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1 Specification
OTR, which stands for Offset Two-Round, is a blockcipher mode of operation to realize an authenticated
encryption with associated data (AEAD), proposed by Minematsu [25, 26]. Our CAESAR submission,
AES-OTR, is an instantiation of OTR based on AES blockcipher with an additional version for associated
data processing.

1.1 Parameters

AES-OTR has the following four parameters.

• Key length : 16 bytes (128 bits), 24 bytes (192 bits), 32 bytes (256 bits).
• Nonce length : 1 byte (8 bits) to 15 bytes (120 bits).
• Tag length : 4 bytes (32 bits) to 16 bytes (128 bits).
• Associated Data Processing (ADP) : Parallel (p) or Serial (s).

1.2 Recommended Parameter Set

• Primary recommended parameter set aes128otrpv1 : 16-byte key for AES-128, 12-byte nonce,
16-byte tag, and parallel ADP.
• Secondary recommended parameter set aes128otrsv1 : 16-byte key for AES-128, 12-byte nonce,
16-byte tag, and serial ADP.
• Third recommended parameter set aes256otrpv1 : 32-byte key for AES-256, 12-byte nonce, 16-
byte tag, and parallel ADP.
• Fourth recommended parameter set aes256otrsv1 : 32-byte key for AES-256, 12-byte nonce,
16-byte tag, and serial ADP.

All parameters are targeted for Use Case 2 (High-performance applications). They will also perform
well on some (but not all) lightweight applications.

1.3 Algorithm

■Basic Notations. Let {0, 1}∗ and {0, 1}8∗ be the sets of all finite-length binary strings and all finite-
length byte strings, both including the empty string ε. Here {0, 1}8∗ ⊂ {0, 1}∗. For binary string

X ∈ {0, 1}∗, its bit length is denoted by |X|. We define |X|a
def
= max{⌈|X|/a⌉, 1}. For X = ε we have

|X|a = 1 for any a ≥ 1 and |X| = 0. For any X,Y ∈ {0, 1}∗ we write X∥Y or simply XY to denote
the concatenation of X and Y . A sequence of a zeros is denoted by 0a. For X ∈ {0, 1}∗, we write
(X[1], . . . , X[x])

n← X to denote the n-bit block partitioning of X. That is, X[1]∥X[2]∥ . . . ∥X[x] = X
where x = |X|n, and |X[i]| = n for i < x and |X[x]| ≤ n. If X = ε we have X[1]

n← X with X[1] = ε, for
any n ≥ 1. The sequence of first c bits of X ∈ {0, 1}∗ is denoted by msbc(X). We have msb0(X) = ε for
any X. For X ∈ {0, 1}∗ with 0 ≤ |X| < n, X denotes the 10∗ padding written as X∥10n−|X|−1. When
|X| = n, we have X = X, and when X = ε we have X = 10n−1.
Unless otherwise stated, we assume a variable n to mean 128. We also assume EK to mean AES

encryption function with key K, for some fixed |K| ∈ {128, 192, 256}. For X,Y ∈ {0, 1}n, Y = EK(X)
means that Y is the ciphertext obtained by AES encryption for plaintext X with key K. We may simply
write E to denote EK . When we write Pr[X : Y], it means the probability of event Y defined over the
experiment X. We may omit X if it is obvious. If adversary A accesses an oracle O and returns a value
x as a final output, we write AO ⇒ x to denote the corresponding event. For non-negative integer x, let
n2s(x, n) (number to string) denote the standard n-bit encode of x. For example, n2s(11, 5) = 01011.
The specification of our scheme assumes big endian.
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■Doubling. We may view X ∈ {0, 1}n as a coefficient vector of the polynomial of GF(2n). Following
Rogaway [29], by writing 2X we mean the multiplication of the generator of the field GF(2n) (i.e.
polynomial x) and X over GF(2n), which is called doubling. We write 2iX to denote i-time doublings of
X, and 4X to denote 22X = 2(2X), and 3X to denote 2X ⊕X, and 7X to denote 2(2X)⊕ 2X ⊕X. A
multiplication over GF(2n) is done by multiplying two input polynomials, and dividing by an irreducible
polynomial, f(x), and taking the remainder. For n = 128, we fix f(x) = x127 + x7 + x2 + x1 + 1. In this
case, as shown by [19] 2X is implemented as

2X =

{
X ≪ 1 if msb1(X)=0

(X ≪ 1)⊕ 012010000111 if msb1(X)=1
(1)

where X ≪ 1 denotes 1-bit logical left shift of X.

■Input and Output. The encryption algorithm of AES-OTR using blockcipher (here AES) E, tag bit
length τ , with parallel ADP is written as OTR-EE,τ,p. When ADP is serial we similarly write OTR-EE,τ,s

to denote the encryption algorithm.
Both algorithms take the following byte sequences.

• Key K ∈ Kae,
• Nonce (a public message number) N ∈ Nae,
• Associated Data (AD) A ∈ Aae, and
• Plaintext M ∈Mae.

The output is a byte sequence

• Ciphertext (C, T ) ∈Mae × Tae,

where a ciphertext is a concatenation of unauthenticated ciphertext C fulfilling |C| = |M | and a tag
T ∈ Tae. There is no secret message number, hence the length of secret message number is assumed to
be zero. Here Nae = {0, 1}|N |, Kae = {0, 1}|K| with fixed |N | and |K| satisfying |N | ∈ {8, 16, . . . , 120}
and |K| ∈ {128, 192, 256}, and Mae = Aae = {0, 1}8∗, but we restrict these lengths as |M |8 ≤ 264

and |A|8 ≤ 264 (so 260 16-byte blocks). Both M and A can be empty (possibly simultaneously, though
artificial). Tag space Tae is {0, 1}τ with fixed τ ∈ {32, 40, . . . , 128}.
The decryption algorithm of AES-OTR using blockcipher E, and tag bit length τ , with parallel ADP

is written as OTR-DE,τ,p. Similarly we write OTR-DE,τ,s to denote the decryption algorithm with serial
ADP. Both algorithms take the following byte sequences.

• Key K ∈ Kae,
• Nonce (a public message number) N ∈ Nae,
• Associated Data (AD) A ∈ Aae, and
• Ciphertext (C, T ) ∈Mae × Tae,

where a ciphertext is a concatenation of unauthenticated ciphertext C and a tag T ∈ Tae. If the result
is determined as authentic, the output is a byte sequence

• Plaintext M ∈Mae satisfying |M | = |C|,

otherwise a rejection symbol ⊥.
We remark that parallel ADP version is identical to the algorithm shown by [25] except tag-length

encoding in nonce processing.

■Algorithms for Parallel ADP. The algorithms of OTR-EE,τ,p and OTR-DE,τ,p are described in Fig. 1,
and OTR-EE,τ,p is illustrated in Fig 2. In Fig. 1 the functions OTR-EE,τ,p and OTR-DE,τ,p are further
decomposed into the encryption and decryption cores, EFE,τ , DFE,τ , and the authentication core, AFE .
Here tag bit length τ is a fixed parameter and we may simply write as EFE , DFE . Below we provide
a brief explanation on Fig. 1. For OTR-EE,τ,p, we first partition a plaintext M into n-bit blocks, i.e.

(M [1], . . . ,M [m])
n← M (Fig. 1, Line 3 of EFE). For presentation purpose we also assume a partition
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into 2n-bit blocks, which we call chunks, denoted as (M [1], . . . ,M [ℓ])
2n← M . For each i < ℓ, the i-th

chunk M [i] = (M [2i− 1],M [2i]) is encrypted by a two-round Feistel permutation with masks as

C[2i− 1] = EK(2i−1L⊕M [2i− 1])⊕M [2i], (2)

C[2i] = EK(2i−13L⊕ C[2i− 1])⊕M [2i− 1], (3)

where L is an encrypted nonce with tag-length (τ) encoding, written as EK(Format(τ,N)) (see below).
With these computations we obtain the i-th ciphertext chunk, C[i] = (C[2i − 1], C[2i]). For the last
chunk (which may be partial), a variation of the above procedure is applied depending on the length of
the last chunk. When it is more than n bits we apply a variant of two-round Feistel, and otherwise a
variant of CTR mode is applied. This yields the unauthenticated ciphertext, C = (C[1], . . . ,C[ℓ]). For
computing the tag, the check sum is computed by taking the sum (XOR) of right halves of the plaintext
chunks, M [1], . . . ,M [ℓ−1], i.e., even plaintext blocks. The check sum also involves a value from the final
chunk M [ℓ] which depends on the chunk length. Then the check sum is given to the AES encryption
with a dedicated mask, depending on the length of last chunk. The result is the plaintext tag before
truncation, TE.
In parallel to the above procedure, an associated data A is given to AFE . It uses a parallelizable PRF,

which is a variant of PMAC [29]. Then we obtain the untrancated associated data tag, TA. This is when
A is non-empty. When A = ε, we have TA = 0n.
Finally, we take a sum of TE and TA and apply the truncation to obtain the tag T . By concatenating

C and T we obtain the ciphertext (C, T ).
For OTR-DE,τ,p, we first perform the inverse operation of (2) and (3) and the inverse operation for

the last chunk, to obtain the (unverified) plaintext M = (M [1], . . . ,M [ℓ]), and compute the check sum

to obtain TE. By computing TA and taking a sum with TE, we obtain the unverified tag T̂ . If T = T̂
we decide ciphertext (C, T ) is authentic and the final output is M . Otherwise, the output is ⊥.
The encoding of nonce with tag length, Format(τ,N), is the same as that used in OCB [21], including

the fact that |N | ≤ 120 when n = 128.

■Algorithms for Serial ADP. For serial ADP, the procedures are very similar to the case of parallel
ADP, except the handling of associated data. We have Fig. 3 to show the algorithms of OTR-EE,τ,s and
OTR-DE,τ,s, and OTR-EE,τ,s is also illustrated in Fig 4. The algorithms of Fig. 3 are further decomposed
into encryption core EF-SE,τ , decryption core DF-SE,τ (where we may omit τ from them for simplicity),
and authentication core AF-SE . For EF-SE and DF-SE the pseudo-codes are the same as EFE and DFE

except the generation of U (line 2). That is, we first take a sum of TA and EK(Format(τ,N)) and U is
a doubling of it. Here TA is generated by AF-SE taking A and AF-SE is a variant of CMAC [5], also
known as OMAC [19].

2 Security Goals
We consider the standard security notions for nonce-based AEs [30], see Section 3. Nonce (public message
number) must be unique for all encryption queries, however the same nonce can be used for an encryption
and a decryption query, or for two decryption queries. We basically do not claim any security when nonce
is reused for encryption queries, though the serial ADP version slightly relaxes the condition (See the
last of this section). We do not claim security when a key is used across different parameters, e.g. when
OTR with parallel ADP and serial ADP are concurrently used with one key. This specification assumes
that the tag length is fixed in use, which follows CAESAR call for submissions. The nonce encoding
with tag length is for clarity, compatibility with OCB, and preventing trivial misuse discussed at [1]. See
also [17,32].
The security goal of our cipher for confidentiality (or privacy) of plaintext is shown in Table 1, and

that for integrity (or authenticity) of plaintext, associated data, and public message number is shown
in Table 2. We believe that, the security goal of our cipher is mostly explained by the security bounds
presented in Section 3. These tables come from a natural interpretation of these bounds, where the
variables in the tables denote the required workload of an adversary to break the cipher, in logarithm
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Algorithm OTR-EE,τ,p(N,A,M)

1. (C, TE)← EFE,τ (N,M)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T ← msbτ (TE ⊕ TA)
5. return (C, T )

Algorithm OTR-DE,τ,p(N,A,C, T )

1. (M,TE)← DFE,τ (N,C)
2. if A ̸= ε then TA← AFE(A)
3. else TA← 0n

4. T̂ ← msbτ (TE ⊕ TA)

5. if T̂ = T return M
6. else return ⊥

Algorithm EFE,τ (N,M)

1. Σ← 0n

2. U ← E(Format(τ,N)), L← U , L♯ ← 3U
3. (M [1], . . . ,M [m])

n←M
4. for i = 1 to ⌈m/2⌉ − 1 do
5. C[2i− 1]← E(L⊕M [2i− 1])⊕M [2i]
6. C[2i]← E(L♯ ⊕ C[2i− 1])⊕M [2i− 1]
7. Σ← Σ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯

// L = 2iU , L♯ = 2i3U

9. if m is even
10. Z ← E(L⊕M [m− 1])
11. C[m]← msb|M [m]|(Z)⊕M [m]

12. C[m− 1]← E(L♯ ⊕ C[m])⊕M [m− 1]

13. Σ← Σ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. C[m]← msb|M [m]|(E(L))⊕M [m]
17. Σ← Σ⊕M [m]
18. L∗ ← L
19. if |M [m]| ̸= n then TE ← E(32L∗ ⊕ Σ)
20. else TE ← E(7L∗ ⊕ Σ)
21. C ← (C[1], . . . , C[m])
22. return (C, TE)

Algorithm DFE,τ (N,C)

1. Σ← 0n

2. U ← E(Format(τ,N)), L← U , L♯ ← 3U
3. (C[1], . . . , C[m])

n← C
4. for i = 1 to ⌈m/2⌉ − 1 do
5. M [2i− 1]← E(L♯ ⊕ C[2i− 1])⊕ C[2i]
6. M [2i]← E(L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ← Σ⊕M [2i]
8. L← L⊕ L♯, L♯ ← 2L♯

// L = 2iU , L♯ = 2i3U

9. if m is even
10. M [m− 1]← E(L♯ ⊕ C[m])⊕ C[m− 1]

11. Z ← E(L⊕M [m− 1])
12. M [m]← msb|C[m]|(Z)⊕ C[m]
13. Σ← Σ⊕ Z ⊕ C[m]

14. L∗ ← L♯

15. if m is odd
16. M [m]← msb|C[m]|(E(L))⊕ C[m]
17. Σ← Σ⊕M [m]
18. L∗ ← L
19. if |C[m]| ̸= n then TE ← E(32L∗ ⊕ Σ)
20. else TE ← E(7L∗ ⊕ Σ)
21. M ← (M [1], . . . ,M [m])
22. return (M,TE)

Algorithm AFE(A)

1. Ξ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ← Ξ⊕ E(Q⊕A[i])
6. Q← 2Q
7. Ξ← Ξ⊕A[a]

8. if |A[a]| ̸= n then TA← E(3Q⊕ Ξ)
9. else TA← E(32Q⊕ Ξ)

10. return TA

Algorithm Format(τ,N)

1. return n2s(τ mod n, 7)∥0n−8−|N |∥1∥N

Fig. 1 Algorithms of AES-OTR with parallel ADP. Tag bit size is 0 < τ ≤ n, and X denotes the
10∗ padding of X (See Section 1.3).
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Fig. 2 Encryption of AES-OTR with parallel ADP. Fmt denotes the function Format, and a box
with underline and X denote the 10∗ padding of input X.

base 2. If one of the variables reaches the required amount it means a break. For Table 1, Data and
Time denote σpriv and t′ in the privacy bounds (Theorems 3.1 and Theorem 3.3). For Table 2, Data,
Verify, and Time denote σauth, qv, and t′ in the authenticity bounds (Theorem 3.2 and Theorem 3.4).
The inclusion of Verify in Table 2 is redundant since σauth includes qv and τ is 128 for the parameter
sets here, however, we explicitly present it to make clear that qv ≪ τ is a security condition, which is
meaningful if τ is small. Strictly speaking, the Data figures in the tables should be slightly smaller with
respect to the bounds, say Data 64 in Table 1 of aes128otrpv1 and aes256otrpv1 is 64− log2(c) with

c =
√
6 from Theorem 3.1.

As an additional security goal, we claim that the length of nonce can be changed without key renewal,
provided all nonces are unique for all encryptions, for both parallel and serial ADP versions. This setting
does not change the security bounds of Section 3. In addition, the security of serial ADP holds as far as
a pair of AD and nonce (A,N) is unique for all encryption queries, for privacy and authenticity notions.

Table 1 Security goal for confidentiality (privacy).

aes128otrpv1 aes128otrsv1 aes256otrpv1 aes256otrsv1

Confidentiality Data Time Data Time Data Time Data Time
(Privacy) 64 128 64 128 64 256 64 256

Table 2 Security goal for integrity (authenticity).

aes128otrpv1 aes128otrsv1 aes256otrpv1 aes256otrsv1

Integrity Data Verify Time Data Verify Time Data Verify Time Data Verify Time
(Authenticity) 64 128 (τ) 128 64 128 (τ) 128 64 128 (τ) 256 64 128 (τ) 256

3 Security Analysis
■Provable Security Paradigm. AES-OTR has a provable security based on the assumption that AES is a
pseudorandom function. Below we provide a brief explanation on the security model we consider, which
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Algorithm OTR-EE,τ,s(N,A,M)

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (C, TE)← EF-SE,τ (N,M, TA)
4. T ← msbτ (TE)
5. return (C, T )

Algorithm OTR-DE,τ,s(N,A,C, T )

1. if A ̸= ε then TA← AF-SE(A)
2. else TA← 0n

3. (M,TE)← DF-SE,τ (N,C, TA)

4. T̂ ← msbτ (TE)

5. if T̂ = T return M
6. else return ⊥

Algorithm EF-SE,τ (N,M, TA)

1. Σ← 0n

2. U ← 2(E(Format(τ,N))⊕ TA)
3. L← U , L♯ ← 3U
4. (M [1], . . . ,M [m])

n←M
5. for i = 1 to ⌈m/2⌉ − 1 do
6. C[2i− 1]← E(L⊕M [2i− 1])⊕M [2i]
7. C[2i]← E(L♯ ⊕ C[2i− 1])⊕M [2i− 1]
8. Σ← Σ⊕M [2i]
9. L← L⊕ L♯, L♯ ← 2L♯

// L = 2iU , L♯ = 2i3U

10. if m is even
11. Z ← E(L⊕M [m− 1])
12. C[m]← msb|M [m]|(Z)⊕M [m]

13. C[m− 1]← E(L♯ ⊕ C[m])⊕M [m− 1]

14. Σ← Σ⊕ Z ⊕ C[m]

15. L∗ ← L♯

16. if m is odd
17. C[m]← msb|M [m]|(E(L))⊕M [m]
18. Σ← Σ⊕M [m]
19. L∗ ← L
20. if |M [m]| ̸= n then TE ← E(32L∗ ⊕ Σ)
21. else TE ← E(7L∗ ⊕ Σ)
22. C ← (C[1], . . . , C[m])
23. return (C, TE)

Algorithm DF-SE,τ (N,C, TA)

1. Σ← 0n

2. U ← 2(E(Format(τ,N))⊕ TA)
3. L← U , L♯ ← 3U
4. (C[1], . . . , C[m])

n← C
5. for i = 1 to ⌈m/2⌉ − 1 do
6. M [2i− 1]← E(L♯ ⊕ C[2i− 1])⊕ C[2i]
7. M [2i]← E(L⊕M [2i− 1])⊕ C[2i− 1]
8. Σ← Σ⊕M [2i]
9. L← L⊕ L♯, L♯ ← 2L♯

// L = 2iU , L♯ = 2i3U

10. if m is even
11. M [m− 1]← E(L♯ ⊕ C[m])⊕ C[m− 1]

12. Z ← E(L⊕M [m− 1])
13. M [m]← msb|C[m]|(Z)⊕ C[m]
14. Σ← Σ⊕ Z ⊕ C[m]

15. L∗ ← L♯

16. if m is odd
17. M [m]← msb|C[m]|(E(L))⊕ C[m]
18. Σ← Σ⊕M [m]
19. L∗ ← L
20. if |C[m]| ̸= n then TE ← E(32L∗ ⊕ Σ)
21. else TE ← E(7L∗ ⊕ Σ)
22. M ← (M [1], . . . ,M [m])
23. return (M,TE)

Algorithm AF-SE(A)

1. Ξ← 0n

2. Q← E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1 do
5. Ξ← E(A[i]⊕ Ξ)
6. Ξ← Ξ⊕A[a]

7. if |A[a]| ̸= n then TA← E(2Q⊕ Ξ)
8. else TA← E(4Q⊕ Ξ)
9. return TA

Algorithm Format(τ,N)

1. return n2s(τ mod n, 7)∥0n−8−|N |∥1∥N

Fig. 3 Algorithms of AES-OTR with serial ADP. Tag bit size is 0 < τ ≤ n, and X denotes the
10∗ padding of X (See Section 1.3)
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Fig. 4 Encryption of AES-OTR with serial ADP. Fmt denotes the function Format, and a box
with underline and X denote the 10∗ padding of input X.

is common to many nonce-based AEAD blockcipher modes.
Let AE[τ ] be an AEAD having τ -bit tag, where the encryption and decryption algorithms are AE-Eτ

and AE-Dτ . Then, a PRIV-adversary A against AE[τ ] accesses AE-Eτ , where the i-th query consists of
nonce Ni, associated data Ai, and plaintext Mi. The final output of A is a binary variable indicating
A’s guess. We define A’s parameter list to be (q, σA, σM ), where q denotes the number of queries, and

σA
def
=

∑q
i=1 |Ai|n and σM

def
=

∑q
i=1 |Mi|n. We assume A is nonce-respecting, i.e., all Nis are distinct. We

also define random-bit oracle, $, which takes (N,A,M) and returns (C, T )
$← {0, 1}|M | × {0, 1}τ . The

privacy notion for A is defined as

Adv
priv

AE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ⇒ 1]− Pr[A$ ⇒ 1]. (4)

An AUTH-adversary A against AE[τ ] accesses AE-Eτ and AE-Dτ , using q encryption queries and qv
decryption queries. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) and (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
qv , A

′
qv , C

′
qv , T

′
qv )

be all the encryption and decryption queries made by A. We define A’s parameter list to be

(q, qv, σA, σM , σA′ , σC′), where σA′
def
=

∑qv
i=1 |A′

i|n and σC′
def
=

∑qv
i=1 |C ′

i|n, in addition to σA and σM . The
authenticity notion for the AUTH-adversary A is defined as

AdvauthAE[τ ](A)
def
= Pr[K

$← K : AAE-Eτ ,AE-Dτ forges ], (5)

whereA forges if AE-Dτ returns a bit string (other than⊥) for a decryption query (N ′
i , A

′
i, C

′
i, T

′
i ) for some

1 ≤ i ≤ qv such that (N ′
i , A

′
i, C

′
i, T

′
i ) ̸= (Nj , Aj , Cj , Tj) for all 1 ≤ j ≤ q. We assume AUTH-adversary

A is always nonce-respecting with respect to encryption queries; using the same N for encryption and
decryption queries is allowed, and the same N can be repeated within decryption queries, i.e. Ni is
different from Nj for any j ̸= i but N ′

i may be equal to Nj or N ′
i′ for some j and i′ ̸= i.

The above definitions omit a parameter to specify the adversary’s computation power (i.e., for unlim-
ited computational power). If we need to specify the adversary’s computation power, we will additionally
define the time complexity, t, as the sum of running time of attack and the code size, under some fixed
computation model. For details, see e.g. [10].
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■PRP and PRF. Let Func(a, b) be the set of all functions : {0, 1}a → {0, 1}b, and let Perm(a) be the set
of all permutation over {0, 1}a. A uniform random function (URF) and a uniform random permutation
(URP) is defined as a random function distributed uniformly random over Func(a, b) and Perm(a).
For n-bit blockcipher E with key K ∈ Kae, Let Adv

prp
EK

(q, t) be the distinguishing advantage between
EK and an n-bit URP, P, using q chosen-plaintext queries and time complexity t. More formally, we
have

Adv
prp
EK

(q, t)
def
= max

A
{Pr[K $← Kae : AEK → 1]− Pr[P

$← Perm(n) : AP → 1]} (6)

where the maximum is taken for all adversaries using q chosen-plaintext queries with time complexity
t. By convention we say a blockcipher EK is a pseudorandom permutation (PRP) if AdvprpEK

(q, t) is

sufficiently small [23]*1. Similarly we define

Adv
prf
EK

(q, t)
def
= max

A
{Pr[K $← Kae : AEK → 1]− Pr[R

$← Func(n, n) : AP → 1]} (7)

and (conventionally) say EK is a pseudorandom function (PRF) when Adv
prf
EK

(q, t) is sufficiently small.
Thanks to the well-known PRP-PRF switching lemma (e.g. see [13]), the both statements are exchange-
able as long as q ≪ 2n/2.

■Security Bounds. First we provide the security bounds of OTR with parallel ADP.

Theorem 3.1 Fix τ ∈ {1, . . . , n}. For any PRIV-adversary A with parameter (q, σA, σM ) and time
complexity t,

Adv
priv

OTR[EK ,τ,p](A) ≤ Adv
prp
EK

(2σpriv, t
′) +

6σ2
priv

2n

holds for σpriv = q + σA + σM and t′ is about t plus the complexity of 2σpriv AES encryption.

Theorem 3.2 Fix τ ∈ {1, . . . , n}. For any AUTH-adversary A with parameter (q, qv, σA, σM , σA′ , σC′)
and time complexity t,

AdvauthOTR[EK ,τ,p](A) ≤ Adv
prp
EK

(2σauth, t
′) +

6σ2
auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ and t′ is about t plus the complexity of 2σauth AES
encryption.

Next we provide the security bounds of OTR with serial ADP for privacy and authenticity notions.

Theorem 3.3 Fix τ ∈ {1, . . . , n}. For any CPA-adversary A with parameter (q, σA, σM ) and time com-
plexity t,

Adv
priv

OTR[EK ,τ,s](A) ≤ Adv
prp
EK

(2σpriv, t
′) +

5.5σ2
priv

2n

holds for σpriv = q + σA + σM and t′ is about t plus the complexity of 2σpriv AES encryption.

Theorem 3.4 Fix τ ∈ {1, . . . , n}. For any CCA-adversary A with parameter (q, qv, σA, σM , σA′ , σC′) and
time complexity t,

AdvauthOTR[EK ,τ,s](A) ≤ Adv
prp
EK

(2σauth, t
′) +

7.5σ2
auth

2n
+

qv
2τ

holds for σauth = q + qv + σA + σM + σA′ + σC′ and t′ is about t plus the complexity of 2σauth AES
encryption.

*1 This is actually a convention because the formal definition of PRP is for a family of keyed permutation, and we here
did not specify a formal definition of “sufficiently small”.
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Full proofs of all theorems appear in [25]. The difference in nonce encoding (i.e. we change it from N
to Format(τ,N)) does not change the result since the proofs are maintained as long as encoded nonce
and the constant 0n are distinct, for both parallel and serial ADP versions.

4 Features
AES-OTR has the following features.

• The key is one AES key, K.
• Inverse-free, that is, encryption and decryption can be done by AES encryption function, EK .
• Rate-1 processing for both encryption and decryption. More precisely, for a-block AD (for a > 0)
and m-block plaintext, the number of AES calls is a +m + 2 (with one call can be preprocessed
and cached). If a = 0 we need m+ 2 calls.
• On-line, one-pass, and parallel encryption and decryption, under two-block partition. For serial
ADP version, associated data processing is serial but plaintext can be processed in parallel.
• Provable security up to about 2n/2 input blocks, based on the assumption that EK is a pseudo-
random function (PRF). From the PRP-PRF switching lemma, this holds also for the assumption
that EK is a pseudorandom permutation (PRP).

■Advantages over Previous AEAD Modes. A comparison of OTR with other modes is shown in Table
3. Being rate-1 means the computation cost is halved from common rate-2 schemes. Compared with
AES-GCM, AES-OTR does not require a full GF multiplier, while the computation cost of AES-OTR is
comparable to the encryption mode without the blockcipher decryption, such as AES-CTR. Roughly, the
computation cost for encryption is comparable to that of AES-OCB. For decryption, their performances
can be different depending on the platform, see below.
In return for these attractive features, one potential drawback of OTR is that it needs two-block

partition, which requires more state memories required than that of OCB, though OCB needs the addi-
tional implementation of blockcipher decryption. The parallelizability of our scheme is up to the half of
the message blocks, while OCB has full parallelizability, up to the number of message blocks. On-line
processing capability is restrictive as it needs buffering of consecutive two input blocks.
For memory consumption, all inverse-free modes including OTR have a similar profile, as long as the

blockcipher encryption is the dominant factor. An exception is GCM since field multiplication needs
large memories for fast operation. The design of OTR avoids a large memory consumption.

Table 3 A comparison of AEAD modes. Calls denotes the number of
primitive calls for m-block message and a-block header and one-block
nonce, without constants.

Mode Calls On-line Parallel Primitive

CCM [4] a+ 2m no no E

GCM [6] m [E] and a+m [Mul] yes yes E,Mul†

EAX [11] a+ 2m yes no E
OCB [22,29,31] a+m yes yes E,E−1

CCFB [24] a+ cm for some 1 < c‡ yes no E

OTR a+m yes¶ yes¶ E
† GF(2n) multiplication
‡ Security degrades as c approaches 1
¶ two-block partition, serial AD for serial ADP version.

■Benefits of inverse-freeness. The features listed above are already covered by OCB mode, except that
OCB needs both blockcipher encryption and decryption (more precisely the OCB decryption needs both
functions). As mentioned by Iwata and Yasuda [20], inverse-freeness can contribute to efficiency and
security. First, for efficiency, the initialization AES-OTR needs AES key schedule only for the forward
direction. In the standard, so-called T-table implementation, we can remove some tables required for the
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inverse, resulting in smaller ROM and RAM consumption on software. When side-channel protection
is needed, inverse-freeness can help reduce the critical functions to protect. Moreover, AES decryption
can be slower than AES encryption on some platforms (e.g., see AES implementation for Atmel AVR by
Osvik et al. [28]). This property is a consequence of the initial design choice [15], focusing on inverse-free
modes. The uneven performance figures of blockcipher enc/dec functions is undesirable in practice, when
the mode uses both functions.
This phenomena, however, is not always true. Most notably, recent Intel’s CPUs have AES instructions

called AESNI, which enables the identical performance for AES encryption and decryption, and AMD
CPUs have equivalent ones, too. Therefore, when our proposal uses AESNI, the performance would
be roughly similar to that of AES-OCB with AESNI, for both encryption and decryption, though the
complexity outside the blockcipher may degrade the result. We have other SW platforms where hardware
AES is available but decryption is slower (e.g., [18]), or only encryption function is available (e.g., [16]).
Basically, the value of our proposal is not to provide the fastest operation on modern CPUs, instead, to
increase the availability of rate-1 performance for various platforms, using single algorithm based on the
minimal cryptographic primitive and assumption.
For hardware the algorithm is parallelizable and also pipelinable. AES-OTR’s inverse-freeness signifi-

cantly contributes in hardware size reduction for various forms of hardware implementation from standard
round-based implementation to extremely high speed implementations using pipeline or multiple AES
cores.
Next, inverse-freeness can contribute to security. Usually the security of a mode using both enc/dec

functions of a blockcipher, denoted by E and E−1, needs (E,E−1) to be a strong pseudorandom per-
mutation (Strong PRP or SPRP). This holds true for the original security proofs of all versions of
OCB [22,29,31], though a recent work of Aoki and Yasuda [9] showed a relaxation on the security condi-
tion for the blockcipher used by OCB. In contrast, when the mode uses only E, the security assumption
is relaxed to PRP or PRF.

■Security. AES-OTR has a provable security reduction to the pseudorandomness of AES, which is a
quite popular assumption used by many cryptographic designs. The proved security bounds show that
one can not break the scheme in the senses of privacy and authenticity, up to around the birthday
bound, i.e. 264 blocks. Here, however, we have to warn that the security is proved for the standard
nonce-respecting adversary, i.e. the encryption never processes duplicate nonces. We do not claim any
security guarantee for adversaries beyond this condition, except a slight relaxation for serial ADP, shown
in Section 2, which says that the security is preserved as long as a pair (A,N) is unique, i.e., it can work
as nonce.

■Justifications for Recommended Parameter Sets. The nonce length of 12 bytes is a reasonable choice
for simplicity, and is widely employed by many protocols. The tag length of 16 bytes offers high-
security against even intensive forgery attempts. The AES key length of 128 bits provides adequate
security against key exhaustive searches, and 256 key bits are sometimes required for extra security. For
parallel ADP we need more memory than serial ADP, hence the latter is preferable for serial computing
environment. In addition the computation of serial ADP is simpler than parallel ADP. See Section 5.
In addition, we specify the minimum tag length to 4 bytes, though the recommended parameter sets

have 16-byte tag. Such short tag is usually dangerous, however, still useful to supress the communication
overhead with an appropriate limitation on the amount of data processed for one key. In fact we can
find many examples of 4-byte tags in the realm of low-power wireless sensor networks, e.g., 6LoWPAN
and Zigbee, both using AES-CCM with tag length between 4 to 16 bytes [2, 3].

5 Design Rationale
Our goal is to provide a fast and compact AEAD suitable for various platforms, using a minimum
cryptographic primitive, i.e., encryption function of a blockcipher. We choose AES as the underlying
blockcipher, because the security of AES has been extensively studied. The cipher achieves rate-1
parallelizable processing without using AES inverse. The computation cost is comparable to encryption
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modes using AES encryption function (e.g. CTR). Since we can not achieve privacy notion of AE with
fewer AES calls than AES-CTR, this implies that the computation cost of AES-OTR is asymptotically
minimum as a mode of AES encryption function.

■Masks. For masking applied to AES inputs inside AES-OTR, we employed constant GF multipli-
cations, called GF doublings. This is used by many schemes. For hardware, doubling is simple. For
software, doubling is basically not simple as it requires bit-shift of whole 128-bit block. However, recent
studies reported that the optimized doubling software implementation can be fast [8]. Considering this
we employ on-the-fly doubling as a practical masking option. We remark that using the same mask
for the round functions in a two-round Feistel does not work. This is because the two-round Feistel
then becomes an involution, which allows the adversary to control the checksum value in the decryption,
hence breaks authenticity. We also remark that the all masks for EFE depend on N , hence do not allow
precomputation before N is given, which is different from the latest OCB3 [22]. The reason of our choice
is that we want our scheme not to waste EK(0n) when AD is always empty, and not to require a large
RAM for precomputation, considering applicability to constrained devices. Our goal is not to ultimately
focus on one platform, hence we consider keeping the amount of precomputation small is good to achieve
a balanced performance under multiple platforms.
OTR’s blockcipher masks can be generated by various ways. We suggest some here.

• A basic option is to follow Figs. 1 and 3, which needs one doubling per two message blocks, using
two state blocks.
• If we want to generate masks in a parallel computation, the simplest way is to take doublings
independently for the first and second rounds, however a faster method is possible as shown by [14]
since the second-round masks for encryption can be generated by taking XORs of the first-round
masks. That is, the second-round masks, (3L, 2 ·3L, 223L, . . . , ), are generated from the first-round
masks (L, 2L, 22L, . . . , ) as L⊕ 2L→ 3L, 22L⊕ 2L→ 2 · 3L, and so on. Decryption can be done
similarly. This method is useful for hardware or SIMD batch doublings on X86 CPUs [7,27].
• If we want to reduce memory consumption, we can compute masks completely serial, using one
state block, with slight more complex, hardware-friendly bit operations. For example we need
routines for X → 3X and 3X → 2X for encryption.

■Associated Data Processing. We have two versions depending on associated data processing, ADP. For
parallel ADP version, the processing of AD is based on (a variant of) PMAC, and the computation can be
done in parallel to the processing of plaintext/ciphertext. This is to maximize the parallel computation
capability. We can efficiently handle static AD, and employ counter-nonce caching due to Wu (mentioned
by Bernstein [12]), if needed. For serial ADP version, the processing of AD is based on CMAC, hence is
inherently serial. At the cost of losing parallelizability for AD, this version reduces the computation cost
of ADP in serial environment. Also, the point where CMAC output (TA) is xored is chosen to reduce
the required state memory, while keeping the capability of static AD and counter-nonce caching. These
design choices make AES-OTR with serial ADP version suitable to, e.g., embedded software.
The designer has not hidden any weaknesses in this cipher.

6 Intellectual Property
We have a pending patent application relating to our AES-OTR proposal, JP application No. 2013-
161446. In case that AES-OTR is included into the final portfolio, we are willing to provide to imple-
mentors, solely for the purpose of implementing AES-OTR, a royalty-free non-exclusive license under
the patents issuing on such patent application to the extent such patents are essential to implement
AES-OTR as set forth in the final portfolio, provided said implementor extends a reciprocal royalty-free
license. If any of this information changes, the submitter will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.
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7 Consent
The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selection
or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist, a
member of the final portfolio, or any other designation provided by the committee. The submitter
understands that the committee will not comment on the algorithms, except that for each selected
algorithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitter understands that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitter acknowledges that
the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitter understands that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter understands that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.

Changes
AES-OTR v1 (2014.3.15) : Initial submission.
AES-OTR v1.1 (2015.1.19) : Added clarification on doubling in Section 1.3 and updates on Section 6

(Intellectual Property) and References.
AES-OTR v2 (2015.8.29) : A change in nonce processing (encryption). It includes an encode of tag

length information in the same manner to OCB. Figures 1 to 4 are updated with respect to this
change. Add some supporting texts at Section 1.3, Section 2, and Section 4 with additional
references. Minor cover edit and fixed typos.

AES-OTR v3 (2016.4.4) : Bost and Sanders [14] pointed out that the mask generations of the previous
versions are not following Rogaway’s XE mode [29], which leads to a flaw in the security proof.
The designer appreciates their work. Reflecting it, the masking constants are changed to follow
XE. Corresponding figures and pseudo-codes are also updated.

AES-OTR v3.1 (2016.9.1) : Specified the targeted use case in Section 1.2. No algorithmic changes.
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