
TriviA-ck-v2

Designers : Avik Chakraborti and Mridul Nandi

Submitters : Avik Chakraborti and Mridul Nandi

avikchkrbrti@gmail.com

August 28, 2015

Chapter 1

Specification

The specification for the older version TriviA-ck-v1 for round 1 is available
at [3]. The conference version of the specifiction and hardware implementa-
tion of TriviA-ck-v1, with ck = 0 is available at [2]. This chapter contains the
specification of the newer version TriviA-ck-v2.

1.1 Notation

• Throughout this note, word represents 32 and w represents 64. Any el-
ement of {0, 1}w is called block and any element of {0, 1}word is called
word. Given any element x ∈ {0, 1}w×`, we write ‖x‖ := `, the number
of blocks of x.

• Let a ∈ {0, 1}n then we write a = an−1an−2 · · · a0 where ai ∈ {0, 1}.
Moreover, we write a[j−1..0] = aj−1aj−2 · · · a0 which returns the least sig-
nificant j bits of a.

• a << i represents a, i left shift of an n-bit string a. Similarly, a >> i
represents i right shift of a.

• r = a mod n represents the remainder when a is divided by n, i.e., 0 ≤
r < n such that n divides (a− r).

• For any set S, S+ = ∪∞i=1S
i and S∗ = {λ} ∪ S+ where λ denotes the

empty string.

• The padding function maps x ∈ {0, 1}∗ to pad(x) := x∗ = x‖10p where
p = w−(|x| mod w)−1. Note that x∗ ∈ {0, 1}wm, i.e., ‖x∗‖w = m, where

m = d |x|+1
w e.

1.1.1 Underlying Finite Field F2n

Let F2n denote the binary Galois field of size 2n, for a positive integer n. Field
addition and multiplication between a, b ∈ F2n are represented by a⊕b (or a+b

1

whenever understood) and a · b respectively. Any field element a ∈ F2n can be
represented by any of the following equivalent ways for a0, a1, . . . , an−1 ∈ {0, 1}.

• An n bit string anan−1 · · · a0 ∈ {0, 1}n.

• A polynomial a(x) = a0 + a1x+ · · ·+ an−1xn−1 of degree at most (n− 1).

1.1.2 Choice of Primitive Polynomials

In our construction, the primitive polynomials [14, 6] used to represent the field
F232 and F264 are respectively

1. p32(x) = x32 + x22 + x2 + x + 1 and

2. p64(x) = x64 + x4 + x3 + x+ 1

We denote the primitive element 0n−210 ∈ F2n by αn, where n ∈ {32, 64}.
Whenever n is understood from the context, we simply write α to mean αn for
notational simplicity.

32-bit String Polynomial
03010 x or α
03011 x+ 1 or α+ 1
029100 x2 or α2

Table 1.1: Various representations of some elements in F232

Thus, the field multiplication a(x) · b(x) is the polynomial r(x) of degree at
most (n− 1) such that a(x)b(x) ≡ r(x) mod pn(x).

Multiplication by Primitive Element α. We first see an example how we
can multiply by α32. Multiplying an element a := a31a30 · · · a0 ∈ F232 by the
primitive element α32 of F232 can be done very efficiently as follows:

a · α32 = a << 1, if a31 = 0

= (a << 1)⊕ 091019111, else

Let c = 091019111 and d = 05911011. Hence, we can also write the multiplication
as a · α32 = (a << 1) ⊕ a31c. One can similarly express the multiplication of
the other powers of α.

α2
32 · a = (a << 2)⊕ a31(c << 1)⊕ a30c = (a << 2)⊕ (s31 · · · s1s0)

where s0 = s22 = a30, s3 = s23 = a31, s1 = s2 = a30 ⊕ a31 and all other
si = 0. Similar simplification can be made for other power of α multiplications.
This representation is useful when we implement the power of α multipliers in
hardware.

2

Examples

1. x2(x31 + x30 + x+ 1) = (x33 + x32 + x3 + x2) mod p32(x)
= (x3 +x2)+(x23 +x3 +x2 +x)+(x22 +x2 +x+1)
= (x23 + x2 + 1)

2. x2(x63 + 1) = (x65 + x2) mod p64(x)
= x2 + (x5 + x4 + x2 + x)
= (x5 + x4 + x)

1.1.3 Vandermonde Matrix and Horner’s Rule

We define a special form of vandermonde matrix, denoted Vn,d,`, where α denotes
the primitive element αn (i.e., x mod pn(x)).

Vn,d,` =

1 · · · 1 1 1
α`−1 · · · α2 α 1
α2(`−1) · · · α4 α2 1

... · · ·
...

...
...

α(`−1)(d−1) · · · α2(d−1) αd−1 1

Example

V16,4,7 =

1 1 1 1 1 1 1
α6 α5 α4 α3 α2 α 1
α12 α10 α8 α6 α4 α2 1
α18 α15 α12 α9 α6 α3 1

where α is the primitive element of F216 .

Multiplying Vn,d,l to a vector can be done in an online manner without re-
quiring much memory. For example, when we multiply V16,4,1000 · h where h
is 4 × 1 vector we can compute it using only 4 states for h by using standard
Horner’s rule. The general algorithm is described below.

The VHornern/d subroutine is described in the Algorithm 2. This subroutine
actually implements the Horner’s rule. The subroutine will be implemented
later in VHornern/d circuit described in Chapter 5.

To implement the Algorithm 1, we have to implement αjn-multipliers for 1 ≤
j < d. We have seen before that one can efficiently describe these multiplications
by shift and bit-wise xor operations. Functionally, the above algorithm is same
as multiplying (x1, . . . , x`) with the Vandermonde matrix Vn,d,`, i.e.,

y1
y2
...
yd

 =

1 · · · 1 1 1
α`−1 · · · α2 α 1
α2(`−1) · · · α4 α2 1

... · · ·
...

...
...

α(d−1)(`−1) · · · α2(d−1) α(d−1) 1

·

x1
x2
...
x`

3

Algorithm VMultn/d
Input: x := (x1, x2, ..., x`) ∈ F`2n
Output: y := (y1, y2, . . . , yd) ∈ Fd2n such that y = x · Vn,d,`

1 y1 = · · · = yd = 0n

2 for i = 1 to `
3 (y1, . . . yd) = VHornern/d(xi)
4 return (y1, . . . yd);

Algorithm 1: VMultn/d multiplies a `-dimensional vector x = (x1, . . . , x`) by
Vandermonde matrix V to convert into d-dimensional vector x ·Vn,d,`. We apply
Horner’s rule to implement the algorithm.

Subroutine VHornern/d
Input: (x, (y1, y2, . . . , yd)) ∈ F2n × Fd2n
Output: y := (y′1, y

′
2, . . . , y

′
d) ∈ Fd2n

1 for j = 1 to d
2 y′j = αj−1n · yj ⊕ xi ;
3 return (y′1, . . . y

′
d);

Algorithm 2: VHornern/d subroutine.

4

Suppose in Algorithm VMultn/d we denote the value of yj (in line 3) by ykj
when “for-loop” is executed up to i = k. Thus, the final output is (yl1, . . . , y

l
d).

Note that for any k, we have

yk1
yk2
...
ykd

 =

1 · · · 1 1 1
αk−1 · · · α2 α 1
α2(k−1) · · · α4 α2 1

... · · ·
...

...
...

α(d−1)(k−1) · · · α2(d−1) α(d−1) 1

·

x1
x2
...
xk

In other words, with an appropriate tapping of y values we can compute VMultn/d(x1,
. . ., xk), for all 1 ≤ k ≤ l, during the computation of VMultn/d(x1, . . ., xl).

1.2 External Parameters

1.2.1 Recommended Parameter Choice

In this paper We propose a construction TriviA. However, it has some other
parameters which can be chosen by user following the recommendation.

1. ck: The possible choices of ck is from 0 to L := 232. Here ck = 0 means
that there are no intermediate tag in the output of Trivia-ck but the com-
putation of authentication is same for ck = L. Roughly, we need to store
64ck bits of messages for the intermediate authentication before we release
it. Based on the buffer availability of implementation environment one can
choose the value of the parameter ck.

We recommend two values for ck, namely 0 (when the complete message can
be stored before we authenticate whole message, i.e., no intermediate tag is
required) and ck = 128 (if the buffer size is at least 1KB).

1.3 Input and Output Data

To encrypt a message M with an associated data D and a nonce N , one needs
to provide the informations given below.

• An encryption key K ∈ {0, 1}128, the seed for the underlying streamcipher
Trivia-SC.

• A Public message no. pub ∈ {0, 1}64. This can include the counter to
make the nonce non-repeating, if required.

• The parameter set param ∈ {0, 1}64. The first 32 bits denote the bit
representation of ck. The next 8-bits denote the final tag length (max-
imum length is 128). The next 8-bits denote the length of each of the
intermediate tags (if any) and set as 08 is ck = 0 and upper bounded by

5

128 if ck > 0. The remaining 16 bits are preserved for future parameters
which is currently set as 016. We define nonce N ∈ {0, 1}128 to be the
concatenation param‖pub.

• Associated data D ∈ {0, 1}∗, with the following restriction of associated
data size : 0 ≤ |D| ≤ 264.

• A message (or plaintext) M ∈ {0, 1}∗, where 1 ≤ |M | ≤ 2128. In this
algorithm we do not have any provision of secret message number.

TriviA-ck authenticated encryption produces the following output data:

• Ciphertext C ∈ {0, 1}|M |.

• Tag T ∈ {0, 1}128t, where

t =

{
1 if ck = 0;

d‖pad(M)‖
ck e else

1.4 Mathematical Components

1.4.1 Streamcipher Trivia-SC

Trivia-SC is the base stream cipher which is a modified version of Trivium [1]
for encryption key and authentication tag generation. Trivia-SC is loaded with
128-bit key and 128-bit IV and generates bitstream. It uses three Non-linear
feedback registers (NFSR) A,B and C of size 132 bit, 105 bit and 147 bit respec-
tively. We will also represent the stream cipher internal state by S1, S2, · · · , S384,
where A = (S1, S2, · · · , S132), B = (S133, S134, · · · , S237) and C = (S238, S239,
· · · , S384).

Algorithm 3 describes the all basic modules used for the streamcipher Trivia-
SC. A proper intergration of these modules can be used to descibe a stream-
cipher. In this specification, we describe an integrated combinations of these
modules and VPV-Hash to describe TriviA.

The 64 bit Modules

Trivia-SC is parallelizable upto 64 bit. This means the stream cipher can produce
upto 64 bit stream at a single clock cycle.

Similarly the 64 round updations of Trivia-SC can be done at a single clock
cycle due to the parallelism. That is the Update64 subroutine which is equivalent
to running the Update subroutine 64 times can be executed in a single clock
cycle. More formally the KeyExt64 and the Update64 module is described in the
Algorithm 4,

The StateExt64 returns 64 bits and it has already been defined in the Algo-
rithm 3.

6

z

A 66

A1

A75

A102

B
1

B
6
9

B
9
6

B
6
6

C 1

C66

C
120

⊕

⊕

⊕

⊙

⊙⊕
⊕

⊕

⊙

⊕

⊕
⊕

⊕

⊙

1

Figure 1.1: Trivia-SC Stream Cipher

7

Modules of Trivia-SC

Load (K, IV) / ∗Key and IV Loading ∗ /
1 (A1, A2, A3, ..., A132)← (K1,K2,K3, ...,K128, 0, 0, 0, 0);
2 (C1, C2, C3, ..., C147)← (IV1, IV2, IV3, ..., IV128, 0, 0, ..., 0);
3 (B1, B2, B3, ..., B105)← (0, ..., 0, 1, 1, 1);

Update / ∗Update a Single Round ∗ /
4 t1 ← A66 ⊕A132 ⊕ (A130 ∧A131)⊕B96;
5 t2 ← B69 ⊕B105 ⊕ (B103 ∧B104)⊕ C120;
6 t3 ← C66 ⊕ C147 ⊕ (C145 ∧ C146)⊕A75;
7 (A1, A2, A3, ..., A132)← (t3, A1, A2, ..., A131);
8 (B1, B2, B3, ..., B105)← (t1, B1, B2, ..., B104);
9 (C1, C2, C3, ..., C147)← (t2, C1, C2, ..., A146);

KeyExt / ∗Extract a Key Bit ∗ /
10 z = A66 ⊕A132 ⊕B69 ⊕B105 ⊕ C66 ⊕ C147 ⊕ (A102 ∧B66) ;
11 Output z ;

StExt64 / ∗Extract 64 Key Bits ∗ /
12 Output A1, A2, · · · , A64;

Insert (T) / ∗ Insert T into State Registers ∗ /
13 (S1, S2, . . . , S|T|) = (S1, S2, . . . , S|T|)⊕ T ;

Algorithm 3: Modules of Trivia-SC. Here ∧ represents “and” between two bits

KeyExt64 / ∗Extract First 64 Bits from A After 64 Rounds ∗ /
1 t = A[3···66] ⊕A[69···132] ⊕B[6···69] ⊕B[42···105] ⊕ C[3···66] ⊕ C[84···147] ⊕

A[39···102] ∧B[3···66] ;
2 Output t ;

Update64 / ∗Update 64 Rounds ∗ /
3 t1 ← A[3···66] ⊕A[69···132] ⊕A[67···130] ∧A[68···131] ⊕B[33···96] ;
4 t2 ← B[6···69] ⊕B[42···105] ⊕B[40···103] ∧B[41···104] ⊕ C[57···120] ;
5 t3 ← C[3···66] ⊕ C[84···147] ⊕ C[82···145] ∧ C[83···146] ⊕A[12···75] ;
6 (A1, A2, A3, ..., A132)← (t3, A1, A2, ..., A68) ;
7 (B1, B2, B3, ..., B105)← (t1, B1, B2, ..., B41) ;
8 (C1, C2, C3, ..., C147)← (t2, C1, C2, ..., A83) ;

Algorithm 4: 64 bit modules of Trivia-SC. Here ∧ means that “bitwise-and”
of two 64 bit variables.

8

1.4.2 VPV-Hash

In this section we describe our second component, VPV-Hash [15] defined to
compute tag. It first applies Vandermonde based an error-correcing code, called
ECCode∗ and then applies Pseudo-dot-product and again Vandermonde-based
linear transformation.

ECCode

ECCoded is an error correcting code of systematic form having minimum dis-
tance d, when d = 4 and it expands (d − 1) elements, called checksum. Thus,
it is an optimum or MDS code in terms of minimal expansion. In our con-
structions, we use ECCoded for d = 4. Our error-correcting code has systematic
form and so it would be sufficient to describe the checksum elements. In other
words, given any input of `-tuple of field elements (x1, . . . , x`), the codeword is
(x1, . . . , x`, y1, . . . , yd−1) ∈ F`+d−12w where (y1, . . . , yd−1) = VMultw/(d−1)(x1, . . . , x`).
We also denote as

ECCoded(x1, . . . , x`) = (x1, . . . , x`, y1, . . . , yd−1). (1.1)

We recall the constant L = 232 to be the maximum number of field elements
can be fed as an input to ECCoded. In other words, we restrict ` for ECCoded
to be less than or equal to L. After this length the code may not have desired
minimum distance which we have smaller length as described in Proposition 4.1
in Chapter 3 later.

Arbitrary Length Error Correcting Code:

The above algorithm works for at most L = 232 blocks. We define an error
correcting code, denoted ECCode∗d,ck which works for any arbitrary length blocks
x ∈ F+

2w with an additional parameter ck ≤ L. We first sparse x as (X1, . . . , Xm)
where all Xi’s, possible except the last one, are ck-block elements. We call
these Xi’s chunk. More formally X ∈ Fck

264 is a complete chunk and X ∈ Fi264 ,
with i < ck is called an incomplete chunk. The last chunk may be incomplete.
ECCode∗d,ck first parse the input string then apply ECCoded individually.

Definition 1.1 We define ECCode∗d,ck for 0 < ck ≤ L as

ECCode∗d,ck(x) = (ECCoded(X1), . . . ,ECCoded(Xm−1), ECCoded(Xm)). (1.2)

We also define ECCode∗d,0(x) = ECCode∗d,L(x). Given Z ∈ {0, 1}∗, we denote `Z
by ‖ECCode∗d,ck(pad(Z))‖. Thus,

`Z =

{
‖pad(Z)‖+ (d− 1)d‖pad(Z)‖

L e if ck = 0

‖pad(Z)‖+ (d− 1)d‖pad(Z)‖
ck e if ck > 0.

9

Algorithm VPV-Hashck, 0 ≤ ck ≤ L = 232.

Input: x ∈ {0, 1}∗, (k1, . . . , k`x , k∗) ∈ {0, 1}w×`x × {0, 1}128

Output: Tag ∈ ({0, 1}128)t, t = d‖x‖L e if ck = 0, else t = d‖x‖ck e

1 x∗ = pad(x) ;
2 (x1, . . . , x`x) = ECCode∗4,ck(x

∗);
xi = (xi1 , xi2 , xi3 , xi4) ∈ F4

216 and ki = (ki1 , ki2 , ki3 , ki4) ∈ F4
216 , 1 ≤ i ≤ `x

3 for i = 1 to `x /* 32-bit Field Multiplication for `x Blocks */
4 gi=((xi1 ||xi3)⊕ (ki1 ||ki3))((xi2 ||xi4)⊕ (ki2 ||ki4));

5 c = d‖x‖ck e if ck > 0, c = 1 if ck = 0 ;

6 for i = 1 to c− 1
7 Ti = VMultword/4(g1, g2, . . . , gi(ck+3));

8 k∗ = k∗1 ||k∗2 ||k∗3 ||k∗4 where, k∗1 , k
∗
2 , k
∗
3 , k
∗
4 ∈ F2word ;

9 k∗∗2 = α2
32.k

∗
2 ;

10 Tc = VMultword/4(g1, g2, . . . , g`x)⊕ k∗1 ||k∗∗2 ||k∗3 ||k∗4 ;

11 return (T1, . . . ,Tc);

Kindly note that, VPV-Hashck(x, (k1, . . . , k`, k
∗)) = Tc.

Algorithm 5: VPV-Hashck: A ∆-universal hash for variable length binary
strings which would essentially help to prove the unforgeability of our authen-
ticated encryption.

10

1.5 TriviA-ck

The components needed to construct TriviA-ck have been defined in the previous
subsections.

1.5.1 TriviA-ck-[Auth-Enc]

Select(M,K, Len)
1 if |M | mod 64 = 0 then
2 K ′ = ((K1, · · · ,Kck), (Kck+4, · · · ,K2ck+3) · · · , (Kq(ck+3)+1, · · · ,KLen − 4));
3 else
4 K ′ = ((K1, · · · ,Kck), (Kck+4, · · · ,K2ck+3), · · · , (Kq(ck+3)+1, · · · ,KLen−3));
5 output K ′ ;

Algorithm 6: The Select subroutine. Here, q = d‖pad(M)‖
ck e − 1 if ck > 0 and

q = d‖pad(M)‖
232 e − 1 ck = 0

TriviA-ck-[Auth-Enc] authenticated encryption algorithm is described by Algo-
rithm 7. The algorithm uses the subroutine Select described in the Algorithm 6
to extract the key bits corrosponds to the padded message position (Excluding
checksum positions computed by ECCode∗) from the `M words.

We have already mentioned that ck = 0 denotes the final tag doesn’t contain
the sequence of intermediate tags. Hence TriviA-0 represents the presence of L
sized buffer and Tag is 32× 4 = 128 bit long.

Note that TriviA-L and TriviA-0 are not same. If the message has more than
L blocks then TriviA-L produces intermediate tags but TriviA-0 does not. If the
message has less than L blocks then both TriviA-L and TriviA-0 are functionally
same.

11

Algorithm TriviA-ck-[Auth-Enc]

Input: (M, D, (param, pub), Key) ∈ {0, 1}∗ ×{0, 1}∗ ×{0, 1}2×64 ×{0, 1}128

Output: (C, Tag) ∈ {0, 1}|M |×{0, 1}128t, t = 1 if ck = 0, o.w. t = d‖pad(M)‖
ck e.

1 N = param‖pub ;
2 Load(Key,N);
3 for i = 1 to 18 Update64 ;

4 for i = 1 to `D ;
5 ki = StExt64;

6 if i > (`D − 3) Then k
(i−`D−3)
D = KeyExt64;

7 Update64;

8 K = (k1, k2, . . . k`D) ;
9 K∗D = (k1D, k

3
D) ;

10 T = final-VPV-Hashck(D, (K,K
∗
D));

11 Insert(T);
12 for i = 1 to 18 Update64 ;

13 for i = 1 to `M ;
14 kCi = KeyExt64;
15 kTi = StateExt64;

16 if i > (`M − 3) Then k
(i−`M−3)
M = KeyExt64;

17 Update64;

18 KC = (kC1 , k
C
2 , . . . k

C
`M

) ;

19 KT = (kT1 , k
T
2 , . . . k

T
`M

) ;
20 K∗M = (k1M , k

3
M) ;

21 K = Select(M,KC , `M) ;
22 C = K[|M |−1···0] ⊕M ;
23 Tag = VPV-Hashck(M, (KT ,K∗M)) ;

24 return (C, Tag);

Algorithm 7: TriviA-ck-[Auth-Enc]

12

Update64 (18 T imes)

Update64

Update64

T

Update64 (18 T imes)

D

M

Update64

⊕

K∗
M

K∗
D

M

StExt64

StExt64

StExt64

StExt64

StExt64

StExt64

KeyExt64

Key N∗

V PVHash

V PVHash

Select

K∗
D

KeyExt64

KeyExt64

C

ITag1

ITag2
b

b

b

Tag

KeyExt64

b

Update64

StExt64

b
b

KeyExt64

Update64

StExt64KeyExt64

K∗
M

Update64

b

b

b

⊕
.

Figure 1.2: Circuit Diagraim for TriviA when messige size is not multiple of 64.
When it is multiple of 64 we need to run 4 StExt64 final calls instad of three as
we get 4 expanded message blocks whose ciphertext is not required.

13

1.5.2 TriviA-ck-[Ver-Dec]

In this section we will describe the verified-decryption algorithm TriviA-ck-[Ver-Dec].
The algorithm takes as input the (C, Tag) tuple in addition with D, param‖pub.
Let us describe how it works when ck = 0. As there is no intermediate tag
we run exactly same as encryption (we use `C instead of `M) to obtain the key
stream KC and then computes message as

K = Select(C,KC , `C)

M = K[|C|−1···0] ⊕ C

The verified-decryption algorithm when ck = 0, returns

• M if Tag = VPV-Hashck(M, (KT ,K∗M)).

• ⊥ (rejects and no message is released) otherwise.

Now we describe verified-decryption algorithm when ck > 0. We write Tag =

(Itag′1, · · · Itag′d r
ck e−1, Tag′ := Itag′d r

ck e), for r = d |C|+1
64 e. Using the similar manner

we compute Itagi for all 1 ≤ i ≤ d r
cke after decrypting the message M =

(M1, . . . ,Md r
ck e) where Mi represents the ith chunk of the message M . The

verified-decryption algorithm returns

• M if Itagi = Itag′i, for all 1 ≤ i ≤ d r
cke

• (M1, . . . ,Mi−1,⊥) (rejects and and the first (i − 1) message chunks are
released) if there exists any index i ≥ 1 such that Itagi 6= Itag’i but
Itagj = Itag’j , 1 ≤ j < i.

14

Chapter 2

Modular Description of
TriviA

This chapter describes the working principle of different algorithimic modules
of TriviA for processing a block of data. The description may be useful for
hardware implementation of TriviA. The modular algorithms give a rough idea
about how the different modules VPV-Hash, TriviA can be described in hardware
platform by the corresponding programming language. We describe three main
algorithms used in TriviA, namely VPV-Hash-Block described by Algorithm 8,
TriviA-Block described by Algorithm 9 and TriviA-Top-ck described by Algo-
rithm 10. VPV-Hash-Block algrithm describes how the VPV-Hashck algorithm
processes a data block. The algorithm is described below.

The above algorithm shows how VPV-Hashck processes a message or associ-
ated data block and updates the tag. isFinalChecksum indicates whether the
current block is in the final 3-checksum blocks. CScount denotes the index of
the checksum block inside the final 3-checksum blocks.

TriviA-Block algorithm describes how the TriviA algorithm processes a message
block or an associated data block or a checksum block. It uses the VPV-Hash-Block
algorithm to update the intermediate tag values at each of the clock cycle. The
algorithm also shows how the output keystreams and the state extracted key
streams are used at each of the clock cycles for encryption and authentication.
The algorithm is described below.

The signals isFinalChecksum, CScount are already described above. Signal
isAD indicates whether the currently processed blcok is a an associated data
block or a message block. isCS signal indicates whether the currently processed
block is a checksum block or not. Note that, depending on the length of the
associated data or message the ECCode∗4,ck algorithm expands the message and
produces a series of three checksum blocks after each of the chunk of ck blocks.

15

Algorithm VPV-Hash-Block

Input: x ∈ {0, 1}64,KV ∈ {0, 1}64,KT ∈ {0, 1}64,
InTag ∈ {0, 1}128, isFinalChecksum ∈ {0, 1},CScount ∈ {0, 1}2

Output: OutTag ∈ {0, 1}128

1 x = (x1, x2, x3, x4) ∈ F4
216 and kT = (k1, k2, k3, k4) ∈ F4

216

2 g=((x1||x3)⊕ (k1||k3))((x2||x4)⊕ (k2||k4));

3 InTag = (InTag1, InTag2, InTag3, InTag4) ∈ F4
232

4 InTag1 = InTag1 ⊕ g, InTag2 = α32.InTag2 ⊕ g,
InTag3 = α2

32.InTag3 ⊕ g, InTag4 = α3
32.InTag4 ⊕ g

5 If isFinalChecksum = 1 and CScount = 1 then
6 InTag1||InTag2 = InTag1||InTag2 ⊕KV

7 If isFinalChecksum = 1 and CScount = 3 then
8 InTag3||InTag4 = InTag3||InTag4 ⊕KV

9 OutTag = InTag
10 return OutTag;

Algorithm 8: VPV-Hash-block processing module

Thus, isFinalChecksum denotes whether the current block belongs to the final
three checksum blocks or not, where as isCS indicates whether the current block
belongs to any one of the three checksum blocks or not.

Both the modules VPV-Hash-Block and TriviA-Block process a data block.
However, they are needed to be controlled by a top module, which controls the
input signals to these algorithms. TriviA-Top-ck algorithm use to control the
isFinalChecksum, CScount, isAD and isCS signals and the values of the check-
sum counter CScount. It calls the submodule TriviA-Block along with the signal
values. Finally it produces the output ciphertext and the tag. The decryption
algorithm can be defined accordingly. The TriviA-Top-ck algorithm is described
below.

16

Algorithm TriviA-Block

Input: x ∈ {0, 1}64, isAD ∈ {0, 1}, isCS ∈ {0, 1}, isFinalChecksum ∈
{0, 1}, InTag ∈ {0, 1}128,CScount ∈ {0, 1}2

Output: (C ∈ {0, 1}64,OutTag ∈ {0, 1}128) if isCS = 0, OutTag ∈ {0, 1}128
if isCS = 1

1 K1 = KeyExt64,K2 = StExt64 ;

2 if isAD = 1 then /–associated data block–/
3 OutTag = VPV-Hash-Block(x,K1,K2, InTag, isFinalChecksum,CScount) ;

4 if isAD = 0 then /–message block–/
5 if isCS = 0 /–not a checksum block–/
6 OutTag = VPV-Hash-Block(x,K1,K2, InTag, 0, 0) ; /–K1 Ignored–/
7 C = x⊕K1 ; /–ciphertext block–/
8 if isCS = 1 /–checksum block–/
9 OutTag = VPV-Hash-Block(x,K1,K2, InTag, isFinalChecksum,CScount)

;

10 if isCS = 0 then
11 return (C,OutTag) ;
12 else
13 return OutTag ;

Algorithm 9: TriviA-block processing module

17

Algorithm TriviA-Top-ck

Input: (M, D, (param, pub), Key) ∈ {0, 1}∗ ×{0, 1}∗ ×{0, 1}2×64 ×{0, 1}128

Output: (C, Tag) ∈ {0, 1}|M |×{0, 1}128t, t = 1 if ck = 0, o.w. t = d‖pad(M)‖
ck e.

1 C = φ, T = 0, Tag = 0, isAD = 1, isCS = isFinalChecksum = CScount = 0,
L = 232;

2 chunk = L if ck = 0, chunk = ck if ck > 0 ;

3 (D1, · · · , D`D) = ECCode∗4,ck(D), (M1, · · · ,M`M) = ECCode∗4,ck(M) ;

4 Load(Key, (param‖pub)) ; /* Key and Nonce Load */

5 for i = 1 to 18 Update64 ; /* Initialize */

6 for i = 1 to `D /* AD and Checksum Block Processing */
7 if i > (`D − 3) then /* Final Checksum Blocks */
8 isCS = 1, isFinalCS = 1,CScount = i− `D − 3 ;
9 T = TriviA-Block(Di, isAD, isCS, isFinalChecksum,T,CScount) ;

10 Update64 ;

11 isAD = isCS = isFinalChecksum = CScount = 0;

12 Insert(T);

13 for i = 1 to 18 Update64 ; /* Reinitialize */

14 c = d‖x‖ck e if ck > 0, c = 1 if ck = 0 ;

15 for i = 1 to `M /* Message and Checksum Block Processing */
16 K1 = KeyExt64,K2 = StExt64 ;
17 if (i % (ck + 3)) > ck or (i % (ck + 3)) = 0 then /* Checksum Blocks */
18 isCS = 1 ;
19 if i > (`M − 3) then /* Final Checksum Blocks */
20 isFinalCS = 1,CScount = i− `M − 3 ;
21 Tag = TriviA-Block(Mi, isAD, isCS, isFinalChecksum,Tag,CScount) ;
22 if (i % (ck + 3)) = 0 then Tagi = Tag ; /* Intermediate Tags */
23 else
24 isCS = 0 ;
25 (Ci,Tag) = TriviA-Block(Mi, isAD, isCS, isFinalChecksum,Tag,CScount)

;
26 C = C||Ci ;
27 Update64 ;

28 Tagc = Tag ;

29 return (C, (Tag1,Tag2, · · · ,Tagc));

Algorithm 10: TriviA-Top-ck Encryption Module

18

Chapter 3

Security Goals

Recommended confidentiality for integrity for integrity for
parameter sets the plaintext the plaintext the associated data

TriviA-0 128 124 124
TriviA-128 128 124 124

Table 3.1: Table quantifying for all choices of ck including 0, the intended
number of bits of security with the assumption that nonce can repeat at most 232

times. Note that our recommendation choice is ck =128 and ck = 0. However,
for any other choices of ck, the security remains same. It is suggested to choose
depending on the application requirement.

We call the concatenation of the public message number and parameter nonce.
However we do not allow the repetition of nonce. Our constructions remain
secure as given in the above table, as long as nonce remains distinct over every
execution. Moreover, if nonce repeats then still we have but lesser bits of security
for privacy and integrity. The privacy and the integrity proof can be found in
Theorem 4.4 and Theorem 4.5.

19

Chapter 4

Security Analysis

4.1 Empirical Results

Cube Attack [4] is best known algebraic attack on reduced round version of
Trivium [1]. It has been tested for the updated versions of Trivia-SC with 1152
round initialization, no maxterms of size less than equal to 29 has been found.
Moreover for the 896 and 832 round initialization version we have havn’t found
any maxterm of size 29 or less. But for 768 round initialization version this
attack finds some linear superpoly with cube size 20.

Trivia-SC with 1152 initialization rounds has also been tested for the output
bit polynomial density. We have used Moebious Transform [7] to compute the
polynomial density. The polynomial has been restricted to 29 IV variables and
density of the monomials of degree less than 29 in the restricted polynomial
has been calculated. The result is given in the table 4.1. Trivia-SC with 960
initialization rounds has also been tested for the output bit polynomial density
and the result is given in the table 4.2. Output bit polynomial density for
Trivia-SC with 768, 832 and 896 rounds initialization is given in table 4.5 ,
table 4.4 and table 4.3 respectively.

It has been observed from the results that the output bit polynomial for
Trivia-SC with 896 or more rounds of initialization behaves as random polyno-
mial as each of the monomials of size less than 29 have density very close to 0.5
and the average density is also very close to 0.5. For 832 rounds of initialization
version, monomials of size less than 29 have density far from 0.5 but the average
density is close to 0.5. Thus, the polynomial may behave in a non random man-
ner for 832 or less rounds of initialization version. From the result, it is clear for
768 or less rounds of initialization version the stream cipher output behaves in
a non random manner as monomials of size less than 25 have density far from
0.5 as well as the average density is also far from 0.5.

We have also observed the behaviour of the polynomials corresponding to
the statebits of the internal state register of Trivia-SC. The statebit polynomial

20

Monomial Size 22 24 25 26 27 28
Density 0.499 0.499 0.498 0.500 0.495 0.586

Table 4.1: Trivia-SC with 1152 Rounds

Monomial Size 22 24 25 26 27 28
Density 0.501 0.498 0.496 0.498 0.500 0.379

Table 4.2: Trivia-SC with 960 Rounds

Monomial Size 24 25 26 27 28
Density 0.498 0.498 0.520 0.497 0.448

Table 4.3: Trivia-SC with 896 Rounds

Monomial Size 17 18 19 20 21 22 24 25 28
Density 0.494 0.481 0.456 0.407 0.320 0.206 0.033 0.003 0.000

Table 4.4: Trivia-SC with 832 Rounds

Monomial Size 13 15 16 17 18 20 21 22 24
Density 0.308 0.197 0.144 0.097 0.059 0.011 0.003 0.000 0.000

Table 4.5: Trivia-SC with 768 Rounds

density has been observed to be very similar to that of the output bit polynomial.
We are doing extensive analysis on the properties of statebit polynomials and
the results will be given later in more details.

The statistical tests on Trivia-SC were performed using the NIST Test Suite [19].
Tests were performed on the on the output bit-stream and no weaknesses were
found.

4.1.1 Security against Biryukov and Maximov Attack [12]

Trivia-SC is an extended version of Trivium, has been tested to output data
streams indistinguishable from independent and uniform random strings for
distinct inputs. Hence the ciphertext C is indistinguishable from one time pad
of plaintext P . The constrained (over 30 randomly chosen IV bits) output
polynomial over key and IV bits behaves as random polynomial for Trivia-SC
with 1152 round initialization.

Biryukov and Maximov Attack [12] in 2007 have constructed an attack on
Trivium which aims to recover the whole internal state with known keystream
by guessing one third of the internal state bits. Since the output bit equation

21

z = S66
A + S132

A + S69
B + S105

B + S66
C + S147

C has no nonlinearity the attacker can
easily get 22 linear equations from the output and the complexity of the attack
reduces to 2

θ
3−22, where θ is the internal state size. This leads to a key recovery

attack with complexity 296−22 = 274, where the key size is 80 bit.

The above attack can recover the internal state and thus the secret key with
complexity less than 2128 for Trivia-SC when the ouput bit equation has no
nonlinearity. The attack can obtain min{ 663 ,

69
3 ,

66
3 } i.e, 22 linear equations on

the statebits as mentioned in the attack. Hence the total complexity for the state
recovery which in tern leads to the key recovery attack reduces to 2

θ
3−22 = 2106,

where θ = 384 and the key size is 128 bit, making it an efficient distinguisher
for key recovery.

ScTriviA has removed this disadvantage of trivium by introducing nonlinearity
in the output bit equation. This resists the attacker from getting some linear
equation from the output bitstreams. Hence the complexity of the state recovery
attack which in tern led to key recovery attack is 2

θ
3 , where θ = 384 is the total

size of the internal state. Hence this attack does not help the attacker since the
key in Trivia-SC is 128 bit long.

4.2 Main Theorems

In this section, we prove the privacy and authenticity against all adversaries
which can make encryption queries with distinct nonces. Before we these prove
we first describe universal hash property of VPV-Hash.

4.2.1 ∆-Universal Property of VPV-Hash

Proposition 4.1 Let d ≤ 4. For any fixed ` ≤ L := 232, the output of ECCoded,
which is (x1, x2, · · · , x`, y1, y2, · · · yd−1) has minimum distance d. More pre-
cisely, for any fixed ` ≤ L, and x 6= x′ ∈ F`264 , the hamming distance between
ECCoded(x) and ECCoded(x

′) is at least d.

Proof. Proof for d = 4 is already given in [15].

Corollary 4.2 For any positive integer `, ECCode∗d,ck mapping `-block elements
to codewords, has minimum distance d. Moreover, the distance d can be observed
in a single chunk of codewords.

The proof of the above corollary is trivial from the above Proposition 4.1.

Remark 1 Note that two different length inputs of ECCode∗d can map to code-
words (with different length) having minimum distance just one. In other words,
one codeword can be simply prefix of the longer which has one extra block or field
element. To handle variable length inputs, we will process length independently
as described in Section 1.4.2.

22

Now we state that VPV-Hash is ∆-universal hash function. A keyed hash
function hk is called ε-∆U (universal) hash function if for all distinct inputs
x and x′ from input space and for all difference δ, the following δ-differential
probability

diffH,δ[x, x
′] := Pr

K
$←K[hK(x)− hK(x′) = δ] (4.1)

is at most ε. The notation “K
$← K” means that the random variable K is

uniformly distributed over the key space K.

Proposition 4.3 Suppose the keys for VPV-Hash is (K1, . . . ,K`) and (K∗1 , . . .,
K∗`) (used for hashing length). Moreover, assume that we only use K∗`−2, K∗`−1,
K∗` as described in TriviA. Then,

1. VPV-Hashck is 1/2128-∆-universal hash function for arbitrary length mes-
sages.

2. Even when the K∗i ’s are fixed for a length suitable for one message,
VPV-Hashck is 1/2124-∆-universal hash function.

Proof. As ECCode∗d,ck has distance d, we can apply the result from [15] to prove
the bounds for fixed length even for a fixed key corresponding to length. To
prove for variable length we need to argue in two cases. If the length key is not
leaked and different for two messages whose differential probability is computed
then due to full entropy of length key we will have 1/2128 differential probability.
When length key is revealed, we still have 64 bit entropy in length key due to
different lengths of two messages. This can happen when two padded message
differ by at least two blocks. Let us assume that the last 64 bit of 128 bit hash
output has the full entropy and so differential probability is 1/264 for these 64
bits. Now for the first 64 bits we can still use the entropy of hash key. Note that
we should have at least two blocks of 64-bit hash keys which is present in longer
messages. Due to 1/231-regular property of pseudo-dot product hash for those
keys (independent with length keys) we have 1/262 differential probability for
the the first 64 bits of hash. This completes the proof.

4.2.2 Privacy of TriviA

We give a particularly strong definition of confidentiality or privacy, one assert-
ing indistinguishability from random strings. Consider an adversary A who has
access of one of two types of oracles: a “real” encryption oracle or an “ideal” au-
thenticated encryption oracle. A real authenticated encryption oracle, FK , takes
as input (D, M) and returns (C, Tag) = FK(D, M). Whereas an ideal authenti-
cated encryption oracle $ returns a random string R with |R| = |M|+1 for every
fresh pair (D,M). Given an adversary A (w.o.l.g. we assume a deterministic
adversary) and an authenticated encryption scheme F , we define the (full)
privacy-advantage of A by the distinguishing advantage of A distinguishing
F from $. More formally,

Advpriv
F (A) := Adv$

F (A) = PrK [AFK = 1]− Pr$[A$ = 1].

23

Note that TriviA has similarity with AEAD-5 in [18]. So we adopt the proof
of the theorem stated in that paper. However, we have better bound due to
insertion of hash value T of nonce and associated data in the current state of
streamcipher. In [18], T (in [18], it was denoted by V in Table-4) is initialized
and the streamcipher is freshly started. So the collision probability for T is
about q2/2128. However, if we insert it and if we assume that the nonce can not
be repeated then the collision probability of state is about q2 × 2−384 which is
neglible. So we have our following modified theorem: Let A be an adversary
which can make q queries (including both encryption and decryption queries)
at an aggregate of total σ associated data and message blocks. Moreover, nonce
can not be repeated. Then the privacy-advantage of the adversary A against
TriviA is given by,

Theorem 4.4
Advpriv

TriviA(A) ≤ η +
qn

2128
.

where η denotes the maximum distinguishing advantage over all adversaries B
making at most σ block queries to Trivia-SC and running in time T0 (which is
about time of the adversary A plus some insignificant overhead).

4.2.3 Authenticity of TriviA

We say that an adversary A forges an authenticated encryption F if A outputs
(D, C) where FK(D, C) 6= ⊥ (i.e. it accepts and returns a plaintext), and A
made no earlier query (D, M) for which the F -response is C. It can make s
attempts to forge after making q queries. We define that A forges if it makes at
least one forges in all s attempts and the authenticity-advantage of A by

Advauth
F (A) = PrK [AFK forges].

We can argue similarly for authenticity also. Suppose adversary makes q
forgery attempts. After removing the collision probability for state and distin-
guishing advantage, i.e., η+ qn

2128 , we can consider differential probability for final
tag. Note that even though intermediate tag is leaked, the final tag is actually a
linear combination of all intermediate tag and so adversary must forge one of the
intermediate tag. For any such forging attempt, the differential probability of
intermediate tag (for matching nonce-associated data) is bounded by 2−124. So
we can have similar following theorem: Let A be an adversary which can make
q queries (including both encryption and decryption queries) at an aggregate of
total σ associated data and message blocks. The authenticity-advantage of the
adversary A against TriviA is given by,

Theorem 4.5
Advauth

TriviA(A) ≤ η +
qn

2128
+

q

2124
.

where η denotes the maximum distinguishing advantage over all adversaries B
making at most σ block queries to Trivia-SC and running in time T0 (which is
about time of the adversary A).

24

Chapter 5

Features

5.1 Main Features of the Cipher

5.1.1 Efficient and Nonce Misuse Resistant

One of the most important requirement for most of the nonce based authenti-
cated encryption scheme is the nonce should be distinct for every invocation.
Otherwise the privacy of those schemes can be compromised easily. Nonce can
be chosen as a counter value or random integer (such that repitation occurs with
negligible probability) to ensure the distinctness. But in practical scenario such
as lightweight applications or some other applications it is very challenging to to
ensure distinct nonces since in lightweight applications either it needs to store in
a nontamperable state or require some hardware source of randomness. Again
in case of GCM-AES [13] and CCM-AES [5] occurance of same nonce for two dif-
ferent invocations under the same key, but with distinct plaintext compromises
the confidentiality of the plaintexts as well as the authenticity and integrity
under the key. Hence Nonce Misuse Resistance is an important criteria for
designing the AE scheme.

TriviA permits nonce misuse with degradation in its security bounds, though
the tuple of nonce and associated data should be distinct. However, we recom-
mend not to repeat nonce because of this security degradation. Thus, TriviA
provides Nonce Misuse Resistance with degradation in security.

Various Nonce Misuse Resistant AE Schemes like SIV [17], BTM [8], HBS [9]
are deterministic in nature and they don’t use nonce. Instead they use distinct
IVs which are processed from the message and associated data with the require-
ment that the message and associated data tuple should be distinct. But these
constructions are less efficient since they are two pass construction (they have
to process the message twice), where one pass is reserved for encryption another
is for authentication. TriviA produce encryption key and authentication key in
one pass (after the intermediate state is produced) and message is processed
with this keys only once and hence it is more efficient.

25

5.1.2 Presence of Intermediate Tag

TriviA computes a sequence of intermediate tags before computing the final tag.
Since creating a single authentication tag requires additional memory to store
the complete message, TriviA creates a sequence of intermediate tags where each
tag in the sequence can be computed from the previous tag without storing all
messages. The final tag will be computed from the last intermediate tag from
the sequence.

This construction is useful for limited buffer implementation and has been
proven secure in this implentation structure. The main disadvantage of the
scheme is that the presence of sequence of tags makes the ciphertext, authen-
tication tag tuple a bit longer. Hence the user has been given the flexibilty to
make the computation of the intermediate tags optional. We would like to note
that intermediate tag in authenticated encryption has been described in [16].

5.1.3 Low Hardware Area in the Implementation

The base component for TriviA is the stream cipher Trivia-SC, which needs low
hardware requirement, since it is a variant of Trivium, which has low hardware
requirement. Beside this TriviA uses the same VPV-Hash [15] universal hash
for both the intermediate state value computation and the authentication tag
generation, hence both the operation uses the same circuit.

Moreover VPV-Hash universal hash requires low hardware area than that of
the hardware efficient Topelitz construction [11]. For example, VPV-Hashck uses
only one 32 bit multiplier to compute 128 bit tag, which is much better than
compared to that of Toeplitz construction which requires four 32 bit multiplier
to compute 128 bit tag. The figure below gives a abstract view of the circuit
required for VPV-Hash.

Clearly VPV-Hash requires two VHorner Circuit and one 32 bit multiplier.
The VHorner − n/d circuit executes the inner for loop of the VMultn/d algo-
rithm. The figure represents the circuit for the VPV-Hash Universal hash which
is run by TriviA-ck algorithm in two phases for internal state generation and
authentication tag generation respectively.

5.1.4 Advantage and Drawback of the Implementation

TriviA uses Trivia-SC to produce the encryption key, authentication key and
VPV-Hash to produce the authentication tag. Trivia-SC is very fast and it is par-
allelizable since it can process 64 bit at a time in a single clock cycle. VPV-Hash
also uses very low hardware area. We also generate a intermediate state from
the associated data and the nonce and the construction does not permit nonce
misuse. Moreover the scheme also produces intermediate tags in the limited
buffer scenario.

TriviA-ck uses two invocation of Trivia-SC, thus two initializations for Trivia-SC
both of 1152 rounds respectively occurs. But the main drawback of the scheme

26

64

256

256

16

160

64

32 Bit

Multiplier

K

K
′

3232

D/M D
′
/M

′

64

MUX

64

32

32

3232

32

32

VHorner32/4

VHorner64/3

32

Figure 5.1: Circuit for VPV-Hash

is that TriviA generates intermediate tag (optional) after processing a chunk of
data, size of the ciphertext and tag pair becomes larger.

5.2 Implementation Issues

The base component of TriviA for generating encryption and authentication key
is Trivia-SC. which is parallelizable upto 64 bit. This means the stream cipher
can produce upto 64 bit stream at a single clock cycle. This parallelizibilty
has been used by the KeyExt64 andUpdate64 subroutines. Moreover Trivia-SC
is an extended version of Trivium which performs good in both software and
hardware, thus depicts that Trivia-SC is one of the best candidate for generating
keystreams for encryption and authentication.

VPV-Hash uses ECCode error correcting code of minimum distance d, for
d = 4 to expand the data. It has been verified that ck ≤ L where L = 232. This
result says that the maximum possible size of a chunk can be L which is quite
large and ECCode can process more data in a single invocation.

VPV-Hash algorithm generates the authentication tag by using the hashkey
generated by Trivia-SC. It also produces a sequence of intermediate tags (op-
tional if the buffersize is limited) after processing a chunk/s of data. This re-
quires storing a chunk of message and then applying the VPV-Hash over the
chunk/s. This is done in the incremental manner. That is if the first interme-
diate tag ITag1 is computed for G1 then the next intermediate tag ITag2 will
be calculated for (G1, G2) where G1 = (g1, · · · g`) and G2 = (g1, · · · g2`) with
|gi| = 32 bits ∀i and ` = ck + 3. But this doesn’t require to store both the

27

chunks because the second intermediate tag can be computed by using G2 and
ITag1. Note that More precisely.

ITag1 = Vword,d,l ·G1

(5.1)

ITag2 = Vword,d,2l ·
(
G1 G2

)

= αl · Vword,d,l ·G1 + Vword,d,l ·G2

= αl · ITag1 + Vword,d,l ·G2

Where

Vword,d,l =

1 · · · 1 1 1
αl−1 · · · α2 α 1
α2(l−1) · · · α4 α2 1

... · · ·
...

...
...

α(l−1)(d−1) · · · α2(d−1) αd−1 1

The above description of intermediate tag generation confirms the optimiza-
tion of the buffer size. Hence it has great advantage for low-end devices (keeping
in mind that, block-wise adversaries are considered only when buffer size is lim-
ited implying low-end device).

5.3 Advantages Over AES-GCM

TriviA has the following advantages over AES-GCM :

• AES-GCM needs distincts nonce for every invocation under the same key
where in TriviA we can repeat nonce with degradation in its security. Note
that, we always need distinct nonce and associated data tuple for each
invocation.

• AES-GCM isn’t security against blockwise adaptive adversaries since it
leaks some partial information by decrypting a invalid ciphertext when
buffer is limited. TriviA has overcome this disadvantage by incorporating
a sequence of intemediate tags before the final tag.

• Our constructions has much higher bit security for authencity compare to
AES-GCM.

• AES-GCM uses a 128 bit field multiplier to process 128 bit data in a single
clock cycle. our construction uses a 32 bit field multiplier to process 64
bit data. Hence it can process 128 bit data by using two 32 bit field
multiplier. Clearly two 32 bit multiplier takes less hardware area than a
128 bit multiplier with a factor less than 1

2 .

28

Chapter 6

Changes from TriviA-v1

The changes made for the updated version is listed below.

1. Beside key and Nonce loading, the stream cipher state is loaded with 0
bits except for three positions, instead of all 1 bits.

2. Intermediate state is reduced from 160-bit to 128-bit and the encryption
queries should be made with distinct nonce.

3. PDP hash reorders the bits of input block and the key block for the 32-bit
field multiplication.

4. A 32-bit portion of the variable key is multiplied with a nonzero constant.

6.1 Changes in TriviA-SC Module

The version TriviA-v1 uses the stream cipher TriviA-SC, with all one binary string
loaded into the 384 internal state along with the 128-bit key and the 128-bit IV.
The updated TriviA-SC in the updated version of TriviA is initialized by loading
an 128-bit key and an 128-bit IV into the 384-bit initial state, and fixing all
remaining bits to 0, except for B103, B104, and B105. This updation is done
to resist slide attack on the stream cipher state, as all 1 constant is helps the
attacker to construct a valid start state with high probability after some rounds.

6.2 Change in TriviA Mode

The version TriviA-v1 generates a 160-bit intermediate state after the associ-
ated data processing, and this permits the relaxed nonce-respecting adversary
to make atmost 232 queries with the same nonce. The updated version of TriviA
recommends not to misuse nonce and reduces the intermediate state size from

29

160 to 128-bits. Moreover, the use of reduced 128-bit intermediate state will op-
timize the hardware area by preserving the security bound under the restriction
that the adversary can not repeat the nonce during the encryption queries.

This updation makes the circuit for TriviA more uniform, as the algorithm uses
VPV-Hashck to process both the message and the associated data (TriviA-v1 used
VPV-Hash5, ck to process the associated data for producing an 160-bit internal
state and uses VPV-Hash4, ck to process the message for producing an 128-bit
tag). This also reduces the hardware register requirement by 32-bit (from 160-
bit to 128-bit). It removes the overhead for switching between VPV-Hash5, ck

and VPV-Hash4, ck.

6.3 Changes in VPV-Hash Module

6.3.1 Changes in the Blockwise Hash Module PDP.

VPV-Hash module in Trivia-v1 uses PDP blockwise hash to process a message-key
pair (x = (x1, x2), k = (k1, k2)) by (x1⊕k1)(x2⊕k2). The updated version uses
a blockwise hash PDP∗ to process a message-key pair (x = (x1, x2, x3, x4), k =
(k1, k2, k3, k4)) ∈ (F4

216)2 in a different way as ((x1||x3) ⊕ (k1||k3))((x2||x4) ⊕
(k2||k4)). PDP∗ is same as PDP, except it reorders the message and key bits
before the 32-bit field multiplication.

This reordering actually increases the efficiency of the implementation of
Trivia in 32-bit platform. Note that, we can use Karatsuba algorithm for the
32-bit field multiplication. In the 32-bit platform, x1||x2 and k1||k2 are received
in the first clock cycle and x3||x4 and k3||k4 are received in the second clock
cycle. Thus, we can efficiently compute the 16-bit polynomial multiplications
(x1 ⊕ k1)(x2 ⊕ k2) and store this value along with (x1 ⊕ k1) and (x2 ⊕ k2) for
its use in the next clock cycle. These stored values are used in the second clock
cycle to get the 32-bit field multiplication output. Hence, this reordering makes
the 32-bit field multiplication efficient and faster in a 32-bit platform. Moreover,
we assume that the stream cipher produces random keystream corresponding
to PDP . Thus, reordering key bits does not change the security bound.

6.3.2 Changes in the Variable Key Addition Technique.

The VPV-Hash algorithm described in TriviA-v1 adds an input variable key K∗

to compute Tc. In the updated version of TriviA, the variable key is addition
function is same except the second 32-bit component of the variable key is
multiplied with a nonzero constant α2

32 before the addition. Thus, if K∗ =
(k∗1 ||k∗2 ||k∗3 ||k∗4) then the updated key will beK∗∗ = k∗1 ||α2

32.k
∗
2 |k∗3 ||k∗4 . Note that,

this technique removes the need to store the variable key in a separate register
(Described by Algorithm 8). Here, we can add each of the 64-bit components of
the variable key with the intermediate result in a online manner (add the 64-bit
key whenever it is extracted from the stream cipher). Note that, K∗ and K∗∗

follows the same distribution and the security bound will be preserved.

30

The above change is done to reduce the hardware footprint for TriviA. In
the hardware implementation for TriviA-v1, we need to store the variable key
K∗ = (K1

x,K
3
x) while processing a message x, as they are extracted at different

clock cycles by KeyExt64 (line 16, Algorithm 7) and they are also used in a
different clock cycle. The KeyExt64 algorithm extracts key in the iteration
`x − 1 (extracts K3

x) and `x − 3 (extracts K1
x) when the last block of x is not

full or in the iteration `x − 2 (extracts K3
x) and `x − 4 (extracts K1

x) when the
last block of x is full. The extracted key is finally added to the intermediate
value. We have observed that, if we extract the 64-bit key K1

x (in the iteration
`x − 3) and immediately add it with the intermediate result, then the second
32-bit component of K1

x will be propagated linearly towards the end of the tag
computation in the iteration `x with a factor of α2

32. In the final clock cycle,
we extract K3

x and add it with the final tag value. This is actually equivalent
to XORing K∗∗ with the intermediate value to produce Tc. Note that, this
technique makes XORing variable key online and eleminates the need to store
K∗∗.

31

Chapter 7

Design Rationale

TriviA-ck uses Trivia-SC and VPV-Hashck as the mathematical components and
it can be viewed as a integration of these two components. Trivia-SC is an
extended version of Trivium [1], which is one of the eStream finalists and can
be efficiently implemented both in software and hardware. The subroutines
of Trivia-SC are almost equivalent to Trivium except the non-linearity in the
output bit equation. We add this non-linearity to resist the attack in [12].
Hence Trivia-SC requires low hardware area and it is comparable to Trivium.
Moreover Trivia-SC gives equivalent software performance as Trivium since it
provides same 64 bit parallelism as in Trivium and can process 64 bit in a single
clock cycle.

We have also observed that after 896 round initializations the output bit
polynomial (over key and IV bits) behaves like random functions. Hence it
functions like one time pad when XORed with a message after 896 round ini-
talization. Thus TriviA-ck runs atleast 960 round initialization of Trivia-SC in
both the phases.

The second component of TriviA-ck is VPV-Hashck which is an efficient uni-
versal hash function with minimum number of multiplication. As we have men-
tioned earlier VPV-Hashck performs better than efficient Toeplitz construction
in terms of the number of multiplications and the hardware area.The number of
multiplications in VPV-Hashck is optimum [15] and it is 4 times less than that
of the Toeplitz construction.

VPV-Hash module in this updated version is same as that in the older version
TriviA-v1 except it reorders the bits of the key and input blocks during the
PDP∗ blockwise hash call. This technique makes the 32-bit field multiplication
in PDP∗ more efficient in a 32-bit platform. The reordering technique helps
to compute a 16-bit polynomial multiplication in a clock cycle and then use it
in the next clock cycle. More specifically, it process a message-key pair (x =
(x1, x2, x3, x4), k = (k1, k2, k3, k4)) ∈ (F4

216)2 in a different way as ((x1||x3) ⊕
(k1||k3))((x2||x4)⊕ (k2||k4)).

32

This reordering actually increases the efficiency of the implementation of
Trivia in 32-bit platform. In case of Karatsuba algorithm for the 32-bit field
multiplication, x1||x2 and k1||k2 are received in the first clock cycle and x3||x4
and k3||k4 are received in the second clock cycle. Thus, we can efficiently com-
pute the 16-bit polynomial multiplications (x1 ⊕ k1)(x2 ⊕ k2) and store this
value along with (x1 ⊕ k1) and (x2 ⊕ k2) for its use in the next clock cycle.
These stored values are used in the second clock cycle to get the 32-bit field
multiplication output. This make the 32-bit field multiplication more efficient
in a 32-bit platform.

Due to limited buffer implementation such as low end devices the decryption
algorithm has to release some part of the plaintext before the authentication
is done. This can cause some attacks on some constructions [10] since the
adversaries against authenticity called blockwise adaptive adversary would have
access of partial decryption oracles. To resist such attacks, we recommend to use
a sequence of intermediate tags (along with the final tag), generated in a such
a manner that during decryption, the plaintext computation is independent of
the intermediate tags.

We have generated a intermediate state using the associated data and Trivia-SC
generated bit streams. The generated intermediate state is then mixed inter-
nal state registers of Trivia-Sc and the final tag is produced. This technique
has been implemented to make the scheme nonce-misuse resistant. This is in-
deed an important requirement since schemes like AES-GCM [13], AES-CCM [5]
occurance of same nonce for two different invocations under the same key com-
promises confidentiality oe authenticity of the plaintext. TriviA-ck requires that
the nonce may be repeated but not the tuple of associated data and nonce.

The designers have not hidden any weaknesses in this cipher. One can analyze
the polynomials corresponding to state bits for the further analysis of weaknesses
in the cipher. Polynomial density for the polnomials corresponding to state bits
have been checked and found that they behave like random polynomials. Still
it may be a good area for analyzing the weaknesses in the cipher.

the designers have tried to exploit the dependency between state bits (from
StateExt64) and key streams (from KeyExt64) mathematically but couldn’t find
any. One may try to find dependencies between the state bits and keystream
bits and try to explore attacks.

33

Chapter 8

Intellectual Property

This cipher or any parts of the cipher, doesnt have an kind of patents. Existance
of any kind of patent on any parts of the cipher is not known to the submitters.
If any of this information changes, the submitters will promptly (and within at
most one month) announce these changes on the crypto-competitions mailing
list.

34

Chapter 9

Consent

The submitters hereby consent to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitters under-
stand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitters understand
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply be-
cause not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective
expert judgments of the committee members and are not subject to appeal.
The submitters understand that if they disagree with published analyses then
they are expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.

35

Bibliography

[1] Christophe De Cannire, Bart Preneel, “Trivium,” New Stream Cipher
Designs 4986 (2005), 244–266, The eSTREAM Finalists, Lecture Notes
in Computer Science, 2005. Citations in this document: §1.4.1, §4.1, §7.

[2] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, Mridul
Nandi, TriviA: A Fast and Secure Authenticated Encryption Scheme
(2015), CHES 2015, Lecture Notes in Computer Science, 9293, 2015. Ci-
tations in this document: §1.

[3] Avik Chakraborti, Mridul Nandi, TriviA-ck-v1 (2015). URL: http://

competitions.cr.yp.to/round1/triviackv1.pdf. Citations in this
document: §1.

[4] Itai Dinur, Adi Shamir, Cube Attacks on Tweakable Black Box Polyno-
mials (2009), 278–299, EUROCRYPT 2009, Lecture Notes in Computer
Science, 5479, 2009. Citations in this document: §4.1.

[5] Morris Dworkin, Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality (2004), NIST Spe-
cial Publication 800-38C, 2004. Citations in this document: §5.1.1, §7.

[6] Xinxin Fan, Guang Gong, Specification of the Stream Cipher WG-16
Based Confidentiality and Integrity Algorithms (2013). URL: http://

cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf.

[7] Pierre-Alain Fouque, Thomas Vannet, Improving Key Recovery to 784
and 799 rounds of Trivium using Optimized Cube Attacks (2013), FSE
2013, Lecture Notes in Computer Science, 8424, 2013. Citations in this
document: §4.1.

[8] Tetsu Iwata and Kan Yasuda, BTM : A Single-Key, Inverse-Cipher-Free
Mode for Deterministic Authenticated Encryption 5867 (2009), 313–330,
Selected Areas in Cryptography, Lecture Notes in Computer Science, 2009.
Citations in this document: §5.1.1.

[9] Tetsu Iwata and Kan Yasuda, HBS : A Single-Key mode of Operation
for Deterministic Authenticated Encryption 5665 (2009), 394–415, Fast

36

http://competitions.cr.yp.to/round1/triviackv1.pdf
http://competitions.cr.yp.to/round1/triviackv1.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf

Software Encryption, Lecture Notes in Computer Science, 2009. Citations
in this document: §5.1.1.

[10] Antoine Joux, Gwenlle Martinet and Fredric Valette, Blockwise-Adaptive
Attackers: Revisiting the (In)Security of Some Provably Secure Encryp-
tion Models: CBC, GEM, IACBC 2442 (2002), 17–30, CRYPTO, Lecture
Notes in Computer Science, 2002. Citations in this document: §7.

[11] Y. Mansour, N. Nissan, P Tiwari, The computational complexity of uni-
versal hashing (1990), 235-243, Twenty Second Annual ACM Symposium
on Theory of Computing, 1990. Citations in this document: §5.1.3.

[12] Alexandar Maximov, Alex Biryukov, Two Trivial Attacks on Trivium.
(2007), 36–55, Selected Areas in Cryptography, Lecture Notes in Computer
Science, 4876, 2007. Citations in this document: §4.1.1, §4.1.1, §7.

[13] David A. McGrew, John Viega, The Galois/Counter Mode of Opera-
tion (GCM) (2005). URL: http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/gcm/gcm-spec.pdf. Citations in this
document: §5.1.1, §7.

[14] Todd.K.Moon, Error Control Coding: Mathematical Methods and Algo-
rithms (2005), Wiley, 2005.

[15] Mridul Nandi, On the Minimum Number of Multiplications Necessary for
Universal Hash Constructions (2013), IACR Cryptology ePrint Archive
2013:574, 2013. Citations in this document: §1.4.2, §4.2.1, §4.2.1, §5.1.3,
§7.

[16] Josef Pieprzyk, Pawel Morawiecki, Parallel authenticated encryption with
the duplex construction, IACR Cryptology ePrint Archive 2013 (2013).
Citations in this document: §5.1.2.

[17] P. Rogaway and T. Shrimpton, Deterministic Authenticated-Encryption
: A Provable-Security Treatment of the Key-Wrap Problem 4004 (2006),
373–390, Advances in Cryptology - Eurocrypt, Lecture Notes in Computer
Science, 2006. Citations in this document: §5.1.1.

[18] Palash Sarkar, Modes of Operations for Encryption and Authentication
Using Stream Ciphers Supporting an Initialisation Vector, Cryptography
and Communications (2014). Citations in this document: §4.2.2, §4.2.2,
§4.2.2.

[19] National Institute of Standards and Technology. URL: http://csrc.

nist.gov/groups/ST/toolkit/rng/documentation_software.html.
Citations in this document: §4.1.

37

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

