
STRIBOBr2: “WHIRLBOB”

Second Round CAESAR Algorithm Tweak Specification

Pricipal Submitter
Markku-Juhani O. Saarinen

m.saarinen@qub.ac.uk
Queen’s University Belfast, UK

Billy B. Brumley
billy.brumley@tut.fi

Tampere University of Technology, Finland

August 28, 2015

For updates and further information:

http://www.stribob.com

http://www.stribob.com

Contents

Preface and Introduction 1

1 Specification 2
1.1 Structure of the π Permutation . 2

1.1.1 Substitution S or SubBytes . 2
1.1.2 Permutation P or ShiftColumns . 2
1.1.3 Linear operation L or MixRows . 3
1.1.4 Constants Cr or AddRoundKey . 3
1.1.5 Code for π Computation . 4

1.2 BLNK Sponge Mode and Padding . 5
1.2.1 BLNK Block Operations . 5
1.2.2 The CAESAR encrypt() and decrypt() AEAD API . 6

1.3 Test Vectors . 7
1.3.1 The 12-round π transform . 7
1.3.2 Authenticated Encryption . 8

2 Security Goals 9
2.1 Specific Goals . 9
2.2 Nonce Re-Use . 9
2.3 General Goals . 9

3 Security Analysis 10
3.1 Attacks on the Sponge AEAD Mode BLNK . 10
3.2 The π Permutation . 10
3.3 Side-Channel Attacks . 11
3.4 Conclusions . 11

4 Features 12
4.1 Advantages over AES-GCM . 12
4.2 Software Implementations . 12

4.2.1 Lightweight Targets . 12
4.2.2 Constant-Time SIMD Implementation . 12
4.2.3 Generic Constant-Time Bitsliced Implementation 13

4.3 Implementation Summary . 13
4.3.1 Software Implementations . 14
4.3.2 Hardware Implementation . 14

5 Design Rationale 15
5.1 Block Cipher Modes are Limited by the Birthday Paradox 15
5.2 Implementation Synergy with Standard Hash Functions 15
5.3 Hidden Weaknesses . 16
5.4 Updated Information on STRIBOBr1 π Design . 16

6 Changes 17

I

7 Intellectual Property and Consent 18
7.1 Intellectual Property . 18
7.2 Consent to CAESAR Selection Committee . 18

Bibliography 19

II

Preface and Introduction

This document describes the STRIBOBr2 (“WHIRLBOB”) Authenticated Encryption with As-
sociated Data (AEAD) algorithm.

• STRIBOBr1 was Markku’s first-round proposal. For details of STRIBOBr1, we refer to
round one documentation [56, 57]. Analysis of STRIBOBr1 is still encouraged; this vari-
ant will continue to coexist with STRIBOBr2.

• STRIBOBr2 is our current primary recommendation for CAESAR Round 2 and is equiv-
alent to the WHIRLBOB algorithm discussed in [58].

Note that version naming convention has been simplified from one previously proposed.
This document has been written to strictly adhere to the structure suggested in the CAESAR
call for submissions:

http://competitions.cr.yp.to/caesar-call.html

Chapter 6, “Changes”, details the technical differences between STRIBOBr1 and STRIBOBr2.
The tweak is motivated purely by performance and other implementation factors; no attacks
have been discovered against STRIBOBr1.
STRIBOBr2 borrows its S-Box and MDS matrix design from the well known hash function
Whirlpool, which has been around for 15 years. Whirlpool has received a substantial amount
of public cryptanalysis, much of which is directly applicable to STRIBOBr2. As in STRIBOBr1
[56], the number of rounds of STRIBOBr2 is 12 (rather than 10 as in original Whirlpool) mak-
ing it resistant to all known attacks.
Another advantage of STRIBOBr2 is in implementation techniques. The new (or rather, old,
Whirlpool-originated) S-Box design allows very efficient constant-time implementation on
current ARM, Intel, and AMD architectures. We are happy to report that these constant time
implementations are faster than latest OpenSSL AES-192 (matching security level) “de facto
standard” implementation on typical PC hardware when AES NI instructions are not used.
The design also facilitates efficient lightweight and hardware implementation.
This is the version 2.20150828143000 of this document. We urge the reader to check for up-
dates, revisions, and reference data at:

http://www.stribob.com

If you find bugs, typos, obvious security blunders, or clever cryptanalytic attacks, we are very
interested to hear about that. Our e-mail address can be found on the front page.

Cheers and have fun,
- Markku, Belfast and Billy, Tampere

1

http://competitions.cr.yp.to/caesar-call.html
http://www.stribob.com

Chapter 1

Specification

STRIBOBr2 (“WhirlBob”) is an algorithm for Authenticated Encryption with Associated Data (AEAD).
The STRIBOBr2 design is flexible enough to accept almost arbitrary data ranges as its input parameters;
however for CAESAR we propose a concrete parameter set as follows:

Secret key size 192 bits CRYPTO_KEYBYTES 24
Secret sequence number not used CRYPTO_NSECBYTES 0
Public sequence number (nonce) 128 bits CRYPTO_NPUBBYTES 16
Authentication tag (message expansion) 128 bits CRYPTO_ABYTES 16

We note that this is a specification for STRIBOBr2 a.k.a “WHIRLBOB” only. For details of STRIBOBr1,
we refer to round one documentation [55, 56, 57]. STRIBOBr2 is our current primary recommendation.

STRIBOBr2 is defined by a 512× 512 - bit permutation π and BLNK mode of operation and padding.
The permutation π(x) does not take any other input variables apart from x. Computation of π follows
almost exactly the operation of the “internal key schedule” of Whirlpool 3.0 [4]. The only modification is
that the number of rounds is increased from R = 10 to R = 12 for extra security margin against Rebound
Attacks [36, 37]. 1 BLNK is a simple Sponge AEAD mode derived from the Blinker protocol [53].

The algorithm specification is structured as follows. We first define the π permutation in Section 1.1,
then the BLNK Sponge mode of operation in Section 1.2, and finally offer some test vectors in Section 1.3.

1.1 Structure of the π Permutation
To compute π(x0) = x12 we iterate a L ◦ P ◦ S composite mixing function with round constants Cr.

xr+1 = L(P (S(xr)))⊕ Cr for rounds 0 ≤ r < 12. (1.1)

We write the 512-bit state as a matrix M [0 · · · 7][0 · · · 7] of 8 × 8 bytes, which can be serialized as a
64-byte sequence V [0 · · · 63] with V [8i+ j] = M [i][j].

1.1.1 Substitution S or SubBytes
In this step each of the 64 bytes in the state is substituted using a 8× 8 - bit S-Box S, defined by Table 1.1.

M ′[i][j]← S(M [i][j]) for 0 ≤ i, j < 8. (1.2)
Note that 8-bit S can be implemented using 4-Bit “miniboxes” of Table 1.2 as shown in Figure 1.1.

1.1.2 Permutation P or ShiftColumns
In this step the state bytes are moved around as follows:

M ′[(i+ j) mod 8][j]←M [i][j] for 0 ≤ i, j < 8. (1.3)
1These attacks would not be directly applicable with the BLNK mode anyway. This is because the attacker can never access

more than r bits of the internal state. [40]

2

Table 1.1: STRIBOBr2 S-Box S.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
0x 18 23 C6 E8 87 B8 01 4F 36 A6 D2 F5 79 6F 91 52
1x 60 BC 9B 8E A3 0C 7B 35 1D E0 D7 C2 2E 4B FE 57
2x 15 77 37 E5 9F F0 4A DA 58 C9 29 0A B1 A0 6B 85
3x BD 5D 10 F4 CB 3E 05 67 E4 27 41 8B A7 7D 95 D8
4x FB EE 7C 66 DD 17 47 9E CA 2D BF 07 AD 5A 83 33
5x 63 02 AA 71 C8 19 49 D9 F2 E3 5B 88 9A 26 32 B0
6x E9 0F D5 80 BE CD 34 48 FF 7A 90 5F 20 68 1A AE
7x B4 54 93 22 64 F1 73 12 40 08 C3 EC DB A1 8D 3D
8x 97 00 CF 2B 76 82 D6 1B B5 AF 6A 50 45 F3 30 EF
9x 3F 55 A2 EA 65 BA 2F C0 DE 1C FD 4D 92 75 06 8A
Ax B2 E6 0E 1F 62 D4 A8 96 F9 C5 25 59 84 72 39 4C
Bx 5E 78 38 8C D1 A5 E2 61 B3 21 9C 1E 43 C7 FC 04
Cx 51 99 6D 0D FA DF 7E 24 3B AB CE 11 8F 4E B7 EB
Dx 3C 81 94 F7 B9 13 2C D3 E7 6E C4 03 56 44 7F A9
Ex 2A BB C1 53 DC 0B 9D 6C 31 74 F6 46 AC 89 14 E1
Fx 16 3A 69 09 70 B6 D0 ED CC 42 98 A4 28 5C F8 86

Table 1.2: Three 4× 4 miniboxes that are used to build the 8× 8 S-Box S.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
E(x) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

E−1(x) F 0 D 7 B E 5 A 9 2 C 1 3 4 8 6
R(x) 7 C B D E 4 9 F 6 3 8 A 2 5 1 0

1.1.3 Linear operation L or MixRows
Each of the 8 row vectors

Wi = (M [i][0],M [i][1], · · ·M [i][7]) (1.4)

is individually multiplied by a circulant, low-weight 8× 8 MDS matrix in the finite field GF(28) charac-
terized by primitive polynomial p(x) = x8 + x4 + x3 + x2 + 1.

W ′
i = Wi ·



01 01 04 01 08 05 02 09
09 01 01 04 01 08 05 02
02 09 01 01 04 01 08 05
05 02 09 01 01 04 01 08
08 05 02 09 01 01 04 01
01 08 05 02 09 01 01 04
04 01 08 05 02 09 01 01
01 04 01 08 05 02 09 01


for 0 ≤ i < 8. (1.5)

1.1.4 Constants Cr or AddRoundKey
Blocks of eight bytes from the S-Box are used as round keys Cr for the first row. The rest of the rows are
unaffected by Cr. For round 0 ≤ r < 12:

M ′[0][j] ← M [0][j]⊕ S(8r + j) for 0 ≤ j < 8. (1.6)
M ′[i][j] ← M [i][j] for 1 ≤ i < 8 and 0 ≤ j < 8. (1.7)

3

E E−1

R

E E−1

S

Figure 1.1: The STRIBOBr2 8 × 8 - bit S-Box is constructed from three 4 × 4 - bit “miniboxes”. In this
diagram the most significant bits are on the left: E operates on the higher nibble.

1.1.5 Code for π Computation
Rather than repeating the definition of the above sections in some ad hoc pseudocode, we offer a platform-
independent ANSI C code for π to help implementors. It is reproduced here just for reference – this code
should not be used for production as much more efficient implementations exist. See Chapter 4 for in-
formation about optimization techniques for various targets.

The function wbob_pi() computes π in place on byte vector st[64]. The only external variable refer-
enced is wbob_sbox[256], which has equivalent contents to Table 1.1.

void wbob_pi(uint8_t st[64]) // STRIBOBr2 Pi
{

int r, i, j; // loop variables
uint8_t t[64], x, *pt; // work variables

for (r = 0; r < 12; r++) { // 12 rounds
for (i = 0; i < 64; i++) {

t[(i & 7) + ((i + (i << 3)) & 070)] = // P Permutation..
wbob_sbox[st[i]]; // ..with S-Box

}

// Round constants C come from the S-box
pt = (uint8_t *) &wbob_sbox[8 * r];
for (i = 0; i < 8; i++)

st[i] = pt[i]; // C in first 8
for (i = 8; i < 64; i++)

st[i] = 0; // zero the rest

// Apply the circular , low weight MDS matrix
for (i = 0; i < 64; i += 8) {

4

pt = &st[i]; // start of row
for (j = 0; j < 8; j++) {

x = t[i + j]; // Circular MDS
pt[j & 7] ^= x; // 01
pt[(j + 1) & 7] ^= x; // 01
pt[(j + 3) & 7] ^= x; // 01
pt[(j + 5) & 7] ^= x; // odd
pt[(j + 7) & 7] ^= x; // odd

x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00); // double x
pt[(j + 6) & 7] ^= x; // 02

x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00); // redouble to 4x
pt[(j + 2) & 7] ^= x; // 04
pt[(j + 5) & 7] ^= x; // 01 + 04 = 05

x = (x << 1) ^ (x & 0x80 ? 0x1D : 0x00); // redouble to 8x
pt[(j + 4) & 7] ^= x; // 08
pt[(j + 7) & 7] ^= x; // 01 + 08 = 09

}
}

}
}

1.2 BLNK Sponge Mode and Padding
BLNK (”Blink”) is a general and highly flexible Sponge mode of operation modified from the Sponge
padding used in the original Blinker [53] lightweight two-party protocol.

In this section we describe only how it is used specifically in the STRIBOBr2Authenticated Encryption
with Associated Data (AEAD) algorithm, ignoring many of its more advanced uses and features.

Sponge functions in BLNK mode are characterized by permutation size b, rate r, and capacity c. These
quantities are related by b = r + c+ δ, where:

b State size. π has b = 512 bits.

r Data rate or block size. r = 256 bits.

c Capacity, the amount of secret information in the state. c = b− r − δ bits.

δ Information Theoretic capacity consumed by padding. We can bound this to δ ≤ 2 bits.

Furthermore, we fix the key size to k = 192 bits and the authentication tag to t = 128 bits. Authentication
tags are concatenated with ciphertext for final output.

1.2.1 BLNK Block Operations
We define four basic sponge operations for data absorption, squeezing, encryption, and decryption. Each
one performs an operation on n bytes in a data domain specified by a single-byte padding argument pad,
invoking the Sponge permutation π a total of max(⌈n/32⌉, 1) times.

The four basic operations are:

put(D[n], pad) Absorb n bytes of data D into the state.

D[n]← get(n, pad) Squeeze out n bytes of data D from the state.

C[n]← enc(P [n], pad) Encrypt n bytes of plaintext P to ciphertext C.

P [n]← dec(C[n], pad) Decrypt n bytes of data ciphertext C to plaintext C.

5

Table 1.3: Constant bytes used in STRIBOBr2 BLNK Padding.

Flag name Value Padding bit or Domain identifier
BLNK_END 0x01 Padding marker bit.
BLNK_FIN 0x02 Data element final block marker bit.
BLNK_KEY 0x10 Secret key (in).
BLNK_NPUB 0x20 Public sequence number (in).
BLNK_AAD 0x40 Authenticated Associated Data (in).
BLNK_MSG 0x50 Confidential Message Payload (in/out).
BLNK_MAC 0x60 Message Authentication Code (out).

In the following generic pseudocode op ∈ {put, get, enc, dec} and V [0 · · · 63] is the state. The padding
argument pad is made up as a combination of constants given in Table 1.3.

1: i← 0 state index, initialized to first byte
2: for j = 0 to n− 1 do
3: if i = 32 then
4: V [32]← V [32]⊕ BLNK_END⊕ pad full block padding with block end marker
5: V ← π(V) cryptographic permutation
6: i← 0 zero index
7: end if
8: if op = put then
9: V [i]← V [i]⊕D[j] XOR input data to the state

10: else if op = get then
11: D[j]← V [i] simply save the data
12: else if op = enc then
13: C[j]← V [i]⊕ P [j] encrypt as in a stream cipher
14: V [i]← C[j] store ciphertext in state
15: else if op = dec then
16: P [j]← V [i]⊕ C[j] decrypt as in a stream cipher
17: V [i]← C[j] store ciphertext in state
18: end if
19: i← i+ 1 advance block index
20: end for
21: V [i]← V [i]⊕ BLNK_END end marker (note: i = 32 possible)
22: V [32]← V [32]⊕ BLNK_FIN⊕ pad final padding
23: V ← π(V) final cryptographic permutation

1.2.2 The CAESAR encrypt() and decrypt() AEAD API
We describe how STRIBOBr2 is used with the Application Programming Interface (API) defined in the
CAESAR call [21]. Input and output parameters to the encryption and decryption primitives are given
below. Each one of these is used as a C-style zero-indexed byte vector in the descriptions that follow.

K[24] Secret key of k = 192 bits, or 24 bytes.

N [16] A 128-bit public nonrepeating sequence number (nonce) for the message. Only integrity
is protected for this data. Contents are not transmitted in ciphertext.

A[a] Associated Authenticated data, a bytes. Only integrity is protected for this data. The
contents are not transmitted in ciphertext. If unused, set a = 0.

P [n] Plaintext payload, 0 ≤ n bytes. Integrity and confidentiality is protected for this data.

C[n+ 16] Ciphertext, 16 ≤ n+ 16 bytes. Integrity and confidentiality is protected for this data.

6

Pseudocode for implementing standard CAESAR AEAD API encryption.

C[n+ 16]← encrypt(K[24], N [16], A[a] , P [n])

1: V [64]← (0, 0, · · · , 0) initialize the state with zeros
2: put(K[24], BLNK_KEY) secret key, always a single π op
3: put(N [16], BLNK_NPUB) public nonce, always a single π op
4: put(A[a], BLNK_AAD) authenticated data, ⌈a/32⌉ π ops
5: C[0 · · ·n− 1]← enc(P [n], BLNK_MSG) encryption, ⌈n/32⌉ π ops
6: C[n · · ·n+ 15]← get(16 , BLNK_MAC) message authentication code, π not necessary
7: return C[n+ 16] authenticated ciphertext

Inverse operation by the recipient:

{ P [n] or FAIL } ← decrypt(K[24], N [16], A[a] , C[n+ 16])

1: V [64]← (0, 0, · · · , 0) initialize the state with zeros
2: put(K[24], BLNK_KEY) secret key, always a single π op
3: put(N [16], BLNK_NPUB) public nonce, always a single π op
4: put(A[a], BLNK_AAD) associated authenticated data
5: P [n]← dec(P [0 · · ·n− 1], BLNK_MSG) decryption
6: if C[n · · ·n+ 15] = get(16 , BLNK_MAC) then
7: return P [n] auth match: C[n · · ·n+ 15] = V [0 · · · 15]
8: else
9: return FAIL plaintext should be ignored (and cleared)

10: end if

The encryption function always returns the protected ciphertext message. Decryption either returns
the plaintext or FAIL, indicating authentication failure. It is important that the decryption routine always
performs full processing regardless of fail condition in order to minimize the risk of a timing attack.
Confidential state should be cleared in order to minimize leakage before exit.

1.3 Test Vectors
1.3.1 The 12-round π transform
These vectors are derived from ISO Test vectors of Whirlpool 3.0 [30]. We give the input x0 and results
after 1, 10 (as in Whirlpool), and full 12 rounds of processing.

x0 =



77 38 E1 B5 41 A0 36 EA
45 8D 50 F8 0F A0 1C 44
72 88 CE 97 D1 A0 DC F0
16 95 FF D6 E7 1D 09 25
33 BE 30 9F 01 2A 59 09
72 91 14 59 5F 08 6E 76
07 18 AF E3 65 BC 09 DE
B6 AF A1 80 BC EC 2A 98


x1 =



1A 78 4D 7D BD 4C 17 E6
27 31 10 AA 63 C5 9E 25
7A 2E B7 48 C4 5D E0 23
6D 0D 61 9F 6C 1D 80 AE
01 A2 D5 6E DB 41 D9 A0
E9 06 4C D1 27 95 FA 86
77 62 31 BC B4 4E C6 01
6F CD BC 98 10 78 6F EC



x10 =



B4 74 E1 56 96 31 B9 6C
21 A1 B6 33 CC 89 68 1A
B1 97 25 86 7B 2B 3F 09
4C 73 C7 62 93 A8 15 CF
55 15 C0 C0 9A 05 05 16
23 44 8D 8D D3 5F B3 6E
7E 6C 2D 37 12 D0 F3 3E
CE B8 04 F2 8D 9F C9 99


x12 =



3F 72 C2 60 EE 28 EF EA
42 8E B5 3A FB 8A 33 A2
03 E4 72 31 90 A5 1A D3
3E 68 E6 46 FC 94 3C C7
80 42 9E 2E CB 32 75 93
30 AA E2 21 21 C8 99 ED
86 1E 06 9E 91 1F 89 6C
D2 99 EC 7E E9 0B 01 10


The last entry corresponds to the final output π(x0) = x12.

7

1.3.2 Authenticated Encryption
Inputs are plain ASCII.

K = "192-bit Secret Key value" (24 Bytes)
N = "Nonces Used Once" (16 Bytes)
A = "AAD Test Vector Exact Block 32 B" (32 Bytes)
P = "2 Block Test Vector for stribob192r2d2" (38 Bytes)

Trace of inputs and outputs for the π permutation:
Block 0 31 39 32 2D 62 69 74 20 53 65 63 72 65 74 20 4B

65 79 20 76 61 6C 75 65 01 00 00 00 00 00 00 00
12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

π out 0 FA A0 45 77 16 DB 55 A3 82 13 BD E2 44 EE D7 8C
A1 57 5E 12 8D 0D 0D FB 5D FF 8C 67 D4 EA 6B 31
8E 52 09 AD 17 8F 72 A4 2A D8 39 CC B9 88 40 A9
00 8B B6 D9 FB 76 EB B1 A5 FC F4 01 AF F2 2E 27

Block 1 B4 CF 2B 14 73 A8 75 F6 F1 76 D9 C2 0B 80 B4 E9
A0 57 5E 12 8D 0D 0D FB 5D FF 8C 67 D4 EA 6B 31
AC 52 09 AD 17 8F 72 A4 2A D8 39 CC B9 88 40 A9
00 8B B6 D9 FB 76 EB B1 A5 FC F4 01 AF F2 2E 27

π out 1 30 75 A4 58 67 4D 4C F0 3B AE AE 84 1A 5B 3C 06
84 18 18 70 C5 3D E7 A6 CE 04 63 60 33 5D 5E 96
2F E5 66 5B B4 9A AF CE B2 1B 45 3D 3E 1B FC 13
F5 A7 02 1F 31 CC D6 5F 74 C5 30 F9 6A BD A1 2E

Block 2 71 34 E0 78 33 28 3F 84 1B F8 CB E7 6E 34 4E 26
C1 60 79 13 B1 1D A5 CA A1 67 08 40 00 6F 7E D4
6C E5 66 5B B4 9A AF CE B2 1B 45 3D 3E 1B FC 13
F5 A7 02 1F 31 CC D6 5F 74 C5 30 F9 6A BD A1 2E

π out 2 6B BC 1D 05 10 75 5B 27 E0 B0 21 44 04 5A 4E 18
7E FC 3C 6C 05 76 3D 8C 99 59 A7 27 DF 6A 03 1D
40 3D 29 10 8D 01 56 49 DB EC 58 D9 B0 62 84 98
19 73 3F 3F 18 EC E5 49 89 8E 05 18 9F 32 C2 4F

Block 3 59 9C 5F 69 7F 16 30 07 B4 D5 52 30 24 0C 2B 7B
0A 93 4E 4C 63 19 4F AC EA 2D D5 4E BD 05 61 2C
10 3D 29 10 8D 01 56 49 DB EC 58 D9 B0 62 84 98
19 73 3F 3F 18 EC E5 49 89 8E 05 18 9F 32 C2 4F

π out 3 20 A0 35 CE C5 A5 DE 90 C6 D8 79 BA D4 B4 2D F5
25 C7 0C D1 CB BF 86 EB B8 3F E5 23 D2 4E D1 60
BD 76 13 59 E1 CD A9 98 97 A0 6F 34 D9 03 8D 43
CE 95 12 87 F1 F6 A4 58 DA DD 6E CA F0 C9 4F 8F

Block 4 19 92 47 FC A1 97 DF 90 C6 D8 79 BA D4 B4 2D F5
25 C7 0C D1 CB BF 86 EB B8 3F E5 23 D2 4E D1 60
EF 76 13 59 E1 CD A9 98 97 A0 6F 34 D9 03 8D 43
CE 95 12 87 F1 F6 A4 58 DA DD 6E CA F0 C9 4F 8F

π out 4 AE AE 71 0F 0D ED 3E 56 5B D0 26 FE 20 F6 4A 4F
12 81 B7 3C BB 63 65 62 A5 D9 8B E1 72 EE A0 8A
78 C2 9E 84 2C 91 BF 5D 39 1C 9A 5C 2B 34 7E 1B
24 DC 45 DC 71 EB 2D 04 C2 EE AE 39 17 0C 60 20

Authenticated ciphertext has 38 message bytes + 16 for MAC = 54 (0x36) bytes:

Offset x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
0x 59 9C 5F 69 7F 16 30 07 B4 D5 52 30 24 0C 2B 7B
1x 0A 93 4E 4C 63 19 4F AC EA 2D D5 4E BD 05 61 2C
2x 19 92 47 FC A1 97 AE AE 71 0F 0D ED 3E 56 5B D0
3x 26 FE 20 F6 4A 4F

8

Chapter 2

Security Goals

2.1 Specific Goals
STRIBOBr2 security parameters, claims, and goals remain unmodified from the original submission:

Category Effort Attack Goal
Confidentiality for the plaintext. 2191 Recover plaintext from ciphertext.
Integrity for the plaintext. 2127 Forge valid ciphertext.
Integrity for the associated data. 2127 Forge Associated Data.
Integrity for the public message number. 2127 Forge public message number.

Here we assume that the secret key is entirely unknown to the attacker. The complexities are given
for P = 0.5 success probability.

Furthermore we assume that no more than 264 bits of data is processed under any specific key / nonce
pair. The “unit” for the effort is equivalent to the effort required to compute the π permutation.

2.2 Nonce Re-Use
STRIBOBr2 does not allow re-use of public message numbers under the same key. In other words, users
are required to use the public message number as a nonce. STRIBOBr2 may lose all of its security if a
legitimate key holder uses the same sequence number and key to encrypt (and authenticate) two different
messages.

2.3 General Goals
Our main security goals are largely compatible with those laid out for Authenticated Encryption [51] and
Duplex Sponges in particular – proofs in [9, 12] are applicable. For the primitives of Section 1.2.2:

priv The expected effort to distinguish ciphertext C = encrypt(K, N, A, P) from random is 2k−1 for
random unknown key K and nonrepeating nonce N . Multiple (N, A, P) may be chosen by the
attacker, up to the data limit.

auth The expected effort to forge a message (N, A, C) that does not result in decrypt(K, N, A, C) =
FAIL authentication failure is 2t−1 for random unknown key K and nonrepeating nonce N . Mul-
tiple (N, A, C) may be chosen by the attacker, up to the data limit.

In general, confidentiality of plaintext will be consistent with key size k and the integrity (authenti-
cation) will be consistent with authentication tag size t if conditions for data limits and nonce re-use are
held. Secret message numbers will have the same confidentiality as other payload, if used. There should
not be any easily exploitable related-key properties.

9

Chapter 3

Security Analysis

3.1 Attacks on the Sponge AEAD Mode BLNK
STRIBOBr1 [55, 56, 57] and STRIBOBr2 [58] use exactly the same padding mechanism, BLNK. This
padding mechanism is a variant of Saarinen’s Blinker [53] padding, but limited to the CAESAR use case.

Some independent analysis of the mode has been recently published [32, 60], essentially validating
the claimed security bounds. No attacks have been reported against the padding mechanism, and hence
the security bounds derived from DW [9, 14] directly apply.

In the Duplex construction of SpongeWrap, additional padding is included for each input block; a
secondary information bit called frame bit is used for domain separation. Sakura [13] uses additional
frame bits to facilitate tree hashing. It is essential that the various bits of information such as the key,
authenticated data, and authenticated ciphertext can be exactly “decoded” from the Sponge input to
avoid trivial padding collisions. BLNK uses simpler embedded encoding. However, for our “effective
capacity” c [53] the following Theorem holds:

Theorem 1 (Derived from Theorem 4 from [14]). The DuplexWrap and BLNK authenticated encryption modes
satisfy the following privacy and authentication security bounds:

Advpriv
sbob(A) <

D + T

2k
+

D2 + 4DT

2c+1

Advauth
sbob(A) <

D + T

2k
+

D2 + 4DT

2c+1
+

D

2t
.

against any single adversary A if K $← {0, 1}k, tags of t bits are used, π is a randomly chosen permutation, D is
the data complexity (number of queries to target), and T is the offline attack time complexity.

Proof. See Theorem 4 of [14] and related work [3, 9]. See also [32].

Since b = 512, we choose a Sponge rate of r = 256 bits, which leaves capacity c = b − r = 256. We
choose key size k = 192 and limit D < 256 (264 bits) and T < 2k−1. As our actual effective capacity is
c ≈ 254 (δ ≤ 2 effective capacity bits are lost due to domain separation bits [53]), a 192-bit security level
is reached.

3.2 The π Permutation
The STRIBOBr2 π permutation is lifted from Whirlpool 3.0 hash function [4] in straightforward fashion,
and a security relationship exists between the two; a structural distinguisher againstπ would also indicate
a weakness in Whirlpool. Whirlpool is the only hash funcion (in addition to SHA [44]) in the NESSIE final
portfolio [42]. Whirlpool is also an ISO standard [30]. The Whirlpool compression function is among the
best understood, and most closely scrutinized cryptographic primitives in existence.

The π permutation from Whirlpool was designed using the wide trail design strategy [23]. LPS gets
all of its non-linearity from the 8-bit S-Box S, which has been designed to offer resistance against classical

10

methods of cryptanalysis. Its differential bound [15] is P = 8
256 and best linear approximation [38] holds

with P = 28
128 . No algebraic weaknesses have been discovered.

Many structural observations on AES-like ciphers also apply to LPS [5]. Adjusted to its state size, LPS
has similar per-round avalanche to AES (each input byte affects each output byte after two rounds) and
similar resistance to Square attacks. The best theoretical Square attack is effective against six rounds [35].
Due to shared design principles, vast AES research literature is also largely applicable to both Whirlpool
and STRIBOBr2 [5, 24].

The only effective attack against 10-round variant of Whirlpool is the Rebound Attack [36, 37, 41]. We
firmly believe that increase of rounds from 10 to 12 makes STRIBOBr2 resistant to these attacks. Even
addition of a single round would increase the work factor of those attacks by a significant factor. Since
we are using a sponge mode with r = 256 c = 256, an attacker only has control over half of the state, and
therefore STRIBOBr1 and STRIBOBr2 designs have a good security margin against these attacks [40].

3.3 Side-Channel Attacks
Due to the minibox structure, we may load the 4×4 - bit tables in registers and access them via constant-
time shuffles on Intel SSSE3 and ARM NEON SIMD targets as noted in Section 4.2.2. STRIBOBr2 is also
suited for bitsliced implementation due to its particular S-Box and MDS design.

Being unconditional straight-line code without data-dependent table lookups, bitsliced and byte
shuffling implementations are effective countermeasures against cache timing attacks, which can be
mounted against cryptographic primitives with large tables such as AES [1, 6, 47, 63].

A non-constant-time implementation of the S-Box on Whirlpool, Streebog, or StriBob on 64-bit plat-
forms typically requires lookup tables of up to 8 × 256 × 8 = 16384B. Even though this size easily fits
into the Level 2 cache of any 64-bit system, one may see that timing attacks are possible as L2 caches are
not always shared even between different execution cores within a single CPU unit. This is due to the
process switching operation of most 64-bit operating systems.

3.4 Conclusions
Structural similarity and equivalent differential and linear properties indicate that the security levels of
STRIBOBr1 and STRIBOBr2 are essentially the same. However, the Whirlpool structure has received
even more of cryptanalysis [34, 59] than Streebog [26]. STRIBOBr2 has more implementation options,
facilitating constant-time operation. To summarize main security arguments for STRIBOBr2:

• Well-understood Structure. STRIBOBr2 is a classical sponge-based design; a large body of litera-
ture and theorems exist to justify its particular security claims.

• Recycling strong components. Theπ permutation from Whirlpool has also received a large amount
of public analysis, and its shared design principles with AES increase our confidence in it.

• Security Reduction. It is relatively straightforward to show that a structural distinguisher against
STRIBOBr2 is also a structural distinguisher against a 12-round extended variant of Whirlpool.

• Fast, Constant-time software implementation. STRIBOBr2 allows very efficient constant-time im-
plementation on many platforms, making it resistant to side-channel attacks (that make secure
software implementation even of AES more difficult.) Hardware implementations have also been
shown to be efficient.

Extensive, directly applicable research into the security of Sponge functions, DuplexWrap, Whirlpool,
Streebog, and AES-like structures warrants an exceptional level of confidence for the long-term security
of both STRIBOBr1 and STRIBOBr2. Based on our review of latest research, no attacks are known against
corresponding versions of these ciphers, and a comfortable security margin remains.

11

Chapter 4

Features

4.1 Advantages over AES-GCM
The main technical advantages of STRIBOBr2 over AES-GCM are:

• Unlike AES-GCM, the STRIBOBr2 authentication tags offer a level of integrity protection commen-
surate with its length, rather than half of it [52].

• STRIBOBr2 allows easier constant-time implementation on targets without special AES instruc-
tions. Software speeds are often faster than AES-192.

• The same hybrid STRIBOBr2/Whirlpool core can also be used for unkeyed hashing in digital sig-
natures (standards-compliant certificate handling) and other applications.

STRIBOBr2 has superb implementation characteristics on FPGA, SIMD, and lightweight targets.

4.2 Software Implementations
STRIBOBr2 has extremely small implementation footprint on resource-limited software platforms – typ-
ically under half a kilobyte. Its particular S-Box and MDS design allows STRIBOBr2 to have efficient
constant-time bitsliced and SIMD byte shuffling implementations. These are an effective countermea-
sure against cache timing attacks, which are a concern against AES. The b = 8 × 64 - bit state size is
particularly suitable for bitslicing of a byte-oriented algorithm on 64-bit platforms and byte slicing for
SIMD platforms.

4.2.1 Lightweight Targets
The entire byte-oriented implementation of π fits onto a single page; See Section 1.1.5. Remarkably, in
addition to π, only the S-Box wbob_sbox[256] (Table 1.1) together with minimal BLNK logic are required
for full AEAD implementation. On many microcontrollers targets, STRIBOBr2’s entire software footprint
is in the 500B range. Slightly more is required for a shared secret handshake protocol and two-way secure
BLINKER protocol [53].

This is a significant improvement over STRIBOBr1, which typically needs almost 2kB. STRIBOBr1 is
also much slower and larger on low-end microcontrollers due to the “heavy” MDS matrix. The reference
implementation is written for compactness and clarity; it is not optimal when it comes to speed or size.
We refer to section 7.3 of [4] for techniques that greatly reduce the number of XORs required, resulting
in increased processing speed. Additional tables will be required, however, and this will increase the
overall implementation size.

4.2.2 Constant-Time SIMD Implementation
Due largely to Whirlpool’s S-Box structure and generous parallelism, STRIBOBr2’s π is well suited for
high speed, constant-time implementation on Single Instruction Multiple Data (SIMD) architectures.

12

Here we focus on ARM’s NEON as the reference architecture since the state layout fits the registers
nicely, but also consider Intel’s SSSE3 as another explicit example. The goal is to improve performance,
while at the same time avoiding memory-resident table lookups that cause execution time to depend on
the data cache state and thus algorithm state (the crux of cache timing attacks).

Related work in this area includes simulated ISA extensions to a RISC architecture for parallel table
lookups to speed up Whirlpool [28]. These extensions are then used to build essentially a hardware-
assisted analogue of the traditional T tables software implementation – storing the state in rows and
issuing a single instruction to perform 8 parallel lookups from the 8-bit S-Box input to the 64-bit linear
layer output and XOR-summing the results, repeated for each row. AES [27] and Anubis [20] can also
take advantage of SSSE3’s variable byte shuffle instruction for fast and secure implementations.

NEON has 32 × 64 - bit SIMD registers and SSSE3 16 × 128 - bit. We store the state column-wise
(one column per NEON register, two columns per SSSE3 register), i.e. byte position j of register i con-
tains the state byte in column i and row j. The SubBytes step is not sensitive to this ordering, but both
ShiftColumns and MixRows are. Since both of these architectures feature variable byte shuffle instruc-
tions (vtbl.u8 for NEON and pshufb for SSSE3), implementing SubBytes is a direct translation of Fig-
ure 1.1 to these instructions. This amounts to 40 NEON shuffles and half as many SSSE3 shuffles. For
ShiftColumns, NEON uses vext for byte-wise register rotation and SSSE3 pshufb with constant rota-
tion distances since each register holds two columns. For MixRows, we use the row formula from the
Whirlpool specification [4, Sec. 7.3] where the multiplications by x are a simple left shift (native on NEON,
integer addition on SSSE3) and conditional XOR (operand masked by signed right shift on NEON, com-
parison on SSSE3). The formula is fairly symmetric around even and odd byte positions – while NEON
implements it as written with 24 multiplications, SSSE3 slightly rearranges a few registers to parallelize
across the full 128-bit register width and use half as many multiplications.

4.2.3 Generic Constant-Time Bitsliced Implementation
The byte-oriented 8× 64 = 512 - bit state can be rapidly split into eight 64-bit registers. The parallelism
evident in Figure 1.1 helps to speed up bitsliced implementation. We see that for 2/3 of the time, the
S-Box has effectively two independent 4-bit execution paths. Interleaving these may greatly reduce wait
states due to the superscalar architecture employed by most modern CPUs.

Appendix B of the current 2003 Whirlpool specification [4] gives listings with 14-16 instructions/gates
for each of the miniboxes (if ANDN instruction is allowed). Those were used in our reference bitsliced
implementations.

4.3 Implementation Summary
We currently have six implementations of STRIBOBr2. They mainly differ in the implementation tech-
nique used for the π cryptographic permutation.

• C 8-bit: This is the minimal reference implementation which is optimized for clarity and low-
resource platforms, corresponding to Section 1.1.5.

• C 64-bit: Standard speed-optimized implementation for most platforms, utilizing large lookup
tables. Apart from Whirlpool-derived tables, equivalent to the implementation of STRIBOBr1 [56].

• C Bitsliced: Straight-line, fully bitsliced implementation without data-dependent branches or lookups.
Resistant to timing attacks.

• NEON Intrinsics: Fast constant-time version that avoids table lookups by storing 4× 4 - bit mini-
boxes in SIMD registers.

• SSSE3 Intrinsics: Similar but for 128-bit SIMD registers.

• Verilog 12-cycle: This is the hardware reference implementation. Source code is about 350 lines.
Additional logic is required for AXI Bus integration.

13

Figure 4.1: STRIBOBr2 was implemented on the FPGA logic fabric of Xilix Zynq 7010. The implementa-
tion integrates with the AXI bus of ARM Cortex A9 on the SoC chip.

4.3.1 Software Implementations
The first three implementations use only C99, and are hence easily portable. The 64-bit reference im-
plementation is almost exactly as fast as OpenSSL’s Whirlpool on the same platform. See Table 4.1 for
implementation metrics. Note that STRIBOBr2 is faster then the (out-of-box, Ubuntu 14.04 LTS) OpenSSL
implementation of AES-192 on the same target. We also have various embedded implementations.

Table 4.1: Comparing software implementations of STRIBOBr2’s π.

Target Speed Footprint Source
MB/sec Code Data C lines

Single Core of 3.4GHz Core i7-4770
8-bit C99 Reference 7.772 326 256 97
Bitsliced C99 Reference 49.02 4592 768 345
64-bit C99 Reference 139.2 1942 16512 128
SSSE3 (Constant-Time) 162.3 1290 1152 256
OpenSSL 1.0.1f AES-192 CBC 145.6

BeagleBone Black 1.0GHz Cortex-A8
8-bit C99 Reference 0.828 352 256 97
64-bit C99 Reference 3.343 6524 16512 128
Bitsliced C99 Reference 1.435 15704 768 345
NEON (Constant-Time) 9.208 1528 1072 320

4.3.2 Hardware Implementation
The hardware implementation has been proven on FPGA (Figure 4.1). The SÆHI proposal reports total
post place-and-route utilization on Artix-7 of 4,946 logic units for a single round of STRIBOBr2, which
compares favorably to 7,972 required for Keccak/Keyak [54]. Throughput is roughly 2 MB/s for each
MHz.

14

Chapter 5

Design Rationale

STRIBOBr2 design and analysis were interdependent and were performed concurrently. Design rationale
is therefore complemented by Chapter 3, “Security Analysis”. Here we just give some broad rationale to
our overall component and parameter selection.

5.1 Block Cipher Modes are Limited by the Birthday Paradox
Authenticated Encryption modes based on block ciphers such as AES Rijndael [24] were deemed un-
satisfactory as the security of most of these is bound by the limit imposed by 128-bit block size and the
birthday paradox; this applies to GCM [43], OCB [50, 51], and similar synthesized modes [29]. Further-
more, we wanted to explore a different design paradigm.

The Sponge Construct is a flexible method for building cryptographic algorithms of different kinds
from a single permutation. The Sponge parameter selections were derived from well-established theo-
rems regarding Sponge functions and a large body of research. [7, 8, 11, 9, 10, 13].

A random-indistinguishable π and appropriate padding rules are sufficient to construct Sponge-
based hashes [7], Tree Hashes [13], MACs [10], Authenticated Encryption (AE) algorithms [9, 14], and
pseudorandom extractors (SHAKEs, PRFs, and PRNGs) [8, 45].

As a starting point, we wanted to marry Blinker-style Sponge padding [53] with a well-understood,
secure cryptographic permutation. The permutation should be large enough to allow both, efficient
operation and sufficient security level.

5.2 Implementation Synergy with Standard Hash Functions
It was observed that some dedicated hash function standards, the Russian standard hash function GOST
R 34.11-2012 [26] and the (ISO Standard and NESSIE final portfolio algorithm) Whirlpool hash function
[4] contain within them 512-bit keyless permutations. We took those permutations and used them in a
Sponge-based design. The shared S-Boxes and codebase with corresponding hashes would be helpful in
embedded and lightweight applications – there would be implementation synergy.

Whirlpool has received a significant amount of analysis in the almost 15 years since its original pub-
lication. Whirlpool was the only hash function in the final NESSIE portfolio in addition to SHA-2 hashes
[42]. Whirlpool has also been standardized by ISO as part of ISO/IEC 10118-3:2004 [30].

The amended MDS matrix used by current (’03) Whirlpool is also used by STRIBOBr2 as a counter-
measure to the structural observations given in [61]. Our design is based on Whirlpool 3.0.

Whirlpool was found to be vulnerable to a Rebound Distinguisher [36, 37, 41]. That 2188 attack applies
to the 10-round variant; our 12-round version should offer a comfortable security margin, especially as
our security target is 2192. The way the round constants are derived from the S-Box allows this change
to be made in a straightforward manner.

After careful analysis, we concluded that the π permutations obtained contain no structural distin-
guishers that are not based on some trivial property such as a priori knowledge of output value of π(x)
for some particular x.

15

5.3 Hidden Weaknesses
The original design criteria for Streebog (on which STRIBOBr1 is partially based) has never been pub-
lished, so various teams have attempted to determine those. Even though some of the “mysterious con-
stants” of Streebog have been recently revealed [18, 33, 49] in response to potential attacks [2], the ratio-
nale behind many of the design choices still remains hidden. STRIBOBr2 has no such magical constants;
the entire design process is open and repeatable. See [4] for S-Box and MDS details for STRIBOBr2.

The designers of STRIBOBr2 have not hidden any weaknesses in this cipher.

5.4 Updated Information on STRIBOBr1 π Design
The 8-bit S-Box used by STRIBOBr1 was directly lifted from Streebog so that hardware and software
components developed for Streebog could be shared or recycled when implementing STRIBOBr1. The
same S-Box is also used by the recently proposed Russian Encryption Standard “Kuznyechik” [25, 62].

The GOST R 34.11-2012 “Streebog” standard text [26] does not describe the linear step as a 8×8matrix-
vector multiplication with GF(28) elements like the STRIBOBr1 spec [56], but as a 64× 64 binary matrix
multiplication. One can see that 8 × 8 × 8 = 512 bits are required to describe the former, but 64 × 64 =
4096 bits are required for the latter. The more effective description was discovered by Kazymorov and
Kazymorova in [33] by exhaustively testing all 30 irreducible polynomial bases, revealing an AES-like
MDS structure. The origin of the particular numerical values of that MDS matrix is still a mystery. They
do not appear to offer similar avenues for size or performance optimization like those in Whirlpool 3.0
and STRIBOBr2 do.

Not much about the particular design criteria of the Streebog S-Box has been published. That S-Box
was apparently selected at least 5 years ago as Streebog already appeared in RusCrypto ’10 proceedings
[39]. Very recent ongoing work has revealed it to also have an optimized representation [18], after all.

We can easily observe that the S-Box offers reasonable resistance against basic methods of cryptanal-
ysis. Its differential bound [15] is P = 8

256 and best linear approximation [38] holds with P = 28
128 . There

does not seem to be any exploitable algebraic weaknesses. These are the exact same bounds as can be
found for the Whirlpool and STRIBOBr2 S-Box, but fall short from the bounds of the AES S-Box.

By comparison, the Rijndael AES S-Box is constructed from finite field inversion x−1 operation in
GF(28) (inspired by the Nyberg construction [46]) and an affine bit transform that serves as a counter-
measure against, among other things, Interpolation Attacks [31] on the AES predecessor SHARK [48].
We refer to [24] for more information about the AES design process.

We had brief informal discussions with some members of the Streebog and Kuznyechik design team
at the CTCrypt ’14 workshop (05-06 June 2014, Moscow RU). Their recollection was that the aim was
to choose a “randomized” S-Box that meets the basic differential, linear, and algebraic requirements.
Randomization using various building blocks was simply iterated until a “good enough” permutation
was found. This was seen as an effective countermeasure against yet-unknown attacks. At the time of
Streebog S-Box selection (before 2010’s) the emergence of allegedly effective AES Algebraic Attacks such
as [22] was a major concern for much of the symmetric cryptographic community. Hence it was felt
appropriate to avoid too much algebraic structure in either the S-Box or MDS matrix while also ensuring
necessary resistance against known attacks such as DC and LC. Algebraic attack attempts of this type
against AES have since largely fizzled out. We feel confident that the Whirlpool S-Box should be suf-
ficient for our claimed security level, especially as it offers significantly better speeds in constant-time
implementations when compared to an AES-Style S-Box.

One is left with the impression that Streebog is a “whitened” or randomized copy of the original
Whirlpool design. Despite its partially unknown origins and relative shortcomings on some implementa-
tion targets, we consider STRIBOBr1 to be at least as secure as STRIBOBr2 if appropriately implemented.
Indeed some of the more successful attacks on AES and Whirlpool have been based on their deep struc-
tural self-similarities and simplistic key schedules [16, 17, 19], so STRIBOBr1 may have some security
advantages against “unknown” attacks.

16

Chapter 6

Changes

In order to facilitate better implementation techniques, we have produced a new variant of the cipher
with STRIBOBr2. We still encourage security evaluation of STRIBOBr1.

The changes for STRIBOBr2 have not been done in response to any specific cryptanalytic attacks; we
are confident that both STRIBOBr1 and STRIBOBr2 offer essentially equivalent security.

The new variant, STRIBOBr2, is structurally identical to the original STRIBOBr1 design, but differs in
its S-Box and linear mixing selection. In fact the source code for the 64-bit reference implementations of
the two ciphers are nearly identical, differing only in tables.

• Section 1.1.1: The 8× 8 - bit S-Box from [26, 62] has been replaced with that from Whirlpool 3.0 [4].

• Section 1.1.2: The byte transpose shuffle of [26] has been replaced with ShiftColumns shuffle of [4].

• Section 1.1.3: The 8× 8 - byte matrix and finite field from [33] has been replaced with that from [4].

• Section 1.1.4: New Round constants C. Rather than using the Magical constants from [26, 49], we
are using ones derived from the S-Box, as in [4].

We note that these Whirlpool components were revised several times during the NESSIE evaluation
process; its MDS matrix [61] and S-Box were both redesigned. We are using the final 3.0 specifications,
with the difference that number of rounds has been increased from 10 to 12 in response to Rebound
Distinguishers [36, 37, 41]. That 2188 attack applies to the 10-round variant; our 12-round version should
offer a comfortable security margin, especially as our security target is 2192 [40]. STRIBOBr1 also has 12
rounds.

17

Chapter 7

Intellectual Property and Consent

7.1 Intellectual Property
The authors are not aware of any patents or patent applications that directly cover the work described in
this document, nor are planning to submit any.

If any of this information changes, the submitters will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.

7.2 Consent to CAESAR Selection Committee
The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee.

The submitters understand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published analyses that led to the
selection of the algorithm.

The submitters understand that the selection of some algorithms is not a negative comment regarding
other algorithms, and that an excellent algorithm might fail to be selected simply because not enough
analysis was available at the time of the committee decision.

The submitters acknowledge that the committee decisions reflect the collective expert judgments of
the committee members and are not subject to appeal.

The submitters understand that if they disagree with published analyses then they are expected to
promptly and publicly respond to those analyses, not to wait for subsequent committee decisions.

The submitters understand that this statement is required as a condition of consideration of this sub-
mission by the CAESAR selection committee.

Submitters:

Dr. Markku-Juhani O. Saarinen Dr. Billy Bob Brumley

18

Bibliography

[1] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache based remote timing attack on the
AES. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of LNCS, pages 271–286. Springer, 2007.
doi:10.1007/11967668_18.

[2] Riham AlTawy and Amr M. Youssef. Watch your constants: Malicious streebog. IACR ePrint
2014/879, 2014. URL: https://eprint.iacr.org/2014/879.

[3] Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second round SHA-3
candidates. IACR ePrint 2010/381, July 2010. URL: https://eprint.iacr.org/2010/381.

[4] Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool hashing function. NESSIE Al-
gorithm Specification, 2000, Revised May 2003. URL: http://www.larc.usp.br/~pbarreto/
WhirlpoolPage.html.

[5] Christof Beierle, Philipp Jovanovic, Martin M. Lauridsen, Gregor Leander, and Christian Rech-
berger. Analyzing permutations for AES-like ciphers: Understanding ShiftRows. In Kaisa Ny-
berg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 37–58. Springer, 2015. doi:10.1007/
978-3-319-16715-2_3.

[6] D. J. Bernstein. Cache-timing attacks on AES. Technical report, University of Chigaco, 2005. URL:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions. In Ecrypt
Hash Workshop 2007, May 2007. URL: http://events.iaik.tugraz.at/HashWorkshop07/program.
html.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-based pseudo-
random number generators. In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010,
volume 6225 of LNCS, pages 33–47. Springer, 2010. doi:10.1007/978-3-642-15031-9_3.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge:
Single-pass authenticated encryption and other applications. In A. Miri and S. Vaudenay,
editors, SAC 2011, volume 7118 of LNCS, pages 320–337. Springer, 2011. doi:10.1007/
978-3-642-28496-0_19.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak reference, ver-
sion 3.0. NIST SHA3 Submission Document, January 2011. URL: http://keccak.noekeon.org/
Keccak-reference-3.0.pdf.

[11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the security of
the keyed sponge construction. In SKEW 2011 Symmetric Key Encryption Workshop, Febru-
ary 2011. URL: http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%
20keyed%20sponge%20construction.pdf.

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Permutation-based encryp-
tion, authentication and authenticated encryption. In DIAC 2012, 2012. URL: http://keccak.
noekeon.org/KeccakDIAC2012.pdf.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sakura: a flexible coding for
tree hashing. IACR ePrint 2013/231, April 2013. URL: https://eprint.iacr.org/2013/231.

19

http://dx.doi.org/10.1007/11967668_18
https://eprint.iacr.org/2014/879
https://eprint.iacr.org/2010/381
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://dx.doi.org/10.1007/978-3-319-16715-2_3
http://dx.doi.org/10.1007/978-3-319-16715-2_3
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://events.iaik.tugraz.at/HashWorkshop07/program.html
http://events.iaik.tugraz.at/HashWorkshop07/program.html
http://dx.doi.org/10.1007/978-3-642-15031-9_3
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%20keyed%20sponge%20construction.pdf
http://skew2011.mat.dtu.dk/proceedings/On%20the%20security%20of%20the%20keyed%20sponge%20construction.pdf
http://keccak.noekeon.org/KeccakDIAC2012.pdf
http://keccak.noekeon.org/KeccakDIAC2012.pdf
https://eprint.iacr.org/2013/231

[14] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. CAE-
SAR submission: Keyak v1. CAESAR First Round Submission, March 2014. URL: http://
competitions.cr.yp.to/round1/keyakv1.pdf.

[15] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption Standard. Springer, 1993.
doi:10.1007/978-1-4613-9314-6.

[16] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-
256. In Mitsuru Matsui, editor, ASIACRYPT ’09, volume 5912 of LNCS, pages 1–18. Springer, 2009.
doi:10.1007/978-3-642-10366-7_1.

[17] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-key attack on the
full AES-256. In Sjai Halevi, editor, CRYPTO ’09, volume 5677 of LNCS, pages 231–249. Springer,
2009. doi:10.1007/978-3-642-03356-8_14.

[18] Alex Biryukov, Lèo Perrin, and Aleksei Udovenko. The secret structure of the S-Box of Streebog,
Kuznechik and StriBob. IACR ePrint 2015/812, August 2015. URL: https://eprint.iacr.org/
2015/812.

[19] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of the
full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT ’11, volume 7073 of LNCS,
pages 344–371. Springer, 2011. doi:10.1007/978-3-642-25385-0_19.

[20] Billy B. Brumley. Secure and fast implementations of two involution ciphers. In T. Aura, K. Järvinen,
and K. Nyberg, editors, NordSec ’10, volume 7127 of LNCS, pages 269–282. Springer, 2012. doi:
10.1007/978-3-642-27937-9_19.

[21] CAESAR. CAESAR call for submissions, January 2014. URL: http://competitions.cr.yp.to/
caesar-call.html.

[22] N. Courtois. How fast can be algebraic attacks on block ciphers? IACR ePrint 2006/168, May 2006.
URL: https://eprint.iacr.org/2006/168.

[23] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Bahram Honary, edi-
tor, Cryptography and Coding 2001, volume 2260 of LNCS, pages 222–238. Springer, 2001. doi:
10.1007/3-540-45325-3_20.

[24] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - the Advanced Encryption Standard.
Springer, 2002. doi:10.1007/978-3-662-04722-4.

[25] Denis M. Dygin, Ivan V. Lavrikov, Grigory B. Marshalko, Vladimir I. Rudskoy, Dmitry I. Trifonov,
and Vasily A. Shishkin. On a new Russian Encryption Standard. Mathematical Aspects of Cryptogra-
phy, 6(2):29–34, 2015. (Abstract In Russian). URL: http://www.mathnet.ru/php/archive.phtml?
wshow=paper&jrnid=mvk&paperid=142&option_lang=eng.

[26] GOST. Information technology. cryptographic protection of information, hash function. GOST R
34.11-2012, 2012. (In Russian). URL: http://protect.gost.ru/v.aspx?control=7&id=180209.

[27] M. Hamburg. Accelerating AES with vector permute instructions. In C. Clavier and K. Gaj, editors,
CHES ’09, volume 5747 of LNCS, pages 18–32. Springer, 2009. doi:10.1007/978-3-642-04138-9_2.

[28] Y. Hilewitz, Y. L. Yin, and R. B. Lee. Accelerating the Whirlpool hash function using parallel table
lookup and fast cyclical permutation. In K. Nyberg, editor, FSE ’08, volume 5086 of LNCS, pages
173–188. Springer, 2008. doi:10.1007/978-3-540-71039-4_11.

[29] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. Automated analysis and synthesis of
authenticated encryption schemes. IACR ePrint 2015/624, June 2015. URL: https://eprint.iacr.
org/2015/624.

[30] ISO/IEC. Information technology - security techniques - hash-functions - part 3: Dedicated hash-
functions. ISO/IEC 10118-3:2004, 2004. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:
10118:-3:ed-3:v1:en.

20

http://competitions.cr.yp.to/round1/keyakv1.pdf
http://competitions.cr.yp.to/round1/keyakv1.pdf
http://dx.doi.org/10.1007/978-1-4613-9314-6
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-03356-8_14
https://eprint.iacr.org/2015/812
https://eprint.iacr.org/2015/812
http://dx.doi.org/10.1007/978-3-642-25385-0_19
http://dx.doi.org/10.1007/978-3-642-27937-9_19
http://dx.doi.org/10.1007/978-3-642-27937-9_19
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
https://eprint.iacr.org/2006/168
http://dx.doi.org/10.1007/3-540-45325-3_20
http://dx.doi.org/10.1007/3-540-45325-3_20
http://dx.doi.org/10.1007/978-3-662-04722-4
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mvk&paperid=142&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mvk&paperid=142&option_lang=eng
http://protect.gost.ru/v.aspx?control=7&id=180209
http://dx.doi.org/10.1007/978-3-642-04138-9_2
http://dx.doi.org/10.1007/978-3-540-71039-4_11
https://eprint.iacr.org/2015/624
https://eprint.iacr.org/2015/624
https://www.iso.org/obp/ui/#iso:std:iso-iec:10118:-3:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:10118:-3:ed-3:v1:en

[31] T. Jakobsen and Lars R. Knudsen. The interpolation attack on block cipers. In Eli Biham, editor, FSE
’97, volume 1267 of LNCS, pages 99–112. Springer, 1996.

[32] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in sponge-based authenti-
cated encryption modes. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, volume 8873
of LNCS, pages 85–104. Springer, 2014. doi:10.1007/978-3-662-45611-8_5.

[33] Oleksandr Kazymyrov and Valentyna Kazymyrova. Algebraic aspects of the Russian hash stan-
dard GOST R 34.11-2012. In CTCrypt ’13, June 23-24, 2013, Ekaterinburg, Russia, 2013. IACR ePrint
2013/556. URL: https://eprint.iacr.org/2013/556.

[34] Lars R. Knudsen. Non-random properties of reduced-round Whirlpool. NESSIE public re-
port, NES/DOC/UIB/WP5/016/2, August 2002. URL: https://www.cosic.esat.kuleuven.be/
nessie/reports/phase2/uibwp5-016-2.pdf.

[35] Lars R. Knudsen and David Wagner. Integral cryptanalysis (extended abstract). In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127. Springer, 2002. doi:
10.1007/3-540-45661-9_9.

[36] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer.
Rebound distinguishers: Results on the full whirlpool compression function. In Mitsuru Mat-
sui, editor, ASIACRYPT ’09, volume 5912 of LNCS, pages 126–143. Springer, 2009. doi:10.1007/
978-3-642-10366-7_8.

[37] Mario Lamberger, Florian Mendel, Martin Schläffer, Christian Rechberger, and Vincent Rijmen. The
rebound attack and subspace distinguishers: Application to Whirlpool. J. Cryptology, 28:257–296,
2015. doi:10.1007/s00145-013-9166-5.

[38] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In T. Helleseth, editor, EUROCRYPT
’93, volume 765 of LNCS, pages 386–397. Springer, 1994. doi:10.1007/3-540-48285-7_33.

[39] D. V. Matyuhin, V. I. Rudskoy, and V. A. Shishkin. Promising hashing algorithm. RusCrypto ’10
Workshop, 02 April 2010, 2010. (In Russian).

[40] Florian Mendel. Personal Communication, June 2014.

[41] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE 2009, volume 5665
of LNCS, pages 260–276. Springer, 2009. doi:10.1007/978-3-642-03317-9_16.

[42] NESSIE. Final report of European project number IST-1999-12324, named New European Schemes for Sig-
natures, Integrity, and Encryption. NESSIE, April 2004. URL: https://www.cosic.esat.kuleuven.
be/nessie/Bookv015.pdf.

[43] NIST. Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and
GMAC. NIST Special Publication 800-38D, 2007. URL: http://csrc.nist.gov/publications/
nistpubs/800-38D/SP-800-38D.pdf.

[44] NIST. Secure Hash Standard (SHS). Federal Information Processing Standards Publication FIPS 180-
4, March 2012. URL: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[45] NIST. SHA-3 standard: Permutation-based hash and extendable-output functions. FIPS 202, August
2015. doi:10.6028/NIST.FIPS.202.

[46] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor Helleseth, editor, EURO-
CRYPT ’93, volume 765 of LNCS, pages 55–64. Springer, 1994. doi:10.1007/3-540-48285-7_6.

[47] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The case of
AES. In David Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 1–20. Springer, 2006.
doi:10.1007/11605805_1.

21

http://dx.doi.org/10.1007/978-3-662-45611-8_5
https://eprint.iacr.org/2013/556
https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-016-2.pdf
https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-016-2.pdf
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-10366-7_8
http://dx.doi.org/10.1007/978-3-642-10366-7_8
http://dx.doi.org/10.1007/s00145-013-9166-5
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/978-3-642-03317-9_16
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1007/3-540-48285-7_6
http://dx.doi.org/10.1007/11605805_1

[48] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and Erik De Win. The cipher
SHARK. In Dieter Gollmann, editor, FSE ’96, volume 1039 of LNCS, pages 99–111. Springer, 1996.
doi:10.1007/3-540-60865-6_47.

[49] Vladimir Rodskoy. Note on Streebog constants origin. Preprint, 2015. URL: http://tk26.ru/en/
ISO_IEC/streebog/streebog_constants_eng.pdf.

[50] Phillip Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for
efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, CCS ’01: Proceedings of
the 8th ACM conference on Computer and Communications Security, pages 196–205. ACM, 2001. doi:
10.1145/501983.502011.

[51] Phillip Rogaway, Mihir Bellare, and Jogn Black. OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Transactions on Information and System Security (TISSEC), 6(3):365–
403, August 2003. URL: http://web.cs.ucdavis.edu/~rogaway/papers/ocb-full.pdf, doi:10.
1145/937527.937529.

[52] Markku-Juhani O. Saarinen. Cycling attacks on GCM, GHASH and other polynomial MACs and
hashes. In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 216–225. Springer, 2012.
doi:10.1007/978-3-642-34047-5_13.

[53] Markku-Juhani O. Saarinen. Beyond modes: Building a secure record protocol from a cryptographic
sponge permutation. In J. Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 270–285.
Springer, 2014. doi:10.1007/978-3-319-04852-9_14.

[54] Markku-Juhani O. Saarinen. Simple AEAD hardware interface (SÆHI) in a SoC: Implementing an
on-chip Keyak/WhirlBob coprocessor. In TrustED ’14 Proceedings of the 4th International Workshop on
Trustworthy Embedded Device, pages 51–56. ACM, 2014. doi:10.1145/2666141.2666144.

[55] Markku-Juhani O. Saarinen. StriBob: Authenticated encryption from GOST R 34.11-2012 LPS per-
mutation. In CTCrypt ’14, 05-06 June 2014, Moscow, Russia. Preproceedings., pages 170–182, June 2014.
URL: https://eprint.iacr.org/2014/271.

[56] Markku-Juhani O. Saarinen. The STRIBOBr1 authenticated encryption algorithm. CAESAR, 1st
Round Candidate, March 2014. URL: http://www.stribob.com.

[57] Markku-Juhani O. Saarinen. StriBob: Authenticated encryption from GOST R 34.11-2012
LPS permutation. Mathematical Aspects of Cryptography, 6(2):67–78, 2015. (Abstract In Rus-
sian). URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mvk&paperid=
146&option_lang=eng.

[58] Markku-Juhani O. Saarinen and Billy B. Brumley. Lighter, Faster, and Constant-Time: WHIRLBOB,
the Whirlpool variant of STRIBOB. In NORDSEC 2015, LNCS. Springer, October 2015. To appear.
Also IACR ePrint 2014/501. URL: https://eprint.iacr.org/2014/501.

[59] Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental security require-
ments on Whirlpool: Improved preimage and collision attacks. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 562–379. Springer, 2012. doi:10.1007/
978-3-642-34961-4_34.

[60] Yu Sasaki and Kan Yasuda. How to incorporate associated data in sponge-based authenticated
encryption. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 353–370. Springer,
2015. doi:10.1007/978-3-319-16715-2_19.

[61] T. Shirai and K. Shibutani. On the diffusion matrix employed in the Whirlpool hashing func-
tion. NESSIE Public Report, 2003. URL: http://www.cosic.esat.kuleuven.be/nessie/reports/
phase2/whirlpool-20030311.pdf.

[62] Vasily Shishkin, Denis Dygin, Ivan Lavrikov, Grigory Marshalko, Vladimir Rudskoy, and Dmitry
Trifonov. Low-weight and hi-end: Draft Russian Encryption Standard. In CTCrypt ’14, 05-06 June
2014, Moscow, Russia. Preproceedings., pages 183–188, June 2014.

22

http://dx.doi.org/10.1007/3-540-60865-6_47
http://tk26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://tk26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://dx.doi.org/10.1145/501983.502011
http://dx.doi.org/10.1145/501983.502011
http://web.cs.ucdavis.edu/~rogaway/papers/ocb-full.pdf
http://dx.doi.org/10.1145/937527.937529
http://dx.doi.org/10.1145/937527.937529
http://dx.doi.org/10.1007/978-3-642-34047-5_13
http://dx.doi.org/10.1007/978-3-319-04852-9_14
http://dx.doi.org/10.1145/2666141.2666144
https://eprint.iacr.org/2014/271
http://www.stribob.com
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mvk&paperid=146&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mvk&paperid=146&option_lang=eng
https://eprint.iacr.org/2014/501
http://dx.doi.org/10.1007/978-3-642-34961-4_34
http://dx.doi.org/10.1007/978-3-642-34961-4_34
http://dx.doi.org/10.1007/978-3-319-16715-2_19
http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/whirlpool-20030311.pdf
http://www.cosic.esat.kuleuven.be/nessie/reports/phase2/whirlpool-20030311.pdf

[63] Michael Weiß, Benedikt Heinz, and Frederic Stumpf. A cache timing attack on AES in virtualization
environments. In Angelos D. Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 314–328.
Springer, 2013. doi:10.1007/978-3-642-32946-3_23.

Document version 20150828143000.

23

http://dx.doi.org/10.1007/978-3-642-32946-3_23

	Preface and Introduction
	Specification
	Structure of the Permutation
	Substitution S or SubBytes
	Permutation P or ShiftColumns
	Linear operation L or MixRows
	Constants Cr or AddRoundKey
	Code for Computation

	BLNK Sponge Mode and Padding
	BLNK Block Operations
	The CAESAR encrypt() and decrypt() AEAD API

	Test Vectors
	The 12-round transform
	Authenticated Encryption

	Security Goals
	Specific Goals
	Nonce Re-Use
	General Goals

	Security Analysis
	Attacks on the Sponge AEAD Mode BLNK
	The Permutation
	Side-Channel Attacks
	Conclusions

	Features
	Advantages over AES-GCM
	Software Implementations
	Lightweight Targets
	Constant-Time SIMD Implementation
	Generic Constant-Time Bitsliced Implementation

	Implementation Summary
	Software Implementations
	Hardware Implementation

	Design Rationale
	Block Cipher Modes are Limited by the Birthday Paradox
	Implementation Synergy with Standard Hash Functions
	Hidden Weaknesses
	Updated Information on STRIBOBr1 Design

	Changes
	Intellectual Property and Consent
	Intellectual Property
	Consent to CAESAR Selection Committee

	Bibliography

