
AEGIS:

A Fast Authenticated Encryption

Algorithm (v1.1)

Designers and Submitters: Hongjun Wu1, Bart Preneel2

1Division of Mathematical Sciences
Nanyang Technological University

wuhongjun@gmail.com
2Dept. Elektrotechniek-ESAT/COSIC

KU Leuven and iMinds, Ghent
bart.preneel@esat.kuleuven.be

2016.09.15

Contents

1 Introduction 3

2 Specification 5
2.1 Recommended parameter sets . 5
2.2 Operations, Variables and Functions 5

2.2.1 Operations . 5
2.2.2 Variables and constants 6
2.2.3 Functions . 6

2.3 AEGIS-128 . 7
2.3.1 The state update function of AEGIS-128 7
2.3.2 The initialization of AEGIS-128 7
2.3.3 Processing the authenticated data 8
2.3.4 The encryption of AEGIS-128 8
2.3.5 The finalization of AEGIS-128 8
2.3.6 The decryption and verification of AEGIS-128 9

2.4 AEGIS-256 . 9
2.4.1 The state update function of AEGIS-256 9
2.4.2 The initialization of AEGIS-256 10
2.4.3 Processing the authenticated data 10
2.4.4 The encryption of AEGIS-256 10
2.4.5 The finalization of AEGIS-256 11

2.5 AEGIS-128L . 11
2.5.1 The state update function of AEGIS-128L 11
2.5.2 The initialization of AEGIS-128L 12
2.5.3 Processing the authenticated data 12
2.5.4 The encryption of AEGIS-128L 12
2.5.5 The finalization of AEGIS-128L 13

3 Security Goals 14

4 Security Analysis 15
4.1 The security of the initialization 15
4.2 The security of the encryption process 16
4.3 The security of message authentication 17

1

4.3.1 Recovering key or state. 17
4.3.2 Internal collisions. 17

4.4 Other attacks . 18

5 Features 20

6 The Performance of AEGIS 21
6.1 Software Performance . 21
6.2 Hardware Performance . 22

7 Design Rationale 23
7.1 Reply to the Comments of CAESAR Committee Members 24

8 Changes in the Third Round Submission 25

9 No Hidden Weakness 26

10 Intellectual property 27

11 Consent 28

12 Acknowledgements 29

2

Chapter 1

Introduction

The protection of a message typically requires the protection of both confiden-
tiality and authenticity. There are two main approaches to authenticate and
encrypt a message. One approach is to treat the encryption and authentication
separately. The plaintext is encrypted with a block cipher or stream cipher, and
a MAC algorithm is used to authenticate the ciphertext. For example, we may
apply AES [20] in CBC mode [21] to the plaintext, then apply AES-CMAC [25]
(or Pelican MAC [7] or HMAC [22]) to the ciphertext to generate an authen-
tication tag. This approach is relatively easy to analyze since the security of
authentication and encryption can be analyzed almost separately. Bellare and
Namprempre have performed a detailed analysis of this type of authenticated
encryption for randomized encryption [2]. Another approach is to apply an
integrated authenticated encryption algorithm to the message; one can expect
that this is more efficient since authentication and encryption can share part of
the computation.

There are three approaches to design an integrated authenticated encryption
algorithm. The first approach is to use a block cipher in a special mode (the
block cipher is treated as a black box). The research on this approach started
about ten years ago [11, 14, 16]. There are now two NIST recommended modes
of operation for authenticated encryption, namely, CCM [23] and GCM [24].
OCB [27, 28, 17] is a widely known authenticated encryption mode, and OCB2
is an ISO standard. The second approach is to use a stream cipher (the stream
cipher is treated as a black box). The keystream is divided into two parts:
one part for encryption and another part for authentication. A typical example
of this approach is Grain-128a [1]. The third approach is to design dedicated
authenticated encryption algorithms. In this approach, a message is used to up-
date the state of the cipher, and message authentication can be achieved almost
for free. Two examples of this approach are Helix [10] and Phelix [29]. The at-
tack against Phelix [30] shows that it is unlikely that this type of authenticated
encryption algorithm can withstand nonce-reuse attacks if it requires much less
computation than a block cipher.

In this report, we propose a dedicated authenticated encryption algorithm

3

AEGIS following the third approach above. AEGIS is constructed from the
AES encryption round function (not the last round). AEGIS-128L uses eight
AES round functions to process a 32-byte message block (one step). AEGIS-128
processes a 16-byte message block with 5 AES round functions, and AEGIS-256
uses 6 AES round functions. The computational cost of AEGIS is about half
that of AES. AEGIS is very fast. On the Intel Sandy Bridge processor Core-i5,
the encryption speeds of AEGIS-128L, AEGIS-128 and AEGIS-256 are about
0.48 cpb, 0.66 cpb and 0.70 cpb, respectively. On the Intel Haswell processor
Core-i7, the encryption speeds of AEGIS-128L, AEGIS-128 and AEGIS-256 are
about 0.37 cpb, 0.60 cpb and 0.62 cpb, respectively. The speed of AEGIS-128L
is much faster than that of AES in counter (CTR) mode, and are about 8 times
that of AES encryption in CBC mode. AEGIS offers a very high security. As
long as the nonce is not reused, it is impossible to recover the AEGIS state
and key faster than exhaustive key search (under the assumption that a 128-bit
authentication tag is used, and the forgery attack is not successful by repeating
the attack). AEGIS is suitable for network communication since AEGIS can
protects a packet while leaving the packet header (associated data) unencrypted.

The specifications of AEGIS-128 and AEGIS-256 were published at SAC
2013 [31]. AEGIS-128L is introduced into this submission.

4

Chapter 2

Specification

The specification of AEGIS-128, AEGIS-256 and AEGIS-128L are given in this
chapter.

2.1 Recommended parameter sets

• Primary Recommendation: AEGIS-128L
128-bit key, 128-bit nonce, 1024-bit state, 128-bit tag
Reason: AEGIS-128L is the fastest AEGIS algorithm.
Use Case 2: High-performance applications

• Secondary Recommendation: AEGIS-128
128-bit key, 128-bit nonce, 640-bit state, 128-bit tag
Reason: The state of AEGIS-128 is smaller than that of AEGIS-128L.
Use Case 2: High-performance applications

• Tertiary Recommendation: AEGIS-256
256-bit key, 256-bit nonce, 768-bit state, 128-bit tag
Reason: AEGIS-256 uses 256-bit secret key.
Use Case 2: High-performance applications

2.2 Operations, Variables and Functions

The operations, variables and functions used in AEGIS are defined below.

2.2.1 Operations

The following operations are used in AEGIS:

5

⊕ : bit-wise exclusive OR
& : bit-wise AND
∥ : concatenation
⌈x⌉ : ceiling operation, ⌈x⌉ is the smallest integer not less than x

2.2.2 Variables and constants

The following variables and constants are used in AEGIS:

AD : associated data (this data will not be encrypted or decrypted).
ADi : a 16-byte associated data block (the last block may be a partial

block).
adlen : bit length of the associated data with 0 ≤ adlen < 264 .
C : ciphertext.
Ci : a 16-byte ciphertext block (the last block may be a partial block).
const : a 32-byte constant in the hexadecimal format; const = 00 ∥ 01 ∥

01 ∥ 02 ∥ 03 ∥ 05 ∥ 08 ∥ 0d ∥ 15 ∥ 22 ∥ 37 ∥ 59 ∥ 90 ∥ e9 ∥ 79 ∥
62 ∥ db ∥ 3d ∥ 18 ∥ 55 ∥ 6d ∥ c2 ∥ 2f ∥ f1 ∥ 20 ∥ 11 ∥ 31 ∥ 42 ∥
73 ∥ b5 ∥ 28 ∥ dd. This is the Fibonacci sequence modulo 256.

const0 : first 16 bytes of const.
const1 : last 16 bytes of const.
IV 128 : 128-bit initialization vector of AEGIS-128.
IV 256 : 256-bit initialization vector of AEGIS-256.
IV 256,0 : first half of IV 256 .
IV 256,1 : second half of IV 256 .
K128 : 128-bit key of AEGIS-128.
K256 : 256-bit key of AEGIS-256.
K256,0 : first half of K256 .
K256,1 : second half of K256 .
msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264 .
mi : a 16-byte data block.
P : plaintext.
Pi : a 16-byte plaintext block (the last block may be a partial block).
Si : state at the beginning of the ith step.
Si,j : j-th 16-byte element of the state Si . For AEGIS-128, 0 ≤ j ≤ 4;

for AEGIS-256, 0 ≤ j ≤ 5; for AEGIS-128L, 0 ≤ j ≤ 7.
T : authentication tag.
t : bit length of the authentication tag with 64 ≤ t ≤ 128.
u : u = ⌈adlen

128 ⌉ .
v : v = ⌈msglen

128 ⌉ .
uL : uL = ⌈adlen

256 ⌉ .
vL : vL = ⌈msglen

256 ⌉ .

2.2.3 Functions

The AES encryption round function (not the last round) is used in AEGIS:

6

AESRound(A,B): A is the 16-byte state, B is the 16-byte round key. This func-
tion mapping 2 16-byte inputs to a 16-byte output can be implemented efficiently
on recent x86 processors using the AES instruction m128 aesenc si128(A,

B), where A and B are two 128-bit integers m128i.

2.3 AEGIS-128

We first describe AEGIS-128 since its structure is the simplest among those
three algorithms. With a 128-bit key and a 128-bit initialization vector, AEGIS-
128 encrypts and authenticates a message. The associated data length and the
plaintext length are less than 264 bits. The authentication tag length is less
than or equal to 128 bits. We strongly recommend the use of a 128-bit tag.

2.3.1 The state update function of AEGIS-128

The state update function updates the 80-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate128(Si,mi) is given as follows:

Si+1,0 = AESRound(Si,4, Si,0 ⊕mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);

The state update function is shown in Fig. 2.1 :

Figure 2.1: The state update function of AEGIS-128. R indicates the AES encryption
round function without XORing the round key and w is a temporary 16-byte word.

2.3.2 The initialization of AEGIS-128

The initialization of AEGIS-128 consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

7

S−10,0 = K128 ⊕ IV 128;
S−10,1 = const1;
S−10,2 = const0;
S−10,3 = K128 ⊕ const0;
S−10,4 = K128 ⊕ const1;

2. For i = −5 to −1, m2i = K128; m2i+1 = K128 ⊕ IV 128;

3. For i = −10 to −1, Si+1 = StateUpdate128(Si,mi) ;

2.3.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that
if adlen = 0, the state will not be updated.

2. For i = 0 to ⌈adlen
128 ⌉ − 1, we update the state:

Si+1 = StateUpdate128(Si, ADi) ;

2.3.4 The encryption of AEGIS-128

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128
bits, and the padded full block is used to update the state. Note that for
the last block, only the original plaintext bits will be encrypted. Note that
if msglen = 0, the state will not be updated, and there is no encryption.

2. Let u = ⌈adlen
128 ⌉ and v = ⌈msglen

128 ⌉. For i = 0 to v− 1, we perform encryp-
tion and update the state:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate128(Su+i, Pi) ;

2.3.5 The finalization of AEGIS-128

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Su+v,3 ⊕ (adlen ∥ msglen), where adlen and msglen are rep-
resented as 64-bit integers.

8

2. For i = u+ v to u+ v + 6, we update the state:

Si+1 = StateUpdate128(Si, tmp) ;

3. We generate the authentication tag from the state Su+v+7 as follows:
T ′ =

⊕4
i=0Su+v+7,i ;

The authentication tag T consists of the first t bits of T ′.

2.3.6 The decryption and verification of AEGIS-128

The exact values of key size, IV size, and tag size should be known to the de-
cryption and verification processes. The decryption starts with the initialization
and the processing of authenticated data. Then the ciphertext is decrypted as
follows:

1. If the last ciphertext block is not a full block, decrypt only the partial
ciphertext block. The partial plaintext block is padded with 0 bits, and
the padded full plaintext block is used to update the state.

2. For i = 0 to v − 1, we perform decryption and update the state.

Pi = Ci ⊕ Su+i,1 ⊕ Su+i,4 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate128(Su+i, Pi) ;

The finalization in the decryption process is the same as that in the encryp-
tion process. We emphasize that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of AEGIS-128 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV). This requirement also applies to AEGIS-256.

2.4 AEGIS-256

In this section, we describe AEGIS-256. With a 256-bit key and a 256-bit
initialization vector, AEGIS-256 encrypts and authenticates a message. The
associated data length and the plaintext length are less than 264 bits. The au-
thentication tag length is less than or equal to 128 bits. We strongly recommend
the use of a 128-bit tag.

2.4.1 The state update function of AEGIS-256

The state update function updates the 96-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate256(Si,mi) is illustrated as follows:

9

Si+1,0 = AESRound(Si,5, Si,0 ⊕mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);
Si+1,5 = AESRound(Si,4, Si,5);

2.4.2 The initialization of AEGIS-256

The initialization of AEGIS-256 consists of loading the key and IV into the
state, and running the cipher for 16 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:
S−16,0 = K256,0 ⊕ IV 256,0;
S−16,1 = K256,1 ⊕ IV 256,1;
S−16,2 = const1;
S−16,3 = const0;
S−16,4 = K256,0 ⊕ const0;
S−16,5 = K256,1 ⊕ const1;

2. For i = −4 to −1,
m4i = K256,0 ;
m4i+1 = K256,1 ;
m4i+2 = K256,0 ⊕ IV 256,0 ;
m4i+3 = K256,1 ⊕ IV 256,1 .

3. For i = −16 to −1, Si+1 = StateUpdate256(Si,mi) ;

2.4.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that
if adlen = 0, the state will not be updated.

2. For i = 0 to ⌈adlen
128 ⌉ − 1, we update the state.

Si+1 = StateUpdate256(Si, ADi) ;

2.4.4 The encryption of AEGIS-256

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

10

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128
bits, and the padded full block is used to update the state. Note that for
the last block, only the original plaintext bits will be encrypted. Note that
if msglen = 0, the state will not be updated, and there is no encryption.

2. Let u = ⌈adlen
128 ⌉ and v = ⌈msglen

128 ⌉. For i = 0 to v− 1, we perform encryp-
tion and update the state:

Ci = Pi ⊕ Su+i,1 ⊕ Su+i,4 ⊕ Su+i,5 ⊕ (Su+i,2&Su+i,3) ;
Su+i+1 = StateUpdate256(Su+i, Pi) ;

2.4.5 The finalization of AEGIS-256

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Su+v,3 ⊕ (adlen ∥ msglen), where adlen and msglen are rep-
resented as 64-bit integers.

2. For i = u+ v to u+ v + 6, we update the state:

Si+1 = StateUpdate256(Si, tmp) ;

3. We generate the authentication tag from the state Su+v+7 as follows:
T ′ =

⊕5
i=0Su+v+7,i ;

The authentication tag T consists of the first t bits of T ′.

2.5 AEGIS-128L

In this section, we describe AEGIS-128L with 128-byte state. Its key, IV and
tag sizes are the same as that of AEGIS-128. AEGIS-128L encrypts and au-
thenticates a message with length less than 264 bits.

2.5.1 The state update function of AEGIS-128L

The state update function AEGIS-128L updates the 128-byte state Si with two
16-byte message blocks ma and mb . Si+1 = StateUpdate128L(Si,ma,mb) is
illustrated as follows:

11

Si+1,0 = AESRound(Si,7, Si,0 ⊕ma) ;
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4 ⊕mb) ;
Si+1,5 = AESRound(Si,4, Si,5);
Si+1,6 = AESRound(Si,5, Si,6);
Si+1,7 = AESRound(Si,6, Si,7);

2.5.2 The initialization of AEGIS-128L

The initialization of AEGIS-128L consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S−10,0 = K128 ⊕ IV128;
S−10,1 = const1;
S−10,2 = const0;
S−10,3 = const1;
S−10,4 = K128 ⊕ IV128;
S−10,5 = K128 ⊕ const0;
S−10,6 = K128 ⊕ const1;
S−10,7 = K128 ⊕ const0;

2. For i = −10 to −1, Si+1 = StateUpdate128L(Si, IV128,K128).

2.5.3 Processing the authenticated data

After the initialization, the associated data AD is used to update the state.

1. If the length of associated data is not a multiple of 256 bits, use 0 bits
to pad it to ⌈adlen

256 ⌉ × 256 bits, and the padded associated data is used to
update the state. Note that if adlen = 0, the state will not get updated.

2. For i = 0 to ⌈adlen
256 ⌉ − 1, we update the state.

Si+1 = StateUpdate128L(Si, AD2i, AD2i+1) ;

2.5.4 The encryption of AEGIS-128L

After the initialization, in every step of the encryption, two 16-byte plaintext
blocks P2i and P2i+1 are used to update the state Si to obtain the state Si+1,
and the plaintext blocks get encrypted.

12

1. If the size of the message is not a multiple of 256 bits, use 0 bits to pad it
to ⌈msglen

256 ⌉ × 256 bits.

2. Let uL = ⌈adlen
256 ⌉, vL = ⌈msglen

256 ⌉. For i = 0 to vL−1, we update the state
and perform encryption.

C2i = P2i ⊕ SuL+i,1 ⊕ SuL+i,6 ⊕ (SuL+i,2&SuL+i,3) ;
C2i+1 = P2i+1 ⊕ SuL+i,2 ⊕ SuL+i,5 ⊕ (SuL+i,6&SuL+i,7) ;
SuL+i+1 = StateUpdate128L(SuL+i, P2i, P2i+1) ;

2.5.5 The finalization of AEGIS-128L

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The message being used at this stage is part of the
state at the end of the encryption, together with the length of the associated
data and the length of the message.

1. Let tmp = SuL+vL,2 ⊕ (adlen ∥ msglen), where adlen and msglen are
represented as 64-bit integers.

2. For i = uL + vL to uL + vL + 6, we update the state:

Si+1 = StateUpdate128L(Si, tmp, tmp).

3. We generate the authentication tag from the state SuL+vL+7 as follows:
T ′ =

⊕6
i=0SuL+vL+7,i .

The authentication tag T is the first t bits of T ′ .

13

Chapter 3

Security Goals

The security goals of AEGIS are given in Table 3.1. In AEGIS, each key, IV
pair is used to protect only one message. If verification fails, the new tag and
the decrypted ciphertext should not be given as output.

Note that the authentication security in Table 3.1 includes the integrity
security of plaintext, associated data and nonce.

Table 3.1: Security Goals of AEGIS
Encryptiona Authenticationb

AEGIS-128L 128-bit 128-bit
AEGIS-128 128-bit 128-bit
AEGIS-256 256-bit 128-bit

aThe encryption security is under the assumption that the attacker could not
forge a message through repeated trials.

bThe authentication security is under the assumption that the secret key is
unknown to the attacker, and a 128-bit tag is used.

14

Chapter 4

Security Analysis

The following requirements should be satisfied in order to use AEGIS securely.

1. Each key should be generated uniformly at random.

2. Each key and IV pair should not be used to protect more than one mes-
sage; and each key and IV pair should not be used with two different tag
sizes.

3. If verification fails, the decrypted plaintext and the wrong authentication
tag should not be given as output.

If the above requirements are satisfied, we have the following security claims:

Claim 1. The success rate of a forgery attack is 2−t, where t is the tag size. If
the forgery attack is repeated n times, the success rate of a forgery
attack is about n× 2−t.

Claim 2. The state and key cannot be recovered faster than exhaustive key
search if the forgery attack is not successful. We recommend the use
of a 128-bit tag size for AEGIS in order to resist repeated forgery
attacks. (Note that with 128-bit tag, the state of AEGIS-256 can
be recovered faster than exhaustive key search if a forgery attack is
repeated for about 2128 times for the same key and IV pair.)

4.1 The security of the initialization

A difference in IV is the main threat to the security of the initialization of
AEGIS. A difference in IV would eventually propagate into the ciphertexts,
and thus it is possible to apply a differential attack against AEGIS. In AEGIS-
128, there are 50 AES round functions (10 steps) in the initialization. If there
is a difference in IV , the difference would pass through more than 10 AES
round functions. In AEGIS-256, there are 96 AES round functions (16 steps)

15

in the initialization. If there is a difference in IV , the difference would pass
through more than 16 AES round functions. In AEGIS-128L, there are 80 AES
round functions (10 steps) in the initialization. If there is a difference in IV , the
difference would pass through more than 20 AES round functions. Furthermore,
in order to prevent the difference in the state being eliminated completely in the
middle of the initialization, we inject the IV difference repeatedly into the state
(5, 8 and 10 times into the state of AEGIS-128, AEGIS-256 and AEGIS-128L,
respectively). We expect that a differential attack against the initialization
would be more expensive than exhaustive key search.

4.2 The security of the encryption process

We emphasize here that AEGIS encryption is a stream cipher with a large state
which is updated continuously. The attacks against a block cipher cannot be
applied directly to AEGIS. The state update function involves five AES round
functions in AEGIS-128, six AES round functions in AEGIS-256, and eight AES
round functions in AEGIS-128L. We should ensure that IV is not reused for
the same key; otherwise, the states of AEGIS can be recovered easily with ei-
ther known-plaintext attacks or chosen plaintext attacks. For example, if we
re-use an IV and inject a difference into Pi, the difference would propagate into
Ci+2, and part of the state can be attacked by analyzing the difference pair
(∆Pi,∆Ci+2). If an authenticated encryption algorithm is secure for re-used
IV s, we expect that such an algorithm can only be as fast as a block cipher,
as pointed out in [30]. This can be argued as follows: once an IV is re-used,
the attacks that are relevant for a block cipher can be applied to attack the state.

Statistical Attacks. If the IV is used only once for each key, it is impossible to
apply a differential attack to the encryption process. It is extremely difficult to
apply a linear attack (or correlation attack) to recover the secret state since the
state of AEGIS is updated in a nonlinear way. In general, it would be difficult
to apply any statistical attack to recover the secret state due to the nonlinear
state update function (the statistical correlation between any two states vanishes
quickly as the distance between them increases).

LEX [4, 5] is an AES-based stream cipher that generates keystream from
part of the state. We would like to mention here that AEGIS is not vulnera-
ble to the attack against LEX [8]. There is a fundamental reason why LEX is
vulnerable to a statistical attack while AEGIS is not: the round keys used in
LEX are fixed, while the whole state of AEGIS is updated continuously in a
nonlinear way.

Randomness of Keystream. Brice Minaud analyzed the bias of the keystream
of AEGIS in [19]. It shows that the biases of the keystreams of AEGIS-128 and
AEGIS-256 are 2−77 and 2−89, respectively. It requires 2140 and 2188 data to
distinguish the keystreams of AEGIS-128 and AEGIS-256, respectively.

16

4.3 The security of message authentication

There are two main approaches to attack a MAC algorithm. One approach is to
recover the secret key or secret state, another approach is to introduce/detect
an internal state collision. Besides these two approaches, when we analyze
the security of message authentication, we need to consider that the AEGIS
encryption may affect the security of message authentication.

4.3.1 Recovering key or state.

From Sect. 4.1, we expect that the secret key cannot be recovered faster than
exhaustive search by attacking the initialization. From Sect. 4.2, we expect
that the state cannot be recovered faster than exhaustive search by attacking
the encryption process if the IV is used only once. Similarly, we expect that
the state cannot be recovered faster than exhaustive search by attacking the tag
generation process if IV is not reused.

An attacker can still inject a difference into the state in the tag verification
process and obtain the decrypted plaintext if the forgery attack is allowed to be
repeated for multiple times for the same key and IV pair. In a forgery attack,
the decrypted plaintext is known to the attacker with probability 2−t (if the
verification is successful). It becomes possible to recover the state if the forgery
attack is repeated many times. We recommend the use of 128-bit tag so that
recovering the state requires at least 2128 forgery attempts.

The security level of the AEGIS-256 state is only 128 bits with a 128-bit tag
(if we consider that a forgery attack becomes successful). However, we believe
that repeating the forgery attack for around 2128 times to recover a state is
impractical.

4.3.2 Internal collisions.

A powerful attack against MAC is to introduce and detect internal collisions.
A general approach based on the birthday attack was given by Preneel and
van Oorschot [26]: an internal collision can be detected after a key is used to
generate the authentication tags of about 2n/2 chosen messages, where n is
the state size and tag size in bits. The internal collision can be exploited to
forge the tags of new messages. The birthday attack was later applied to other
MAC algorithms [32]. AEGIS resists this type of attacks due to its large state
size. Another approach to introduce internal collision is through differential
cryptanalysis. Suppose that the difference cancellation in the state occurs with
probability 2−a; then we can detect an internal collision after a secret key is used
to generate the tags of those 2a message pairs. The resulting internal collision
can be used to forge the tags of new messages.

An attacker can inject a difference into the state in the decryption and tag
verification process by modifying the ciphertext. However, AEGIS provides a
large security margin against this type of attack since differences are introduced
into a large state. The security of AEGIS against forgery attack is stronger than

17

that of Pelican MAC when the message or the tag gets modified. In Pelican
MAC, four AES round functions are used to process each 16-byte message block;
while in AEGIS, at least four AES round functions are used. Furthermore, the
state size of AEGIS-128 is at least 5 times that of Pelican MAC, and it becomes
much more difficult to eliminate the difference in the large state. A simple
description of our analysis is given below. We notice that the first difference
being injected into ciphertext would pass through five round functions without
being affected by another ciphertext difference in AEGIS-128, and there are at
least 26 active Sboxes being involved. If we consider only a single differential
path, the probability of the difference cancellation in the state is less than
2−6×26 = 2−156. Thus generating a state collision in the verification process
requires at least 2156 modifications to the ciphertext. Note that the differential
attack here is slightly different from that against block cipher since the AEGIS
verification process would guarantee that each forgery attack generates only
one useful difference pair (the failed forgery attacks would not give outputs).
It shows that AEGIS-128 is strong against forgery attack when the ciphertext
or tag gets modified. Multiple differential paths would not have a significant
effect on the forgery attack here, since each differential path has to cancel its
own differences being left in the state. Attacking AEGIS-256 is more difficult
since it involves a larger state and more AES round functions. The security of
AEGIS-128L against forgery attack is slightly weaker than AEGIS-128 since a
difference passes through at least four AES rounds. However, a forgery attack
against AEGIS-128L still requires at least 2150 modifications to the ciphertext.
Note that our analysis above is very conservative since when a difference passes
through five AES round functions, the difference would be injected into each
16-byte element in the state.

We now analyze whether the noninvertible AEGIS state update function
affects the security of the authentication of AEGIS. In AEGIS, a difference in
the state could be eliminated even if there is no difference being introduced
to cancel it. However, it would only happen if the difference in every 16-byte
element is able to eliminate the difference in the next element after passing
through an AES round function. It means that at least 26 active Sboxes are
involved in this difference elimination process in AEGIS-128, and generating
these particular differences in the state involves more than 26 additional active
Sboxes. We consider that this type of weak state difference has a negligible
effect on the security of the authentication of AEGIS.

The analysis given above shows that the authentication of AEGIS is very
strong.

4.4 Other attacks

There are weak states in AEGIS. In one type of weak states, all the 16-byte
elements in a state are equal: consequently all the 16-byte elements in the
next state would be equal (if the message block is 0). However, there are only
2128 such states, so this type of weak state appears with probabilities 2−512,

18

2−640 and 2−896 for AEGIS-128, AEGIS-256 and AEGIS-128L, respectively. In
another type of weak states, the four columns in each 16-byte element are equal
and every 16-byte element has such a property: in this case, the same property
would appear in the next state (if the message block also has such a property).
However, there are only 232×5 = 2160 such states in AEGIS-128, 232×6 = 2192

such states in AEGIS-256, 232×8 = 2256, so we expect that this type of weak
state appears with probabilities 2−480, 2−608 and 2−768 for AEGIS-128, AEGIS-
256 and AEGIS-128L, respectively.

19

Chapter 5

Features

• Efficient. On the latest Intel Haswell microprocessors the speed of AEGIS-
128L is more than twice that of AES-GCM.

– The computational cost of AEGIS is less than half that of AES-GCM.

– Authentication is achieved almost for free.

– Encryption/decryption share the same algorithm.

– Parallel AES round functions at each step, suitable for fast software
implementation using AES-NI, and suitable for fast hardware imple-
mentation.

• Secure. AEGIS provides 128-bit authentication security, stronger than
AES-GCM.

20

Chapter 6

The Performance of AEGIS

6.1 Software Performance

To process a 16-byte message block, AEGIS-128L, AEGIS-128 and AEGIS-256
use four, five and six AES round functions, respectively. In AEGIS, the critical
path for processing a 16-byte message block is about one AES round. The com-
putational cost of AEGIS is about half that of AES for each message block, thus
the speed of AEGIS is about twice that of AES when they are implemented using
table lookups. For implementations based on bit-slicing techniques (e.g. Käsper
and Schwabe [15]), the difference is smaller as AEGIS-128 and AEGIS-256 allow
for 5 and 6 parallel AES operations rather than 8; but the speed of AEGIS-128L
is still about twice that of AES-128. AEGIS is very efficient when it is imple-
mented using the AES new instructions (AES-NI) which are available on some
x86 processors since 2010.

The following software performance data of AEGIS on the Intel Skylake micro-
processor (Core i5-6600) is from Supercop-2016-08-06 [9].

Table 6.1: The speed comparison (in cycles per byte) for different plaintext
length on Intel Skylake. EA means encryption-authentication; DV means
decryption-verification. The length of associated data is zero.

Very Long 1536B 64B

AEGIS-128L(EA) 0.25 0.34 2.50
AEGIS-128L(DV) 0.25 0.37 3.16
AEGIS-128(EA) 0.43 0.51 2.22
AEGIS-128(DV) 0.41 0.49 2.41
AEGIS-256(EA) 0.47 0.59 3.19
AEGIS-256(DV) 0.46 0.57 3.31

21

6.2 Hardware Performance

We implemented AEGIS-128L in VHDL. Our implementation targets high through-
put, so eight AES round functions are implemented. On the FPGA Xilinx Virtex
7, AEGIS-128L is implemented with 2424 slices (8815 LUTs), and it runs at the
speed of 78.3 Gbits/second. More implementations of AEGIS will be available
in the third round.

Debjyoti Bhattacharjee and Anupam Chattopadhyay applied various throughput-
area improvement techniques to implement AEGIS-128 on 65 nm ASIC [3].
Their results show that AEGIS-128 reaches the high throughput of 121.07
Gbits/second with 172.72 KGE; AEGIS-128 reaches the low-area of 18.72 KGE
at the speed of 1.32 Gbits/second.

22

Chapter 7

Design Rationale

The goal of AEGIS is to achieve high performance and strong security. To
achieve high performance, we use the AES round function which is now imple-
mented on the latest Intel and AMD microprocessors as Intel AES New Instruc-
tions (AES-NI). AES-NI is very efficient for achieving diffusion and confusion
on a modern microprocessor. In the design of AEGIS, we use several parallel
AES round functions in each step so as to use most of the pipeline stages in
AES instruction. AES instructions are implemented on Intel Westmere (06 25H,
06 2CH, 06 2FH) microprocessors with a three-stage pipeline (6 clock cycles),
and are implemented on Intel Sandy Bridge (06 2AH) microprocessors with an
eight-stage pipeline (8 clock cycles) [12]. Using several parallel AES round func-
tions in AEGIS significantly improves its performance by utilizing the pipeline
of AES-NI.

To achieve strong encryption security, we ensure that the IV difference is
randomized at the initialization stage, and the state cannot be recovered from
the ciphertext. There are at least 10 steps in the initialization of AEGIS, so we
expect that the initialization of AEGIS is strong. To ensure that the state cannot
be recovered from the ciphertext faster than brute force attack, we ensure that
at least 20, 30 and 24 AES round functions are involved in the state recovery
attack against AEGIS-128, AEGIS-256 and AEGIS-128L, respectively.

To achieve strong authentication security, we ensure that any difference be-
ing injected results in a particular difference with sufficiently small probability
so that it is difficult to launch a forgery attack. Our design is partly moti-
vated by the design of Pelican MAC [7]. In Pelican MAC, a difference would
pass through 4 AES round functions before meeting with another difference, so
at least 25 active Sboxes are involved. The security proof against differential
forgery attack is very simple for Pelican MAC (however, there is a birthday type
attack against Pelican MAC due to its 128-bit size [32]). In AEGIS, the first
difference in the state would pass through at least 4 AES round functions be-
fore being affected by another difference. In addition, when a difference passes
through AES round functions, the differences are injected into at least four el-
ements in the state, so it becomes more difficult to eliminate the state difference.

23

7.1 Reply to the Comments of CAESAR Com-
mittee Members

The CAESAR committee members gave very helpful comments on AEGIS. In
the following, we provide explanation to some comments.

1. The purpose of using constants in the initialization is to resist the attacks
which exploit the symmetric structure of AEGIS. There are two symmetric
structures in AEGIS: the symmetric property in the AES round function
(for example, we may rotate the four columns, i.e., the ith column is
shifted to the ((i + 1)mod4)th column); the symmetric property of the
overall state (for example, in AEGIS-128L, we can shift the ith 128-bit
word in the state to the ((i+ 1)mod8)th word.

2. We did not use 256-bit key directly in AEGIS-128L due to the concern of
guess-and-determine attack on AEGIS.

3. In the finalization, it is a good idea to generate the tag in a similar way
as generating keystream (as suggested by the committee member). In
AEGIS, we generate the tag in a linear way from the state (different from
the keystream generation) is to get a more random tag. We designed
AEGIS mainly targeting the microprocessors with AES instructions. In
software implementation, the performance of these two approaches are
almost the same.

24

Chapter 8

Changes in the Third
Round Submission

There is no tweak to AEGIS.

We made the following changes to the document:

1. We cited an reference [19] in Section 4.2. The randomness of the keystream
of AEGIS is analyzed in [19].

2. We updated the software performance on Intel microprocessor Skylake
according to the Supercop measurement data in Section 6.1.

3. We added the hardware performance data in Section 6.2.

4. We provided some explanation to some comments given by the CAESAR
committee members.

25

Chapter 9

No Hidden Weakness

We state here that the designer/designers have not hidden any weaknesses in
this cipher.

26

Chapter 10

Intellectual property

We state that AEGIS is not patented and it is freely available for all applications.
If any of this information changes, the submitter will promptly (and within at

most one month) announce these changes on the crypto-competitions mailing
list.

27

Chapter 11

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.

28

Chapter 12

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments,
especially the idea of fully utilizing the 8-stage pipeline of AES-NI on the Sandy
Bridge processor to achieve higher performance by increasing the state size. We
would also like to thank the anonymous CAESAR committee members for their
helpful comments. We would like to thank Tao Huang for implementing AEGIS
in VHDL. And we would like to thank Ivica Nikolic for analyzing the security
of the finalization part of AEGIS-128L. The first author has been funded by the
NAP grant of the Nanyang Technological University. The second author has
been funded in part by the Research Council KU Leuven (GOA TENSE) and
the FWO Flanders.

29

Bibliography

[1] M. Ågren, M. Hell, T. Johansson, W. Meier. Grain-128a: A New Version of
Grain-128 with Optional Authentication. International Journal of Wireless
and Mobile Computing 2011, Vol. 5, No. 1 pp. 48–59.

[2] M. Bellare and C. Namprempre. Authenticated Encryption: Relations
among notions and analysis of the generic composition paradigm. Advances
in Cryptology – Asiacrypt 2000, LNCS 1976, pp. 531–545.

[3] D. Bhattacharjee and A. Chattopadhyay. Efficient Hardware Accelerator
for AEGIS-128 Authenticated Encryption. International Conference on In-
formation Security and Cryptology – ICISC 2015, pp. 385–402.

[4] A. Biryukov, The Design of a Stream Cipher LEX, Selected Areas in Cryp-
tography – SAC 2006, LNCS 4356, pp. 67–75.

[5] A. Biryukov. The Tweak for LEX-128, LEX-192, LEX-256.
ECRYPT stream cipher project report 2006/037. Available at
http://www.ecrypt.eu.org/stream.

[6] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser.
ALE: AES-Based Lightweight Authenticated Encryption. Fast Software
Encryption – FSE 2013.

[7] J. Daemen, V. Rijmen. The Pelican MAC Function. IACR Cryptology
ePrint Archive 2005: 88 (2005).

[8] O. Dunkelman, N. Keller. A New Attack on the LEX Stream Cipher. Ad-
vances in Cryptology – Asiacrypt 2008, LNCS 5350, pp. 539–556.

[9] eBAEAD: ECRYPT Benchmarking of Authenticated Ciphers. Available at
https://bench.cr.yp.to/results-caesar.html.

[10] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks and T. Kohno.
Helix, Fast Encryption and Authentication in a Single Cryptographic Prim-
itive. Fast Software Encryption – FSE 2003, LNCS 2887, pp. 330–346.

[11] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. Fast Software Encryption –
FSE 2001, LNCS 2355, pp. 92–108.

30

[12] Intel. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. Available at http://www.intel.com/content/dam/doc/manual/64-ia-
32-architectures-optimization-manual.pdf

[13] G. Jakimoski and S. Khajuria. ASC-1: An Authenticated Encryption
Stream Cipher. Selected Area in Cryptography – SAC 2011, LNCS 7118,
pp. 356–372.

[14] C. Jutla, Encryption modes with almost free message integrity. Advances
in Cryptology – EUROCRYPT 2001, LNCS 2045, pp. 529–544.

[15] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM.
Cryptographic Hardware and Embedded Systems – CHES 2009, LNCS 5747,
pp. 1–17.

[16] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes
of operation. Fast Software Encryption–FSE 2000, LNCS 1978, pp. 284–
299.

[17] T. Krovetz, P. Rogaway. The Software Performance of Authenticated-
Encryption Modes. Fast Software Encryption – FSE 2011, LNCS 6733,
pp. 306–327.

[18] D. McGrew and J. Viega. The security and performance of the Ga-
lois/Counter Mode (GCM) of operation. Progress in Cryptology – IN-
DOCRYPT 2004, LNCS 3348, pp. 343–355.

[19] B. Minaud. Linear Biases in the AEGIS Keystream. Selected Area in Cryp-
tography – SAC 2014, pp. 290–305.

[20] National Institute of Standards and Technology. Advanced Encryption
Standard. FIPS 197.

[21] National Institute of Standards and Technology. Recommendation for Block
Cipher Modes of Operation. NIST special publication 800-38A, 2001 Edi-
tion.

[22] National Institute of Standards and Technology. The Keyed-Hash Message
Authentication Code (HMAC). FIPS PUB 198.

[23] National Institute of Standards and Technology. Recommendations for
Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality. NIST special publication 800-38C, May 2004.

[24] National Institute of Standards and Technology. Recommendations for
Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. NIST special publication 800-38D, November 2007.

[25] National Institute of Standards and Technology. Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication. NIST
special publication 800-38B.

31

[26] B. Preneel, P. C. van Oorschot. On the Security of Iterated Message Au-
thentication Codes. IEEE Transactions on Information Theory 45(1), 188–
199 (1999).

[27] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of opera-
tion for efficient authenticated encryption. ACM Trans. on Information and
System Security, 6(3), pp. 365–403, 2003. Earlier version, with T. Krovetz,
in CCS 2001.

[28] P. Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. Advances in Cryptology – ASIACRYPT
2004, LNCS 3329, pp. 16–31.

[29] D. Whiting, B. Schneier, S. Lucks and F. Muller. Phelix: Fast Encryp-
tion and Authentication in a Single Cryptographic Primitive. eSTREAM,
ECRYPT Stream Cipher Project Report 2005/027.

[30] H. Wu, B. Preneel. Differential-Linear Attacks Against the Stream Cipher
Phelix. Fast Software Encryption – FSE 2007, LNCS 4593, pp. 87–100.

[31] H. Wu, B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm.
Selected Area in Cryptography – SAC 2013.

[32] Z. Yuan, W. Wang, K. Jia, G. Xu, X. Wang. New Birthday Attacks on
Some MACs Based on Block Ciphers. Advances in Cryptology – CRYPTO
2009, LNCS 5677, pp. 209–230.

32

