

This section shows some known properties of the non-linear permutation PRIMATE.

4.4.1 Differential and Linear Trails

PRIMATE has diffusion properties according to the wide trail design strategy and
hence provides good bounds against differential an linear cryptanalysis. We use the
technique in [19] to calculate the differential and linear hull probabilities of PRIMATE.
Since the 5-bit S-box of PRIMATE is an almost bent (AB) permutation, the maximum
differential and linear probability for this S-box is 2−4, which provides optimal security
against linear and differential cryptanalysis [10].

For PRIMATE-80, as the branch number of the linear diffusion is 6, the differen-
tial/linear probability over any two rounds does not exceed 16 · (2−4)6 = 2−20 and
the differential/linear probability over any four rounds is upper-bounded by (2−20)5 =
2−100. For PRIMATE-120, the branch number of the linear diffusion is 8 and, therefore,
the differential/linear probability over any four rounds of PRIMATE-120 is upper-
bounded by (16 · (2−4)8)7 = 2−196.

This means that the probability of any twelve-round differential (and linear approx-
imation) in PRIMATE-80 (respectively, PRIMATE-120), assuming independent rounds,
does not exceed 2−100 (respectively, 2−196). Thus, there is only a very small chance
that the standard differential or linear approach would lead to a successful attack here.

4.4.2 Collision Producing Trails

Assume we have a certain difference for the message that may result in a zero difference
in the state with a high probability after the difference has been injected. We call the
trails corresponding to this behaviour collision producing trails. They can be used in
a forgery attack on PRIMATE. Note that a linear trail of a similar shape might be used
for a distinguishing attack on the keystream of PRIMATE.

The simple design of PRIMATE allows to prove good bounds against this kind
of differential and linear attacks. To obtain such bounds, we adopt the mixed-integer
linear programming (MILP) technique proposed in [18] to find the minimum number of
differentially and linearly active S-boxes of the target ciphers. Using this technique and
the optimizer CPLEX [17], we obtained the results provided in Table 4 for PRIMATE-80
and PRIMATE-120.
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Table 4: Bounds for the minimum number of active S-boxes for collision producing
trails of PRIMATE-80 and PRIMATE-120.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12
PRIMATE-80 44 48 52 56 61 84 105 113 117 122 145 162
PRIMATE-120 63 64 72 78 113 128 143 152 177 193 209 224

For 6 rounds of GIBBON-80 (and GIBBON-120), we find that trails with at least
84 (respectively, 128) active S-boxes can produce a collision. This results in an upper
bound on the differential and linear trail probability of 2−336 (respectively, 2−512).

For 12 rounds of HANUMAN and APE, we find that a collison requires at least
162 active S-boxes of HANUMAN-80/APE-80 (224 of HANUMAN-120/APE-120 respec-
tively). The upper bounds of the differential and linear trail probability are therefore
2−648 and 2−896 respectively.

4.4.3 Impossible Differential Cryptanalysis

Now we discuss the application of impossible differential cryptanalysis to PRIMATE.
Since the branch number of PRIMATE-80 and PRIMATE-120 is 6 and 8, respectively,
the number of nonzero element differences in each column before and after the MixColumns
operation can never be smaller than these values. Based on this property, we construct
impossible differentials for 6 and 5 rounds of PRIMATE-80 and PRIMATE-120, respec-
tively, which are depicted in Figures 4 and 5.
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Figure 4: Impossible differential for 6 rounds of PRIMATE-80.

Taking PRIMATE-80 as an example, assume we start from the first round, if there
is a nonzero difference at position (0,0) of the state, then after 2.5 rounds of PRIMATE
encryption, the vector in column 3 before the MixColumns operation is (0, ∗, 0, ∗, 0)T ,
where “*” denotes a nonzero difference. At the same time, if there is a nonzero differ-
ence in column 1 after the MixColumns of round 6 at the bottom of the distinguisher,
there is a single nonzero difference at position (0,1) before MixColumns in round 5,
which leads to the output vector in column 3 after MixColumns operation in round 3
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Figure 5: Impossible differential for 5 rounds of PRIMATE-120.

to be (∗, ∗, ∗, 0, 0)T . These columns are highlighted in red in Figure 4. This means
that M(0, ∗, 0, ∗, 0)T = (∗, ∗, ∗, 0, 0)T , that is, that the number of nonzero element
differences before and after MixColumns is 5 which contradicts to the branch number
being 6. Therefore, a 6-round impossible differential has been constructed for PRI-
MATE-80. Similarly, we can obtain the 5-round impossible differential of Figure 5 for
PRIMATE-120.

5 Features of PRIMATEs

Permutation-based AE for lightweight applications.

The PRIMATEs authenticated encryption family is designed for lightweight crypto-
graphic applications. The domain of lightweight cryptography focuses on crypto-
graphic algorithms for extremely constrained hardware devices, where the goal is to
implement an efficient cryptographic algorithm using only a very limited number of
gates.

At the the core of the PRIMATEs family are the PRIMATE permutations. Since
the introduction of the Sponge functions methodology [6], permutation-based crypto-
graphic algorithms have rapidly been gaining acceptance due to their efficient imple-
mentation properties. Very recently, the sponge-based hash function Keccak [4] has
been selected as the winner of the NIST SHA-3 competition.

The PRIMATE permutation is a substitution-permutation network using a 5-bit
S-box with optimal linear and differential properties, and a recursive MDS matrix,
which leads to a very small and efficient implementation in hardware.

Resistance against hardware side-channel attacks.

To meet the requirements of resistance against hardware side-channel attacks, the un-
derlying permutation has been designed to offer an efficient threshold implementation
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to counter first-order DPA attacks, based on glitch-free secret-sharing-based masking,
cf. [8].

Online.

All PRIMATEs offer online encryption, thereby allowing the algorithm to output cipher-
text blocks without the knowledge of plaintext lengths or the next plaintext blocks.
PRIMATEs are inherently sequential. For lightweight applications, this is not an issue:
the design goal is to use a very small number of gates, therefore parallelism would not
be of any benefit.

Comparison to AES-GCM.

• GCM-AES is a block cipher based design. In comparison, PRIMATEs are smaller
than similar AEAD algorithms based on a block cipher (such as AES), as our
implementation does not contain a key schedule, uses smaller S-boxes (5 bits
instead of 8 bits), and uses a more compact, recursive MDS matrix implementa-
tion.

• Unlike in AES-GCM, PRIMATEs handle all nonce lengths in the same way,
thereby reducing the complexity of the implementation and simplifying the secu-
rity analysis. We must stress, however, that when any of the parameters of the
PRIMATEs (such as the nonce length) are modified, a new key must be chosen
uniformly at random.

• The PRIMATEs modes avoid all the attacks that are inherent to AEAD modes
based on a polynomial hash [16,20], such as AES-GCM.

Key and Nonce Agility.

Changing the key or nonce has very little overhead for all modes in the PRIMATEs
family, requiring only one permutation function call and one key XOR for GIBBON,
and requires only one permutation function call for HANUMAN. In the case of APE,
changing the key also requires one permutation function call. Changing the nonce
requires ν/r permutation function calls.

Besides the aforementioned features that hold in general for the PRIMATEs algo-
rithm family, several features make specific modes stand out.

Features Specific to APE, HANUMAN and GIBBON.

• APE should be used in applications where additional security is required. Like
HANUMAN, APE is provably secure, based on the security of the underlying per-
mutation. Additionally, APE provides resistance against nonce reuse [1], as well
as resistance against adversaries that can observe the unverified plaintext during
decryption [2]. The price to pay for this additional security is that decryption is
performed backwards using the inverse of the permutation.

• HANUMAN is based on the SpongeWrap [6] design strategy. More concretely, it
is the hermetic Sponge design strategy, which means that its underlying permu-
tation should be free of any structural distinguishers.
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• GIBBON is intended for lightweight applications where speed is critical and a
formal security proof (based on the security of the underlying permutation) is
not required. To achieve high throughput, GIBBON employs reduced-round per-
mutations p2 and p3 to process the associated data and message respectively,
next to the full-round permutation p1 used for initialization and finalization.

6 Design Rationale

The PRIMATEs have been designed with lightweight hardware requirements as present
in constrained devices in mind. For the mode of operation, they follow the principles of
the sponge methodology, more specifically, some of the principles of SpongeWrap and
MonkeyDuplex. The modes of operation are generic and free of weaknesses as justified
by the formal security proofs. For the underlying permutations, the PRIMATEs follow
the well-established SPN approach of Rijndael (and its wide-trail design strategy),
based on almost bent S-boxes (attaining best possible differential and linear properties)
as well as MDS diffusion matrices (achieving best possible differential and linear local
diffusion). To favor lightweight implementations of the PRIMATEs, the MDS diffusion
matrices are chosen to be recursive and the S-boxes to be 5-bit.

The PRIMATEs family includes three modes: GIBBON and HANUMAN are nonce-
based, while APE has been designed to maintain security under both nonce reuse and
release of unverified plaintext – scenarios that are likely to persist in highly constrained
embedded systems. GIBBON does not follow the hermetic sponge-based design ap-
proach, while both HANUMAN and APE do. This allows GIBBON to be considerably
faster and more energy-efficient. A state recovery for GIBBON does not lead to trivial
key recovery and also does not lead to trivial universal forgery attacks due to the key
additions.

The designers have not hidden any weaknesses in these ciphers.

7 Intellectual Property

The submitters are not aware of any patent involved in PRIMATEs family. Further-
more, PRIMATEs will not be patented. If any of this information changes, the sub-
mitters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

8 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candi-
date, a third-round candidate, a finalist, a member of the final portfolio, or any other
designation provided by the committee. The submitters understand that the commit-
tee will not comment on the algorithms, except that for each selected algorithm the
committee will simply cite the previously published analysis that led to the selection
of the algorithm. The submitters understand that the selection of some algorithms is
not a negative comment regarding other algorithms, and that an excellent algorithm
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might fail to be selected simply because not enough analysis was available at the time
of the committee decision. The submitters acknowledge that the committee decisions
reflect the collective expert judgments of the committee members and are not subject
to appeal. The submitters understand that if they disagree with published analysis
then they are expected to promptly and publicly respond to those analysis, not to wait
for subsequent committee decisions. The submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection
committee.
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Diagrams

In all figures below the gray dotted box denotes the processing boundaries whenever
no associated data is present.
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Figure 6: APE AE where |M [w]| ≤ r − 1, w = 1, fractional A and padded A and M .
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Figure 7: APE AE where |M [w]| ≤ r − 1, w = 1, integral A and padded M .
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Figure 8: APE AE where |M [w]| ≤ r − 1, w ≥ 2, fractional A and padded A and M .
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Figure 9: APE AE where |M [w]| ≤ r − 1, w ≥ 2, integral A and padded M .
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Figure 10: APE AE where |M [w]| = r, fractional and padded A.
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Figure 11: APE AE where |M [w]| = r and integral A.
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Figure 12: HANUMAN AE where |M [w]| ≤ r − 1, fractional A and padded A and M .

A[1]

...

A[2] A[u] M[1]
C[1]

p1 p4 p4 p1 p1
K||N

0r

1||0c-1

M[w]

K

T
p1...

[C[w]]M[w]

Figure 13: HANUMAN AE where |M [w]| ≤ r − 1, integral A and padded M .
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Figure 14: HANUMAN AE where |M [w]| = r and fractional and padded A.
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Figure 15: HANUMAN AE where |M [w]| = r and integral A.
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Figure 16: GIBBON AE where |M [w]| ≤ r − 1, fractional A and padded A and M .
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Figure 17: GIBBON AE where |M [w]| ≤ r − 1, integral A and padded M .
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Figure 18: GIBBON AE where |M [w]| = r and fractional and padded A.
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Figure 19: GIBBON AE where |M [w]| = r and integral A.
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