
Deoxys v1.41

Designers/Submitters:

Jérémy Jean 1,2, Ivica Nikolić 2, Thomas Peyrin 2, Yannick Seurin 1

1 ANSSI, Paris, France

2 Division of Mathematical Sciences,
School of Physical and Mathematical Science,
Nanyang Technological University, Singapore

{Jeremy.Jean,Yannick.Seurin}@ssi.gouv.fr,
{INikolic,Thomas.Peyrin}@ntu.edu.sg

http://www1.spms.ntu.edu.sg/~syllab/Deoxys

October 12, 2016

http://www1.spms.ntu.edu.sg/~syllab/Deoxys

Contents

1 Introduction 2

2 Specification 3
2.1 Parameters . 3
2.2 Recommended Parameter Sets . 4
2.3 The Authenticated Encryption Deoxys . 4
2.4 The Tweakable Block Cipher Deoxys-BC . 11

3 Security Claims 14
3.1 Claims . 14
3.2 Comparison of Deoxys Modes With Other Modes 15

4 Security Analysis 17
4.1 Differential Cryptanalysis . 17
4.2 Linear Cryptanalysis . 19
4.3 Meet-in-the-Middle Attacks . 19
4.4 Security Against Other Attacks . 19
4.5 Comparing Deoxys-BC with AES . 20

5 Features 21

6 Design Rationale 23
6.1 Details for the STK Construction . 23
6.2 From Block Cipher to Tweakable Block Cipher . 24

7 Implementations 25
7.1 Software Performances . 25
7.2 Hardware Performances . 26

8 Intellectual Property 28

9 Consent 29

A AES Sbox and constants 34
A.1 AES Sbox and its inverse . 34
A.2 RCON constants . 35

B Changelog 36
B.1 Changelog from v1.3 to v1.41 . 36
B.2 Changelog from v1.2 to v1.3 . 36
B.3 Changelog from v1.1 to v1.2 . 37
B.4 Changelog from v1 to v1.1 . 37

1

Chapter 1

Introduction

In this note, we propose Deoxys, a new authenticated encryption design based on a tweakable block
cipher Deoxys-BC using the well-studied AES round function as a building block. We suggest several
sets of parameters that can use different key and tweak sizes, and claim security levels for all the
parameters in later sections. Our design uses a particular instantiation of a more general framework
(so-called TWEAKEY [23]) allowing designers to unify the vision of key and tweak inputs of a cipher.
We plug this cipher into two different yet very close fully parallel and provably secure authenticated
encryption modes: one for which the nonce must not be reused, the other one providing security
even when the nonce is reused.

In short, Deoxys is an authenticated encryption scheme that provides full 128-bit security (in
contrary to AES-GCM [30] or OCB [27]) for both privacy and authenticity. It performs well in software,
being faster than AES-GCM [30] on most processors. Moreover, Deoxys performs particularly well
for small messages (only m + 1 block cipher calls are required for a m block message and no
precomputation is required). In the nonce-misuse resistant versions of Deoxys, in addition to a full
128-bit security for unique nonces, we obtain birthday-bound security (not an online nonce-misuse
resistance as defined in [17], but a full MRAE security notion [35]) when the nonce is reused.
This is done very simply as a tweakable block cipher is a quite handy primitive to build an
authenticated encryption scheme. Finally, Deoxys can be lightweight (using existing AES lightweight
implementation, the extra area mainly consisting in 192 extra bits of memory for the mode and to
store the tweak) and the key can be hardcoded for further smaller area footprint.

Organization of the paper. In Chapter 2, we provide the specification of our proposal Deoxys,
including the description of the TWEAKEY framework and the sets of parameters for this proposal.
In Chapter 3, we precise the security claims for different scenarios for the various parameters, and
in Chapter 4 we perform some security analysis regarding this proposal. In Chapters 5 and 6, we
detail some design decisions, and finish with Chapters 8 and 9 where we give notes on intellectual
property and consent.

2

Chapter 2

Specification

In this chapter, we present the full specification of our proposal Deoxys. We first give the
recommended parameter sets and then proceed with the description of the design. We explain
the two authenticated encryption modes Deoxys-I (non-repeating nonces) and Deoxys-II (nonce-
repeating scenario), and then we describe the ad-hoc AES-based tweakable block cipher Deoxys-BC
(which is based on the TWEAKEY framework [23]) used to instantiate the modes.

Notations. We first introduce some notations. We denote EK(T, P) the ciphering of the n-bit
plaintext P with the tweakable block cipher Deoxys-BC with k-bit key K and t-bit tweak T
(similarly, D represents the deciphering process). The concatenation operation is represented by ||
and pad10∗ is the function that applies the 10* padding on n bits, i.e. pad10∗(X) = X||1||0n−|X|−1

when |X| < n. For an empty string ε, the 10∗ padding will not add any bit: pad10∗(ε) = ε. The
truncation of the word X to the first i bits is given by dXei, and the truncation to the last i bits
by bXci. Moreover, X ≪ a will denote the word X rotated by a positions to the left.

Our authenticated encryption scheme Deoxys is composed of an encryption part and a verifica-
tion/decryption part. The encryption part E takes as input a variable-length plaintext M (with
m = |M |), a variable-length associated data A (with a = |A|), a fixed-length public message number
N and a k-bit key K (we deliberately used the same letter K to represent the key in the authenti-
cated encryption scheme and the one in the tweakable block cipher, since they always refer to the
same object). It outputs a m-bit ciphertext C and a τ -bit tag, denoted tag (with τ ∈ [0, . . . , n]),
i.e. (C, tag) = EK(N,A,M). The verification/decryption part D takes as input a variable-length
ciphertext C (with m = |C|), a τ -bit tag tag (with τ ∈ [0, . . . , n]), a variable-length associated data
A (with a = |A|), a fixed-length public message number N and a k-bit key K. It outputs either an
error string ⊥ to signify that the verification failed, or a m-bit string M = DK(N,A,C, tag) when
the tag is valid. The maximum message length (in n-bit blocks) is denoted maxl and the maximum
number of messages that can be handled with the same key is denoted maxm (the same limitation
applies to the associated data material). We have that maxl = 2dt/2e−4 and maxm = 2bt/2c. This
will ensure that as long as different fixed-length public message numbers (i.e. nonces) are used, the
tweak inputs of all the tweakable block cipher calls are all unique. This also naturally implies that
|N | ≥ log2(maxm) = bt/2c. Note that there is a tradeoff possible between maxl and maxm, as
long as maxl ·maxm = 2t−4.

2.1 Parameters

A first parameter for Deoxys is the key length k, which is either 128 or 256 bits. We then propose
two modes: the first is for nonce-respecting adversaries (denoted with I, to represent the fact that

3

nonces should only be used once), while the second offers nonce misuse-resistance (denoted with II,
to show that nonces can appear twice or more). For this reason, we introduce another parameter,
that signals the mode of our authenticated encryption scheme. The tag size τ is recommended to
be 128 bits, while the public message length |N | is fixed to 64 bits for the first mode, and 120 bits
for the second mode.

2.2 Recommended Parameter Sets

The public message number is the nonce. For each of the two modes we recommend two parameter
sets (hence in total we have four sets), listed in Table 2.1. The list is sorted from most important
to least important. We denote by Deoxys-I the design in the case of the nonce-respecting mode
and Deoxys-II the design in the case of the nonce-misuse resistant mode.

The table additionally makes explicit the sorted list of targeted use cases (most important use
case first), according to the classification provided in Table 2.2.

Name k t n |N | τ Use Cases

Deoxys-I-128-128 128 128 128 64 128 2, 1, 3

Deoxys-I-256-128 256 128 128 64 128 2, 1, 3

Deoxys-II-128-128 128 128 128 120 128 3, 2, 1

Deoxys-II-256-128 256 128 128 120 128 3, 2, 1

Table 2.1: Recommended parameter sets for Deoxys. Parameters k, t, |N | and τ are related to
the signature of the inner tweakable block cipher of Deoxys.

We note that the two schemes Deoxys-I-128-128 and Deoxys-II-128-128 are based on the
internal block cipher Deoxys-BC-256, while Deoxys-I-256-128 and Deoxys-II-256-128 are based
on the internal block cipher Deoxys-BC-384.

2.3 The Authenticated Encryption Deoxys

In this section, we provide the high-level description of our proposal. Deoxys uses a tweakable
block cipher Deoxys-BC as internal primitive (specified in Section 2.4), and we describe here the
simple authenticated encryption modes built on top of it. Deoxys has two main mode variants:

• Deoxys-I, relying on algorithms EI and DI (see Section 2.3.1): this first variant is for
adversaries that are assumed to be nonce-respecting, meaning that the user must ensure that
the value N will never be used for encryption twice with the same key. This mode is similar
to TAE [29] or ΘCB3 [27] (the tweakable block cipher generalization of OCB3). We denote EI
the encryption part of this first variant and DI the verification/decryption part.

• Deoxys-II, relying on algorithms EII and DII (see Section 2.3.2): this second variant relaxes
the uniqueness constraint and allows the user to reuse the same N with the same key. We
call this mode SCT-2 as it heavily relies on SCT, an inverse-free authenticated encryption
mode published in [33]. We denote EII the encryption part of this first variant and DII the
verification/decryption part.

In both modes, we use short 4-bit prefixes for the tweak input in order to properly separate the
various types of encryption/authentication blocks. Is is to be noted that the two modes are actually
quite similar, the main difference being that the first one applies one pass on the message blocks,
while the second performs two passes (which is necessary to obtain a MRAE security notion [35]).

4

Use Case 1 – Lightweight applications (resource constrained environments)

critical fits into small hardware area and/or small code for 8-bit CPUs

desirable natural ability to protect against side-channel attacks

desirable hardware performance, especially energy/bit

desirable speed on 8-bit CPUs

message sizes usually short (can be under 16 bytes), sometimes longer

Use Case 2 – High-performance applications

critical efficiency on 64-bit CPUs (servers) and/or dedicated hardware

desirable efficiency on 32-bit CPUs (small smartphones)

desirable constant time when the message length is constant

message sizes usually long (more than 1024 bytes), sometimes shorter

Use Case 3 – Defense in depth

critical authenticity despite nonce misuse

desirable limited privacy damage from nonce misuse

desirable authenticity despite release of unverified plaintexts

desirable limited privacy damage from release of unverified plaintexts

desirable robustness in more scenarios; e.g., huge amounts of data

Table 2.2: List of typical AE use-cases selected by the CAESAR committee.

2.3.1 Nonce-Respecting Mode: EI and DI

The encryption algorithm EI is depicted in Figures 2.1, 2.2 and 2.3, and an algorithmic description
is given in Algorithm 1. The verification/decryption algorithmic description of DI is given in
Algorithm 2. We note that our scheme follows the framework from ΘCB3 [27] and therefore directly
benefits from the security proof regarding authentication and privacy.

A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

. . . Auth

(a) Without padding.

A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

A∗10∗

E
6 || la
K

Auth. . .

(b) With padding.

Figure 2.1: Handling of the associated data for the nonce-respecting mode: in the case where the
associated data is a multiple of the block size, no padding is needed.

M1

E
0||N ||0
K

C1

M2

E
0||N ||1
K

C2

Ml

E
0||N ||l−1
K

Cl

.

Σ

E
1||N ||l
K

tag

Auth
final

Figure 2.2: Message processing for the nonce-respecting mode: in the case where the message-
length is a multiple of the block size, no padding is needed.

5

M1

E
0||N ||0
K

C1

M2

E
0||N ||1
K

C2

Ml

E
0||N ||l−1
K

Cl

.

M∗10∗

0n

E
4||N ||l
K

C∗

pad

Σ

E
5||N ||l+1
K

tag

Auth
final

Figure 2.3: Message processing for the nonce-respecting mode: in the case where the message-
length is a not multiple of the block size, padding is needed. Note that the checksum Σ is computed
with a 10∗ padding for block M∗.

Algorithm 1: The encryption algorithm EIK(N,A,M).
In the tweak inputs, the value N is encoded on log2(maxm) bits, the integer values j
and l are encoded on log2(maxl) bits, while the integer values i and la are encoded on
log2(maxl ·maxm) = t− 4 bits.

1 /* Associated data */
2 A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth← 0
4 for i = 0 to la − 1 do
5 Auth← Auth⊕ EK(0010||i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Message */
12 M1|| . . . ||Ml||M∗ ←M where each |Mj | = n and |M∗| < n
13 Checksum← 0n

14 for j = 0 to l − 1 do
15 Checksum← Checksum⊕Mj

16 Cj ← EK(0000||N ||j,Mj+1)

17 end
18 if M∗ = ε then
19 Final← EK(0001||N ||l,Checksum)
20 C∗ ← ε

21 else
22 Checksum← Checksum⊕ pad10∗(M∗)
23 Pad← EK(0100||N ||l, 0n)
24 C∗ ←M∗ ⊕ dPade|M∗|
25 Final← EK(0101||N ||l + 1,Checksum)

26 end
27

28 /* Tag generation */
29 tag← Final⊕Auth
30 return (C1|| . . . ||Cl||C∗, tag)

6

Algorithm 2: The verification/decryption algorithm DI
K(N,A,C, tag).

In the tweak inputs, the value N is encoded on log2(maxm) bits, the integer values j
and l are encoded on log2(maxl) bits, while the integer values i and la are encoded on
log2(maxl ·maxm) = t− 4 bits.

1 /* Associated data */
2 A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth← 0
4 for i = 0 to la − 1 do
5 Auth← Auth⊕ EK(0010||i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Ciphertext */
12 C1|| . . . ||Cl||C∗ ← C where each |Cj | = n and |C∗| < n
13 Checksum← 0n

14 for j = 0 to l − 1 do
15 Mj ← DK(0000||N ||j, Cj+1)
16 Checksum← Checksum⊕Mj

17 end
18 if C∗ = ε then
19 Final← EK(0001||N ||l,Checksum)
20 M∗ ← ε

21 else
22 Pad← EK(0100||N ||l, 0n)
23 M∗ ← C∗ ⊕ dPade|C∗|
24 Checksum← Checksum⊕ pad10∗(M∗)
25 Final← EK(0101||N ||l + 1,Checksum)

26 end
27

28 /* Tag verification */
29 tag′ ← Final⊕Auth
30 if tag′ = tag then return (M1|| . . . ||Ml||M∗)
31 else return ⊥

7

2.3.2 Nonce-Misuse Resistant Mode: EII and DII

The encryption algorithm EII is depicted in Figures 2.4 and 2.5 for the authentication part and
in Figure 2.6 for the encryption part. An algorithmic description is given in Algorithm 3. The
verification/decryption algorithmic description of DII is given in Algorithm 4. Our mode is a
variant of SCT (Synthetic Counter in Tweak, [33]) that we call SCT-2. The encryption part is kept
unchanged compared with SCT, only the computation of the tag is modified in order to provide
graceful degradation of security for authentication with the maximal number of repetitions of
nonces [10] (a property that was ensured for confidentiality by SCT, but not for authenticity).

In this SCT-2 variant described below, the nonce N has a size of 120 bits, to include it in the
tweak input of the block cipher call producing the tag. If necessary, nonce sizes up to 128 bits can
be accommodated at the expense of an additional block cipher call. For this, one simply replaces the
finalization of the tag (Lines 20 and 29 in the following algorithms) tag′ ← EK(0001||04||N, tag′)
with tag′ ← EK(0001||04||N ′, tag′), where N ′ are the, say, 120 leftmost bits of the encryption of
N with a reserved 4-bit tweak prefix that is used nowhere else in the mode.

A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

. . . Auth

(a) Without padding.

A1

E
2 || 0
K

0

A2

E
2 || 1
K

. . .

Ala

E
2 || la−1
K

A∗10∗

E
6 || la
K

Auth. . .

(b) With padding.

Figure 2.4: Handling of the associated data for the nonce-misuse resisting mode: in the case
where the associated data is a multiple of the block size, no padding is needed.

M1

E
0 || 0
K

Auth

M2

E
0 || 1
K

. . .

Ml

E
0 || l−1
K

. . .

E
1||04||N
K

tag

(a) Without padding.

M1

E
0 || 0
K

Auth

M2

E
0 || 1
K

. . .

Ml

E
0 || l−1
K

. . .

M∗10∗

E
4 || l
K

E
1||04||N
K

tag

(b) Without padding.

Figure 2.5: Message processing in the authentication part of the nonce-misuse resisting mode: in
the case where the message-length is a multiple of the block size, no padding is needed.

08 ||N

E
1||tag
K

C1

M1

08 ||N

E
1||tag⊕1
K

C2

M2
. . .

. . .

. . .

08 ||N

E
1||tag⊕(l−1)
K

Cl

Ml

(a) Message-length is a multiple of the block size.

08 ||N

E
1||tag
K

C1

M1

08 ||N

E
1||tag⊕1
K

C2

M2
. . .

. . .

. . .

08 ||N

E
1||tag⊕(l−1)
K

Cl

Ml

08 ||N

E
1||tag⊕l
K

C∗

M∗

(b) Message-length is not a multiple of the block size.

Figure 2.6: Message processing for the encryption part of the nonce-misuse resisting mode.

8

Algorithm 3: The encryption algorithm EIIK (N,A,M).
In the tweak inputs, the integer values i, j, l and la are encoded on log2(maxl ·maxm) = t− 4
bits. Moreover, tag + j values are encoded on t− 1 bits (the most significant bit is truncated
since |tag| = t). Recall that the nonce N contains 120 bits.

1 /* Associated data */
2 A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
3 Auth← 0
4 for i = 0 to la − 1 do
5 Auth← Auth⊕ EK(0010||i, Ai+1)
6 end
7 if A∗ 6= ε then
8 Auth← Auth⊕ EK(0110||la, pad10∗(A∗))
9 end

10

11 /* Message authentication and tag generation */
12 M1|| . . . ||Ml||M∗ ←M where each |Mj | = n and |M∗| < n
13 tag← Auth
14 for j = 0 to l − 1 do
15 tag← tag⊕ EK(0000||j,Mj+1)
16 end
17 if M∗ 6= ε then
18 tag← tag⊕ EK(0100||l, pad10∗(M∗))
19 end
20 tag← EK(0001||04||N, tag)
21

22 /* Message encryption */
23 for j = 0 to l − 1 do
24 Cj ←Mj ⊕ EK(1||tag⊕ j, 08 ||N)
25 end
26 if M∗ 6= ε then
27 C∗ ←M∗ ⊕ EK(1||tag⊕ l, 08 ||N)
28 end
29

30 return (C1|| . . . ||Cl||C∗, tag)

9

Algorithm 4: The verification/decryption algorithm DII
K (N,A,C, tag).

In the tweak inputs, the integer values i, j, l and la are encoded on log2(maxl ·maxm) = t− 4
bits. Moreover, the tag + j values are encoded on t − 1 bits (the most significant bit is
truncated since |tag| = t). Recall that the nonce N contains 120 bits.

1 /* Message decryption */
2 C1|| . . . ||Cl||C∗ ← C where each |Cj | = n and |C∗| < n
3 for j = 0 to l − 1 do
4 Mj ← Cj ⊕ EK(1||tag⊕ j, 08 ||N)
5 end
6 if C∗ 6= ε then
7 M∗ ← C∗ ⊕ EK(1||tag⊕ l, 08 ||N)
8 end
9

10 /* Associated data */
11 A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
12 Auth← 0
13 for i = 0 to la − 1 do
14 Auth← Auth⊕ EK(0010||i, Ai+1)
15 end
16 if A∗ 6= ε then
17 Auth← Auth⊕ EK(0110||la, pad10∗(A∗))
18 end
19

20 /* Message authentication and tag generation */
21 M1|| . . . ||Ml||M∗ ←M where each |Mj | = n and |M∗| < n
22 tag′ ← Auth
23 for j = 0 to l − 1 do
24 tag′ ← tag′ ⊕ EK(0000||j,Mj+1)
25 end
26 if M∗ 6= ε then
27 tag′ ← tag⊕ EK(0100||l, pad10∗(M∗))
28 end
29 tag′ ← EK(0001||04||N, tag′)
30

31 /* Tag verification */
32 if tag′ = tag then return (M1|| . . . ||Ml||M∗)
33 else return ⊥

10

2.4 The Tweakable Block Cipher Deoxys-BC

Deoxys-BC is an ad-hoc tweakable block cipher so that besides the two standard inputs, a plaintext
P (or a ciphertext C) and a key K, it takes an additional input called a tweak T . The cipher
EK(T, P) has 128-bit state and variable size key and tweak. The encryption and decryption are
defined in a standard way for tweakable ciphers, i.e. EK(T, P) = C and E−1

K (T,C) = P . We define
two ciphers, Deoxys-BC-256 for which the cumulative size of the key and the tweak is 256 bits
(and is utilized for Deoxys-I-128-128 and Deoxys-II-128-128), and Deoxys-BC-384 for which
the cumulative size of the key and the tweak is 384 bits (and is utilized for Deoxys-I-256-128 and
Deoxys-II-256-128).

Deoxys-BC is an AES-like design, i.e. it is an iterative substitution-permutation network (SPN)
that transforms the initial plaintext through series of round functions (that depend on the key
and the tweak) to a ciphertext. As most AES-like designs, the state of Deoxys-BC is seen as 4× 4
matrix of bytes (we denote c the size of a cell, i.e. c = 8). We denote K the base field as GF (28)
defined by the irreducible polynomial x8 + x4 + x3 + x+ 1.

The number r of rounds is 14 for Deoxys-BC-256 and 16 for Deoxys-BC-384. One round,
similarly to a round in AES, has the following four transformations applied to the internal state in
the order specified below:

• AddRoundTweakey – XOR the 128-bit round subtweakey (defined further) to the internal
state,

• SubBytes – Apply the 8-bit Sbox AES S to the 16 bytes of the internal state (see definition in
Appendix A.1),

• ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixBytes – Multiply the internal state by the 4× 4 constant MDS matrix M defined below
whose coefficients lie in K.

After the last round, a final AddRoundTweakey operation is performed to produce the ciphertext.

The MDS matrix M we use is the one from the AES (coefficients lie in K):

M =

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 .

The round function f−1 for a decryption round, naturally, is similar as for the encryption, and
the inverse of the four round permutations are applied in a reversed order. We also note that the
subtweakeys are used in reverse order. Namely, we perform r times the following operations:

• InvAddRoundTweakey – XOR the 128-bit round subtweakey to the internal state,

• invMixBytes – Multiply the internal state by the 4× 4 MDS matrix M−1 (coefficients in K),

• InvShiftRows – Rotate the 4-byte i-th row right by ρ[i] positions, where ρ = (0, 1, 2, 3),

• InvSubBytes – Apply the inverse 8-bit Sbox S−1 to the 16 bytes of the internal state (see
Appendix A.1 for actual values).

Finally, a final InvAddRoundTweakey operation is performed to produced the plaintext value. For

11

the sake of completeness, we provide the inverse of the M matrix (coefficients are in K):

M−1 =

14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14

 .

Definition of the Subtweakeys. So far, the description of the cipher has followed the classical
construction of an AES-like block cipher. The operation AddRoundTweakey, and in particular the
production of the subtweakeys, is where Deoxys-BC differs from the AES.

Tweakey Schedule (p = 2)

h

h LFSR2
KT

XOR RC0

TK2
0 TK1

0

STK0
f

h

h LFSR2

XOR RC1

TK2
1 TK1

1

STK1
fP = s0

h

h

. . .

. . .

XOR RC2

TK2
2 TK1

2

STK2
. . .

XOR RCr−1

TK2
r−1 TK1

r−1

STKr−1
f

h

h LFSR2

XOR RCr

TK2
r TK1

r

STKr
sr = C

Figure 2.7: Instantiation of the TWEAKEY framework for Deoxys-BC.

We denote the concatenation of the key K and the tweak T as KT , i.e. KT = K||T . Then, the
tweakey state is divided into words of 128 bits. More precisely, in Deoxys-BC-256, the size of KT
is 256 bits with the first (most significant) 128 bits of KT being denoted W1, while the second W2.
For Deoxys-BC-384, the size of KT is 384 bits, with the first (most significant) 128 bits of KT
being denoted W1, the second W2 and the third W3. Finally, we denote with STKi the subtweakey
(a 128-bit word) that is added to the state at Round i of the cipher during the AddRoundTweakey
operation. For Deoxys-BC-256, a subtweakey is defined as:

STKi = TK1
i ⊕ TK2

i ⊕RCi,

whereas for the case of Deoxys-BC-384 it is defined as:

STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a special tweakey schedule al-

gorithm, initialized with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with TK1
0 = W1,

TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule algorithm is defined as

TK1
i+1 = h(TK1

i),

TK2
i+1 = h(LFSR2(TK2

i)),

TK3
i+1 = h(LFSR3(TK3

i)),

where the byte permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

and where we number the 16 bytes of a 128-bit tweakey word by the usual ordering:
0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

 .

12

The LFSR2 and LFSR3 functions are simply the application of an LFSR to each of the 16
bytes of a tweakey 128-bit word. More precisely, the two LFSRs used are given in Table 2.3 (x0

stands for the LSB of the cell).

Table 2.3: The two LFSRs used in Deoxys-BC tweakey schedule.

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Finally, RCi are the key schedule round constants, and are defined as:

RCi =

1 RCON[i] 0 0

2 RCON[i] 0 0

4 RCON[i] 0 0

8 RCON[i] 0 0

where RCON[i] denotes the i-th key schedule constants of the AES. We report their actual values in
Appendix A.2.

Cipher Instances Separation. We note that the tweak and key material are not made explicitly
distinct in Deoxys-BC, and one might argue that since the tweakable block cipher is always the
same whatever is the amount of key or tweak inputs, there are some obvious relations between these
different cipher variants. Only considering the primitive Deoxys-BC, a simple distinction between
the instances could be to encode the parameter sizes into the round constants. We however chose
to not consider such related-cipher attacks [38], but instead leave this distinction at the discretion
of the protocol or mode calling the primitive. Especially, for the two Deoxys operating modes,
the separation between the tweakable block cipher instances is naturally and safely done since the
tweak and key sizes are fixed and the placement of key and tweak material is fully determined.

Security of Deoxys-BC. We strongly encourage third-party analysis of the (possibly round-
reduced) internal tweakable block cipher Deoxys-BC of our proposal, which appears to be of
independent interest from the CAESAR competition. We emphasize that we claim security up
to 2128 computations for Deoxys-BC-256 and up to 2256 computations for Deoxys-BC-384, since
Deoxys-BC-256 and Deoxys-BC-384 are used to build authenticated encryption algorithms with
128-bit and 256-bit key respectively.

13

Chapter 3

Security Claims

3.1 Claims

We provide our security claims for the different variants of Deoxys in Table 3.1. We recall that the
variants are defined in part by the bit size k of key and the bit size t of the tweak in Section 2.2.
We give below the security goals expressed in terms of k and the block size n.

One can see that we do claim full k-bit security for both Deoxys-I and Deoxys-II for a
nonce-respecting user, in contrary to other modes like AES-GCM [30] or OCB3 [27], which only
ensure birthday-bound security. In the nonce-misuse scenario, we claim a birthday-bound security
concerning Deoxys-II.

Security (bits)

Goal (nonce-respecting user) Deoxys-I Deoxys-II

Key recovery k k

Confidentiality for the plaintext n n− 1

Integrity for the plaintext n n− 1

Integrity for the associated data n n− 1

Integrity for the public message number n n− 1

Security (bits)

Goal (nonce-misuse user) Deoxys-I Deoxys-II

Key recovery k k

Confidentiality for the plaintext none n/2

Integrity for the plaintext none n/2

Integrity for the associated data none n/2

Integrity for the public message number none n/2

Table 3.1: Security goals of Deoxys. The upper table stands for the situation where the user will
never repeat the same value N for the same key (nonce-respecting user). The lower table stands for
the situation where such repetitions in N for the same key are allowed (nonce-misuse user). The
bit security of our designs is expressed in terms of calls to the internal tweakable block cipher, up
to a small logarithmic factor.

In the table, we assume that the public message number is a nonce and there is no secret message

14

number. We also assume that for the nonce-respecting mode, the total size of the associated data
and the total size of the message do not exceed 16 · 2maxl bytes, thus 264 bytes for all variants
of Deoxys-I. For the nonce-misuse resistant mode, the total size of the associated data and the
total size of the message do not exceed 16 · 2maxl · 2maxm bytes, thus 2128 bytes for all variants of
Deoxys-II. Moreover, the maximum number of messages that can be handled for a same key is
2maxm , that is 264 for all variants of Deoxys.

We recommend to use a tag size τ = n. However, in case a smaller tag size is required, the
security claims will drop according to τ . We explicitly exclude related-cipher attacks, for example
when an attacker would try to find some correlations between different versions of Deoxys (we
assume that such a separation, if needed, will be handled by the protocol using the authenticated
encryption primitive).

3.2 Comparison of Deoxys Modes With Other Modes

Deoxys-I provides “full” security in the nonce-respecting setting; more precisely, confidentiality is
perfectly guaranteed and the forgery probability is 2−t, independently of the number of blocks of
data in encryption/decryption queries made by the adversary. In comparison, OCB only provides
security up to the birthday bound, more precisely up to roughly 2n/2 blocks of data since it relies
on XE/XEX (a construction of a tweakable block cipher from a standard block cipher with security
only up to the birthday bound). In Figure 3.1, we represent the security of several nonce-respecting
modes present in the third round of the CAESAR competition.

48 64

14

64

110

128
Deoxys-I

Deoxys-II

COLM

OTR

OCB

AEZ

log2(σ)

− log2(Adv)

Figure 3.1: Security comparisons of some nonce-respecting modes from the third round of the
CAESAR competition. The figure plots the advantage of an adversary as a function of the total
number of queried blocks σ.

Deoxys-II provides “full” security in the nonce-misuse setting, in the MRAE sense of [35] (but
its bond depends on the number of queries made by the adversary). Moreover, security degrades
gracefully (both for confidentiality and authenticity) with respect to the maximal number of nonce
repetitions (i.e., repeating nonces only a few times does not affect the security bound much, and the
same nonce must be repeated close to 2n/2 times for an adversary to have noticeable advantage).
In comparison, COLM only provides the weaker notion of online nonce-misuse resistance [17], while

15

AEZ provides nonce-misuse resistance (and even the stronger notion of robustness, which guarantees
security against release of unverified plaintext) but only up to the birthday bound.

To give an numerical example, with 240 blocks ciphered (about 16 TeraBytes), one gets an
advantage of about 2−48 to generate a valid tag for most operating modes in the nonce-respecting
scenario (actually 2−30 in the case of AEZ). For the same amount of data, the advantage becomes
2−88 for Deoxys-II, and remains 2−128 for Deoxys-I.

16

Chapter 4

Security Analysis

In the past two decades, the Advanced Encryption Standard (AES) and AES-type ciphers have been
the subject of extensive analysis. As a result, the security of these ciphers against the most popular
forms of cryptanalysis, the differential and the linear attacks, is well understood in the single-key
model. Important progress in AES security analysis has been provided in the past several years, and
it involved careful study of the key schedule of AES-type ciphers. In other words, the latest attacks
rely on how the key is processed in the rounds of the ciphers. Two such notable examples are the
related-key differential attacks [3, 4] and the Meet-in-the-Middle (MITM) attacks [11,13,15, 28] on
AES.

Our TWEAKEY framework allows a dual view of the whole constructions. The first is as described
previously, i.e. in each round a subkey and a subtweak are added to the state. In the second
view, however, one can treat the XOR of the subkey and the subtweak as one single subkey called
subtweakey, which is produced from a more complex key schedule (composition of the original key
schedule and tweak schedule). This way the security analysis of TWEAKEY reduces to the security
analysis of a block cipher with more complex key schedule, and where one part of the key is secret,
and the second is public.

We view the Deoxys tweakey schedule as an improvement over the AES key schedule: not only
it is much simpler and more efficient, but it also provides stronger security guarantees against
related-key differential cryptanalysis for example.

4.1 Differential Cryptanalysis

Designing a SPN cipher resistant against single-key differential attacks is fairly simple and can be
done by carefully choosing the diffusion layer (ensuring that its branch number is high enough).
For example, in the case of AES, because its diffusion matrix has a branching number of 5, one
can prove at least 25 differentially active Sboxes for four rounds of AES in the single-key model.
Assuming that each of the active Sboxes can reach the maximal differential probability of the AES

Sbox pmax = 2−6, one directly deduce that four rounds already provide sufficient protection against
simple differential cryptanalysis in the single-key model.

Since our tweakable block cipher Deoxys-BC is directly built on the AES round function and
since the number of active Sboxes is independent of the key schedule in the single-key model, the
very same analysis can be applied to Deoxys-BC. Thus, four rounds of Deoxys-BC already provide
sufficient protection against simple differential cryptanalysis in the single-key model.

While the single-key case is straightforward, it is much harder to guarantee resistance against
related-key differential attacks and the STK construction is an elegant way to tackle this problem.

17

There exists search algorithms and tools [5, 6, 16,18,31,36] that given a key schedule can return
the upper bound on the probability of the best related-key differential characteristics, and in the
case when such a bound is low, practically provide and prove the resistance against related-key
differential attacks. The STK construction greatly facilitates the applicability of these tools and we
used precisely these algorithms in our security analysis against related-key attacks.

These search tools have been designed to look for related-key characteristics, however, we allow
the adversary to operate in a stronger setting of related-key and possibly related-tweak (or both
at the same time) attacks. Nonetheless, we can accommodate and modify the tools to search for
such characteristics. Although the modification can be done easily, the feasibility (expressed in the
time complexity required the search algorithm to finish) is the real problem. To cope with this,
we use several different tools, each chosen to provide the probability bounds in the shortest time.
More precisely, we alternate between the search algorithm based on Matsui’s approach [5], split
approach [6], and extended split approach [16]. We omit the details on how these search algorithms
operate due to their complexity, and further, give only the final results produced by the tools.

Rounds Active Sboxes Upper bound on
probability

Method used

1 0 20 Trivial

2 0 20 Trivial

3 1 2−6 Matsui’s

4 5 2−30 Matsui’s

5 9 2−54 Matsui’s

6 12 2−72 Matsui’s

8 ≥ 17 2−108 extended split (4R+4R)

10 ≥ 22 2−132 extended split (5R+5R)

Table 4.1: Deoxys-BC-256: Upper bounds on the probability of the best round-reduced related-key
related-tweak differential characteristics for Deoxys-BC-256.

Rounds Active Sboxes Upper bound on
probability

Method used

1 0 20 Trivial

2 0 20 Trivial

3 0 20 Trivial

4 1 2−6 Matsui’s

5 4 2−24 Matsui’s

6 8 2−48 Matsui’s

12 ≥ 22 2−132 extended split (6R+6R)

Table 4.2: Deoxys-BC-384: Upper bounds on the probability of the best round-reduced related-key
related-tweak differential characteristics for Deoxys-BC-384

In Table 4.1, we give the results for our tweakable block cipher Deoxys-BC where the sum of
the key and tweak sizes is 256 bits. Again assuming that each of the active Sboxes can reach the
maximal differential probability of the AES Sbox pmax = 2−6, we get the upper bound given in
the third column. Using at least r = 10 rounds for this cipher, the number of active Sboxes is
lower-bounded by 22, meaning that the probability of the associated differential characteristic is

18

upper-bounded by 2−6×22 = 2−132. Thus, such characteristics cannot be exploited due to the state
size of 128 bits (the attacker cannot construct more than 2128 plaintext pairs to start the attack).

We perform the same analysis when the sum of the key and tweak sizes is 384 bits and the
results from Table 4.2 show that we reach more than

⌈
128
6

⌉
= 22 Sboxes after 12 rounds.

Thus, all versions of Deoxys-BC have a security margin of at least four rounds and thus highly
resistant against related-key related-tweak attacks.

4.2 Linear Cryptanalysis

Similarly to the differential cryptanalysis case, the security guarantees of AES with regards to linear
cryptanalysis in the single-key model directly translate to Deoxys-BC. Therefore, we can easily
prove that four rounds of Deoxys-BC already provide sufficient protection against simple linear
cryptanalysis in the single-key model.

Moreover, since there is no cancellation of linearly active Sboxes in the related-key model [26],
the analysis of single-key directly translates to the related-key model as well. Therefore, four rounds
of Deoxys-BC already provide sufficient protection against simple linear cryptanalysis also in the
related-key model.

One might argue that the linearity of the Deoxys-BC tweakey schedule will help linear cryptanal-
ysis. However, we emphasize that most analysis of AES with regards to linear cryptanalysis have
been done assuming that the subkeys are independent. In addition, unlike for AES, the tweakey
schedule of Deoxys-BC has been chosen to maximize the number of active Sboxes and the key bytes
diffusion. This will very likely render the cryptanalysis of Deoxys-BC even harder for an attacker.

4.3 Meet-in-the-Middle Attacks

Additionally, we scrutinize the resistance of our design in regard to the recent advanced meet-in-the-
middle attack on AES conducted in [13]. Indeed, this attack strongly relies on the AES key schedule
to propagate linear equations in the MITM strategy to spare some guesses in both the offline and
online phases. As the design we propose introduces a new tweakey schedule, we have analyzed how
it interacts with the AES round function.

For a given tweak value, Deoxys-BC behaves as the AES with a new schedule with partially
known values (the subtweakeys) XORed between each round, without additional input values. This
tweakey schedule is fully linear as it first applies a byte permutation and then an LFSR on some
bytes of the state. In that context, a first analysis shows that the meet-in-the-middle technique
from [13] can attack up to 8 rounds, where the AES key schedule for 128-bit keys stops the attack
at 7 rounds.

4.4 Security Against Other Attacks

As mentioned earlier in the chapter, the security bound of Deoxys-BC against most of the other
attacks matches the bounds of AES, i.e. all the attacks that do not exploit the key schedule will have
the same success on Deoxys-BC as on AES. This gives us a security reduction from AES, however,
we note that as Deoxys-BC has more rounds, for these particular attacks the security margin of
Deoxys-BC is higher.

19

Besides the above types of attacks, we encourage to investigate attack vectors that rely on
some additional property of the AES key schedule of Deoxys-BC, for instance impossible differential
attacks. We emphasize that other attack techniques like slide [7], rotational [24] and the internal
differential attacks [32] are prevented by the usage of the constants in the key schedule, as done in
the AES.

As previously described, since by design there is no distinction between key and tweak material
for Deoxys-BC (rather the key+tweak inputs are treated as one tweakey input), trivial so-called
related-cipher attacks [38] would apply to two different versions of the Deoxys-BC. As the practical
threat coming from this type of attack framework is very limited and can be avoided at the
operating mode level, we decided not to put different constants RCi in order to prevent the attack.
Moreover, we recall that for the two Deoxys operating modes, the separation between the tweakable
block cipher instances is naturally and safely done since the tweak and key sizes are fixed and the
placement of key and tweak material is fully determined.

Finally, we note that a possible increment in the number of attacked rounds might happen in
the scenario of open-key distinguishers (even though we have not been able to improve the known
attacks [12, 20, 22] using this extra tweak input). However, we emphasize that we do not claim any
resistance of Deoxys-BC in this attack model.

4.5 Comparing Deoxys-BC with AES

The Deoxys-BC tweakable block cipher is directly built upon the AES round function, but its key
schedule has been updated. We see this new key schedule as a direct improvement over the AES key
schedule. We recall that AES-192 and AES-256 have been shown to be weak against related-key
attacks [3,4], thus indicating that their respecting key schedule is not strong enough against certain
type of attacks.

Table 4.3: Proved bounds on the minimal number of differential active Sboxes for AES-256

and for Deoxys-BC-256. Model SK denotes the single-key scenario and model RTK denotes the
related-tweakey scenario where differences can be inserted in the tweakey state.

Cipher Model
Rounds

1 2 3 4 5 6 7 8

Deoxys-BC-256 SK 1 5 9 25 26 30 34 50

(14 rounds) RTK 0 0 1 5 9 12 ≥ 17 ≥ 22

AES-256 SK 1 5 9 25 26 30 34 50

(14 rounds) RTK 0 0 1 3 5 5 5 10

We compare in Table 4.3 the minimum number of differentially active Sboxes of AES-256 and
Deoxys-BC-256 in the related-key model (we compare these two primitives as they have the same
tweakey size). One can see that Deoxys-BC-256 tweakey schedule guarantees much more active
Sboxes than AES-256 (and thus an expected higher resistance against related-key attacks), while
being much more efficient. Note that the bounds for Deoxys-BC-256 are not tight and can probably
be improved, for instance using MILP modeling.

We finally emphasize that Deoxys-BC-256 is used in the 128-bit key mode of Deoxys, and thus
attacks requiring more than 2128 computations are not a concern (in contrary to AES-256). This
further increases the security margin Deoxys-BC-256 provides when compared to AES-256.

20

Chapter 5

Features

The starting point of our design is to provide a sound ad-hoc tweakable block cipher based on AES.
Indeed, the main idea heavily exploited in the design of Deoxys is the introduction of an efficient
tweakable block cipher Deoxys-BC, belonging to the family of the well-known AES-based primitives.
Speed benchmarks show that Deoxys achieves almost the same speed as OCB while offering much
higher security than OCB.

Deoxys-BC is a secure instantiation of the more general TWEAKEY framework [23] and does not rely
on big field (e.g., GF (2128)) multiplications as previous tweakable ciphers proposals. Structurally,
Deoxys-BC can be seen as a standalone primitive, whereas previous attempts at building tweakable
block ciphers use a given block cipher as a black box and use it in a particular mode. The design is
in particular very efficient on latest Intel processors, where we can reach much less than a cycle per
byte for scenario with nonce-respecting users.

We detail more precisely below the main features of Deoxys.

• Security margin. Deoxys has a good security margin for all the recommended parameters.
We measure the security margin in terms of number of rounds: the small variant of Deoxys
counts 14 rounds and the large variant 16 rounds. The best known attacks on AES-based design
in secret-key models for similar size of keys reach 7 to 9 rounds. For a stronger adversarial
model in the related-key scenario, the two large variants of the AES are theoretically broken by
known results from [3,4]. With 14 rounds or more, the two versions of Deoxys offer a confident
security margin regarding this class of attacks. Interestingly, Deoxys-BC-256-128 is very
similar to AES-256 for a fixed tweak value, but we have shown that a good key schedule can
significantly reduce the number of rounds required for a secure cipher: Deoxys-BC-256-128
only needs 12 rounds to be secure to a related-key attack, whereas AES-256 on 14 rounds is
already subject to a theoretical related-key distinguisher.

• Security proofs. The security arguments of Deoxys are directly inherited from the two
modes used in our design. Indeed, for nonce-respecting users, Deoxys benefits from the
proofs of the OCB3 mode, while for nonce-repeating users, we rely on the provably secure
authenticated encryption mode SCT [33].

• Software implementations. Deoxys achieves good performances for software implementa-
tions. As most of the AES-based designs, it hugely benefits from the new AES-NI instruction
set added in the latest processors. In addition, as we use fully parallelizable modes, the
cycles per byte count drops significantly. The current speed of our nonce-respecting design is
faster than AES-GCM on Intel Sandy Bridge (although AES-GCM ensures only birthday-bound
security).

• Small messages. Deoxys is efficient for small messages, which is particularly important in
many lightweight applications where messages sent are usually composed of a few dozens

21

of bytes. This is common disadvantage of sponge-based or stream cipher based lightweight
designs like FIDES [2] (broken in [14]) or ALE [8] (broken in [25]), which will usually require a
costly initialization. This is also important for Internet traffic as packets sizes can be rather
small. Deoxys is efficient for small messages mainly because it is based on a tweakable block
cipher: it allows to avoid any precomputation (like in OCB, AES-GCM, etc.).

• Theoretical performances. The number of calls to the internal primitive is minimized.
For Deoxys-I, the first 128-bit message block is handled directly, and taking in account the
tag generation, one needs only m+ 1 internal cipher calls to process messages of m blocks
of n bits each, which is optimal. For Deoxys-II, taking in account the tag generation, one
needs only 2m+ 1 internal cipher calls to process messages of m blocks of n bits each (which
is close to be optimal, as at least 2m calls are required to obtain MRAE security), which is
smaller than existing MRAE-secure designs.

• Well-understood design. Deoxys also benefits from the vast research literature on the
cryptanalysis of the AES. Indeed, being an AES-based primitive, the tweakable block cipher
Deoxys-BC is subject to the same class of attacks than AES, which consists of an active
research line since 15 years. It is highly probable that any significant attack on either one
would yield a similar cryptanalytic improvement on the other.

• Simplicity. Deoxys is simple for both the construction of the internal tweakable block cipher
and for the authentication mode. It uses well-studied building blocks and is arguably easy
to analyze. The implementation of Deoxys is also easy, and can reuse the design strategies,
implementations and optimizations available for the AES. Moreover, our two operating modes
are very similar (for example, the way the associated data is handled is exactly the same),
thus further simplifying the analysis and the use of Deoxys.

• Flexibility. Deoxys has smooth parameters handling. We define some recommended pa-
rameter sets in this document, but any user can pick its own variant of the inner tweakable
block cipher Deoxys-BC by adapting the key and tweak sizes at his/her convenience. This
flexibility comes from the unified vision of the key and tweak material brought by the TWEAKEY
framework. It means that one implementation of the cipher is sufficient to support all versions
with different key and tweak sizes (with the same cumulative size). This feature extends to
the whole Deoxys design.

• Side channels. Deoxys can resists to side-channel attacks with the same techniques as AES.
Literature in this area available for the AES can be very easily adapted to the case of any
AES-based designs, including Deoxys.

• Beyond-birthday-bound security. The nonce-misuse resistant mode Deoxys-II provides
graceful (more precisely, linear) degradation of security with the maximal number of nonce
repetitions. This means that security does not collapse to the birthday bound when nonces
are repeated just a few times. In other words, any attack with birthday complexity against
Deoxys-II must repeat the same nonce roughly 2n/2 times.

22

Chapter 6

Design Rationale

The starting point of our design is to provide a sound ad-hoc AES-based tweakable block cipher
that has full security. Having such a primitive is beneficial for many authenticated encryption
modes that are secure beyond the birthday bound, but loose this feature when instantiated with
the current constructions that use a permutation or a cipher as a black box and surround it with
addition of words produced by a finite field multiplications (beyond-birthday security authenticated
encryption modes that use a block cipher remain quite slow).

Therefore, designing a secure tweakable block cipher would enable us to reach full 128-bit
security for both confidentiality and authenticity. This direction of research was not explored
yet as it was believed that ad-hoc tweaking of AES-like ciphers is not an easy task from points of
view of both security and efficiency (adding some extra freedom to the attacker seems to enable
more powerful attacks and thus implies many more rounds). As our design is lightweight, we are
also careful in choosing the internal permutations of the cipher and the mode that provides the
authenticated encryption.

The designer/designers have not hidden any weaknesses in this cipher.

6.1 Details for the STK Construction

Designing a secure round function for block ciphers has become a fairly easy task: an Sbox layer and
a diffusion layer based on MDS code immediately provide good security margin against differential
and linear attacks even when the number of rounds in the cipher is small. The problem when
designing ciphers, however, lies in how to choose the key schedule – for the cipher to be secure the
number of rounds has often to be very large. The complexity of this task increases manifold if the
key size is larger and if the key schedule is supposed to be simple (no non-linear operations, and as
few linear operations as possible).

We provide a solution to tackle the above two main points in the form of the STK construction.
This construction gives a simple key schedule for arbitrary length keys and with an additional
checks on related-key attacks, ensures that the cipher is secure. The number of total rounds in
the cipher is kept fairly small because of a special trick we use in the key schedule. We split the
master key on equal key sizes, each with its own (but similar to the other) simple schedule that
produces subkeys that are added simultaneously to the state. Due to the similarity of the schedules,
and the use of simple linear layers to differentiate them, we can control the number of difference
cancellations happening in the subkeys in a related-key attack. Thus, the security against these
type of attacks can be proven with a number of rounds that is not necessarily very high.

In detail, we denote with TK-p the cipher where the master key is p times larger than the state

23

(and thus is divided into p keys). In Deoxys, we work only with TK-2, and TK-3, but the same
strategy would work when p > 3. Let us choose an arbitrary position of a byte at the beginning
of each of the p key schedules. For instance, we fix the position (1, 1) and we investigate how the
p bytes at this position at the beginning of the p key schedules, change during the production of
the subtweakeys. What is interesting is that as all key schedules apply the same permutation h,
the initial p bytes will always be XORed at the same position in the subtweakeys (taking into
account the definition of the permutation h we can see that the positions through the rounds
change as: (1,1) in the first, (2,1) in the second, (3,2) in the third, (4,4) in the fourth, etc). From
the initial p-tuple of byte values x = [x0

1, . . . , x
0
p], the STK key schedule (which can be seen as p

similar key schedules that differ only in the linear layers used to update them) produces r tuples
[x1

1, . . . , x
1
p], . . . , [x

r
1, . . . , x

r
p], such that xk+1

i = Lj(x
k
i), where Li represents the linear layer that

updates the i-th word of the schedule. All of them are integrated to the internal state by considering
the r + 1 XOR values

⊕p
i=1 x

k
i , for 0 ≤ k ≤ r.

The goal was then to choose the linear layers Li such that the number of difference cancellations
in the sequence

⊕p
i=1 x

k
i is minimized. By choosing the simple LFSRs given in Section 2 (and

already used in the lightweight block cipher SKINNY [1]), we have checked with a computer program
that cancellation of values (and differences in general as the key schedule is linear) in a chosen byte
of TK-p cannot occur more than p− 1 times over 15 consecutive subkeys. For TK-2, this means that
the cumulative difference coming from the p tweakey words can be canceled only once by XOR
for 15 consecutive subkeys. For TK-3, this cancellation event can happen twice for 15 consecutive
subkeys. We note that for the case of Deoxys-BC-384, the number of rounds for which we can
control the difference cancellations (15) is slightly smaller than the total number of rounds of the
cipher (16). However, this has no impact since the security proofs we will aim only apply to a
rather small number of rounds r′ < 16.

The above strategy of designing the key schedule is only the first step that ensures the schedule
is not trivially insecure against related-key attacks (and that does not require a huge number
of rounds to make the cipher secure). The step that follows is the choice of the bytes position
permutation h. It was done after trying several of them. We settled down on the one that provides
security against related-key attacks in the least number of rounds (we inspected the security with
the tools specified in Section 4).

6.2 From Block Cipher to Tweakable Block Cipher

The STK construction (with specified permutation h and linear layers Li) provides only a secure
block cipher with an arbitrary length key. However, turning this block cipher into a tweakable
block cipher is trivial: some bits of the master key are announced as tweak, while the remaining
bits are kept as secret key bits. As the key and the tweak are treated in the same way in our
designs, we give them the general name tweakey. From the TK-2 block cipher that in our case has
256-bit key and 128-bit block, we were able to obtain tweakable block ciphers with 128-bit key and
128-bit tweak (called Deoxys-BC-128-128). A similar transition was made from the TK-3 block
cipher (with 384-bit tweakey) to Deoxys-BC-256-128.

During this transition, it is important to note that the security of the cipher against related-key
(and now related-tweak) attacks does not drop, even though parts of the original master key become
available to the attacker. The reason for this is twofold: first, the key schedule is linear, it never
has any active Sboxes; and second, the XOR of all subkeys/subtweaks in each round to the state
is secret (as long as one of them is secret), and also the state is secret (thus the attacker cannot
reduce the number of active Sboxes by controlling the tweak).

24

Chapter 7

Implementations

7.1 Software Performances

As Deoxys is based on the AES, it allows very efficient software implementations on the processors
that support AES-NI. In addition, the modes allow complete parallelization of the AES-NI calls.
The actual overhead compared to AES mostly comes from the increased number of rounds and
slightly from the tweak schedule. The key schedule plays role only for very short messages, but even
then, it is quite efficient and much faster than the key schedule of AES. Note that the key schedule
uses lightweight LFSR to update the subkey bytes, but not the tweak schedule. This was made on
purpose, as the subkeys are computed once, while the subtweaks change in each call to the block
cipher. For a fixed key, the overhead of the tweak schedule is one XOR and one permutation of 16
bytes, and arguably it is one of the most efficient tweak schedules in the framework of TWEAKEY.

We used the three Intel processor families Intel Sandy Bridge, Intel Haswell and Intel Skylake
with AES-NI enabled to obtain the benchmarks. The code was compiled on Linux with gcc v4.8.1.
The reported speed was taken as an average over multiple execution of the code with the same
fixed message length. We did take into account the key schedule as well as the loading the bytes
from the memory and storing them back to memory.

Our benchmarks for encryption and authentication (simultaneously) using Deoxys-I-128-128

are reported in Table 7.1. For complete and consistent benchmark comparisons with other
authenticated encryption schemes, we refer the interested reader to SUPERCOP available online.1

Platform 128B 256B 512B 1024B 2048B 4096B 8192B 65536B

Intel Sandy Bridge 6.57 3.93 2.60 1.96 1.61 1.45 1.37 1.29

Intel Haswell 4.74 2.85 1.90 1.43 1.18 1.07 1.01 0.96

Intel Skylake 4.01 2.51 1.67 1.29 1.09 0.98 0.93 0.89

Table 7.1: Benchmarks for Deoxys-I-128-128 expressed in cycles per byte on AES-NI enabled
platforms (disable Turbo Boost) for increasing numbers of processed bytes.

We can see that our nonce-respecting mode Deoxys-I performs well, and is faster than AES-GCM

on Intel Sandy Bridge. The second mode Deoxys-II is expected to be around twice slower as it
requires about twice more calls to the internal cipher. As expected, the cycle per byte count in the
first mode stabilizes after the message length reaches 256-512 bytes or more. This is due to the fact
that no preprocessing step is required to start the cipher calls.

1https://bench.cr.yp.to/ebaead.html

25

https://bench.cr.yp.to/ebaead.html

Although the above benchmark rely on the AES-NI instruction set, the simplicity of the tweak
schedule guarantees that the speed ratio compared to AES will remain the same even if we used a
simple table look-up implementation of AES. In fact, the overhead of the tweak schedule in this case
compared to AES, will be very small, and the speed of Deoxys-BC will be very close to the speed of
AES.

7.2 Hardware Performances

7.2.1 ASIC implementations

We report preliminary ASIC implementations from Axel Poschmann and Marc Stöttinger [34].
Xlinx ISE DesignSuite 13.3 and Synopsys DesignCompiler E-2010.12-SP2 were used for func-
tional simulation and synthesis of the designs to the Virtual Silicon (VST) standard cell library
UMCL18G212T3 [37], which is based on the UMC L180 0.18µm 1P6M logic process with a typical
voltage of 1.8 V. For synthesis and for power estimation the compiler was advised to keep the
hierarchy and use a clock frequency of 100 KHz.

Different variants of Deoxys in VHDL have been implemented and their post-synthesis performance
simulated. Two architectures were designed: one is fully serialized, i.e. performing operations on
one cell per clock cycle, and aims for the smallest area possible; the second one is a round-based
implementation, thus performing one round in one clock cycle, resulting in a significant speed-up.
Only the encryption and authentication parts have been implemented (no decryption capability).

The following tables give hardware performance results independently for the internal tweakable
block ciphers and when they are plugged in the modes. Table 7.2 gives hardware performances of
Deoxys-BC-256 and Deoxys-BC-384, while Table 7.3 considers the higher level where the primitives
are plugged into the two modes I and II previous described depending on some test cases (Table 7.4).

Table 7.2: Overview of the ASIC performances of the underlying tweakable block ciphers.

Internal Primitive Architecture Clk Area [GE]

Deoxys-BC-256
Round 14 8,005

Serial 338 2,860

Deoxys-BC-384
Round 16 9,362

Serial 384 3,575

7.2.2 FPGA implementations

We report round-based FPGA implementations from the GMU research team [19], which are
available on the ATHENA website.2 These implementations are CAESAR Hardware API-compliant
implementations (thus with both encryption and decryption capabilities). On Virtex 6, Deoxys-I-
128-128 requires 3250 LUTs for a throughput of 2816 Mbit/s, while on Virtex 7, Deoxys-I requires
3283 LUTs for a throughput of 2844 Mbit/s. As expected, these results locates Deoxys in the same
range as other AES-based candidates.

2https://cryptography.gmu.edu/athena

26

https://cryptography.gmu.edu/athena

Table 7.3: Overview of the ASIC performances for the two modes I and II for the two tweakable
block cipher versions.

Mode TBC Arch.
Clock Cycles for Test Case

Area [GE]
I II III IV V VI VII

I

Deoxys-BC-256
Round 22 60 79 62 82 81 120 12,496

Round∗ 19 57 76 59 79 78 117 11,936

Deoxys-BC-384
Round 24 66 87 68 90 89 132 13,872

Round∗ 21 63 84 65 87 86 129 13,326

II

Deoxys-BC-256
Round 58 96 115 137 176 156 214 12,744

Round∗ 55 93 112 134 173 153 211 12,068

Deoxys-BC-384
Round 64 106 127 151 194 172 236 14,107

Round∗ 61 103 124 148 191 169 233 13,422

∗ slightly modified API.

Table 7.4: Test cases and length (in bytes) of Associated Data, Message, Key, and Nonce.

Test Case AD Message Key Nonce

I 0 0 16 8

II 32 0 16 8

III 33 0 16 8

IV 0 32 16 8

V 0 33 16 8

VI 16 32 16 8

VII 17 33 16 8

27

Chapter 8

Intellectual Property

Deoxys is not patented and is free for use in any application. If any of this information changes,
the submitter/submitters will promptly (and within at most one month) announce these changes
on the crypto-competitions mailing list. We note that since Deoxys-I uses a mode that presents
similarities with the generic ΘCB3 framework, it is unclear if patents relative to OCB (such as
United States Patent No. 7,046,802; United States Patent No. 7,200,227; United States Patent No.
7,949,129; United States Patent No.8,321,675) apply to our proposal.

28

Chapter 9

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. The submitter/submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter/submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms, and
that an excellent algorithm might fail to be selected simply because not enough analysis was
available at the time of the committee decision. The submitter/submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are
not subject to appeal. The submitter/submitters understand that if they disagree with published
analyses then they are expected to promptly and publicly respond to those analyses, not to wait
for subsequent committee decisions. The submitter/submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection committee.

29

Acknowledgments

The authors would like to thank the anonymous reviewer of the CAESAR commitee for their
helpful comments and suggestions. Moreover, we would like to individually thank Tetsu Iwata,
Guo Jian, Gaëtan Leurent and Wang Lei for very fruitful discussions on authenticated encryption
designs. Moreover, we are very grateful to Christof Beierle and Anne Canteaut for pointing to
us issues in our first general formulations of the bound on the number of active Sboxes coming
from the subtweakeys schedule in the STK construction. Finally, the authors would like to thank
Axel Poschmann and Marc Stöttinger for their hardware implementations of Deoxys presented in
Section 7.2. This work is supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06).

30

Bibliography

[1] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P.,
Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
Robshaw, M., Katz, J., eds.: Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II. Volume 9815 of Lecture Notes in Computer Science., Springer (2016) 123–153

[2] Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: Lightweight Authenti-
cated Cipher with Side-Channel Resistance for Constrained Hardware. In Bertoni, G., Coron,
J.S., eds.: CHES 2013. Volume 8086 of LNCS., Springer (August 2013) 142–158

[3] Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192 and AES-256.
In Matsui, M., ed.: ASIACRYPT 2009. Volume 5912 of LNCS., Springer (December 2009)
1–18

[4] Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full
AES-256. In Halevi, S., ed.: CRYPTO 2009. Volume 5677 of LNCS., Springer (August 2009)
231–249

[5] Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Characteristics in
Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In Gilbert,
H., ed.: EUROCRYPT. Volume 6110 of Lecture Notes in Computer Science., Springer (2010)
322–344

[6] Biryukov, A., Nikolić, I.: Search for Related-Key Differential Characteristics in DES-Like
Ciphers. In Joux, A., ed.: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer
(2011) 18–34

[7] Biryukov, A., Wagner, D.: Slide Attacks. In Knudsen, L.R., ed.: FSE’99. Volume 1636 of
LNCS., Springer (March 1999) 245–259

[8] Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-Based
Lightweight Authenticated Encryption. In Moriai, S., ed.: FSE 2013. Volume 8424 of LNCS.,
Springer (March 2014) 447–466

[9] Canteaut, A., ed.: FSE 2012. In Canteaut, A., ed.: FSE 2012. Volume 7549 of LNCS., Springer
(March 2012)

[10] Cogliati, B., Seurin, Y.: An Efficient and Nonce-Misuse Resistant MAC Based on a Tweakable
Block Cipher. Draft manuscript (2016)

[11] Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In Nyberg, K., ed.:
FSE 2008. Volume 5086 of LNCS., Springer (February 2008) 116–126

[12] Derbez, P., Fouque, P.A., Jean, J.: Faster Chosen-Key Distinguishers on Reduced-Round AES.
In Galbraith, S.D., Nandi, M., eds.: INDOCRYPT 2012. Volume 7668 of LNCS., Springer
(December 2012) 225–243

31

[13] Derbez, P., Fouque, P.A., Jean, J.: Improved Key Recovery Attacks on Reduced-Round AES
in the Single-Key Setting. In Johansson, T., Nguyen, P.Q., eds.: EUROCRYPT 2013. Volume
7881 of LNCS., Springer (May 2013) 371–387

[14] Dinur, I., Jean, J.: Cryptanalysis of FIDES. In Cid, C., Rechberger, C., eds.: FSE 2014.
Volume 8540 of LNCS., Springer (March 2015) 224–240

[15] Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192
and AES-256. In Abe, M., ed.: ASIACRYPT 2010. Volume 6477 of LNCS., Springer (December
2010) 158–176

[16] Emami, S., Ling, S., Nikolić, I., Pieprzyk, J., Wang, H.: The resistance of PRESENT-80
against related-key differential attacks. Cryptography and Communications (2013) 1–17

[17] Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line
Authenticated Encryption Schemes. [9] 196–215

[18] Fouque, P.A., Jean, J., Peyrin, T.: Structural Evaluation of AES and Chosen-Key Distinguisher
of 9-Round AES-128. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I. Volume 8042
of LNCS., Springer (August 2013) 183–203

[19] Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster, B.Y.: Athena-
automated tool for hardware evaluation: Toward fair and comprehensive benchmarking of
cryptographic hardware using fpgas. In: 2010 International Conference on Field Programmable
Logic and Applications, IEEE (2010) 414–421

[20] Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permuta-
tions. [21] 365–383

[21] Hong, S., Iwata, T., eds.: FSE 2010. In Hong, S., Iwata, T., eds.: FSE 2010. Volume 6147 of
LNCS., Springer (February 2010)

[22] Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist Grøstl.
[9] 110–126

[23] Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The TWEAKEY
Framework. In Sarkar, P., Iwata, T., eds.: ASIACRYPT 2014, Part II. Volume 8874 of LNCS.,
Springer (December 2014) 274–288

[24] Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. [21] 333–346

[25] Khovratovich, D., Rechberger, C.: The LOCAL Attack: Cryptanalysis of the Authenticated
Encryption Scheme ALE. In Lange, T., Lauter, K., Lisonek, P., eds.: SAC 2013. Volume 8282
of LNCS., Springer (August 2014) 174–184

[26] Kranz, T., Leander, G., Wiemer, F.: Linear Cryptanalysis: On Key Schedules and Tweakable
Block Ciphers. Preprint (2016)

[27] Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption Modes. In
Joux, A., ed.: FSE 2011. Volume 6733 of LNCS., Springer (February 2011) 306–327

[28] Li, L., Jia, K., Wang, X.: Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE.
Cryptology ePrint Archive, Report 2013/573 (2013)

[29] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. Journal of Cryptology 24(3)
(July 2011) 588–613

[30] McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM). Submission to NIST.
http://csrc. nist. gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf (2004)

32

[31] Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis Using
Mixed-Integer Linear Programming. In Wu, C., Yung, M., Lin, D., eds.: Inscrypt. Volume
7537 of Lecture Notes in Computer Science., Springer (2011) 57–76

[32] Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In Rabin, T., ed.:
CRYPTO 2010. Volume 6223 of LNCS., Springer (August 2010) 370–392

[33] Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for Tweakable
Block Ciphers. In Robshaw, M., Katz, J., eds.: Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I. Volume 9814 of Lecture Notes in Computer Science., Springer (2016)
33–63

[34] Poschmann, A., Stöttinger, M. Personal communication

[35] Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In
Vaudenay, S., ed.: EUROCRYPT 2006. Volume 4004 of LNCS., Springer (May / June 2006)
373–390

[36] Sun, S., Hu, L., Wang, P.: Automatic Security Evaluation for Bit-oriented Block Ciphers in
Related-key Model: Application to PRESENT-80, LBlock and Others. Cryptology ePrint
Archive, Report 2013/676 (2013)

[37] Virtual Silicon Inc.: 0.18 µm VIP Standard Cell Library Tape Out Ready, Part Number:
UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology: 0.18µm (July 2004)

[38] Wu, H.: Related-Cipher Attacks. In Deng, R.H., Qing, S., Bao, F., Zhou, J., eds.: Information
and Communications Security, 4th International Conference, ICICS 2002, Singapore, December
9-12, 2002, Proceedings. Volume 2513 of Lecture Notes in Computer Science., Springer (2002)
447–455

33

Appendix A

AES Sbox and constants

A.1 AES Sbox and its inverse

We define here the AES Sbox S and its inverse S−1, as an array where the value of S(x) can be
found at the position x in the array.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF

0x 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1x CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2x B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3x 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4x 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5x 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6x D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7x 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8x CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9x 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

Ax E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

Bx E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

Cx BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

Dx 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

Ex E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

Fx 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table A.1: The AES Sbox S. The retrieve the value of S(x), convert x to its hexadecimal
representation, and use its four leftmost bits x and four rightmost bits y as coordinates in the table.
For example S(0x25) = 0x3F.

34

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF

0x 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1x 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2x 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3x 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4x 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5x 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6x 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7x D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8x 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9x 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

Ax 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

Bx FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

Cx 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

Dx 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

Ex A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

Fx 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table A.2: The AES inverse Sbox S−1. The retrieve the value of S(x), convert x to its hexadecimal
representation, and use its four leftmost bits x and four rightmost bits y as coordinates in the table.
For example S(0x3F) = 0x25.

A.2 RCON constants

The Table A.3 below gives the values of constants RCON used in the tweakey scheduling algorithm
of the Deoxys.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RCON[i] 2f 5e bc 63 c6 97 35 6a d4 b3 7d fa ef c5 91 39 72

Table A.3: The RCON constants used in the key scheduling algorithm. The constants are written
on lines from left to right, from top to bottom. For example, RCON[1] = 0x2f, RCON[2] = 0x5e, and
RCON[11])=0xb3.

35

Appendix B

Changelog

B.1 Changelog from v1.3 to v1.41

We detail here the differences between v1.3 and v1.41 of this document.

1. Applied four minor tweaks on the Deoxys design:

(a) Replaced in the tweakey schedule of Deoxys-BC the multiplications in GF(28) by simpler
and cheaper linear layers.

(b) Changed the way the nonce is handled in the authentication part of Deoxys-II, leading
to a more efficient construction with higher security guarantees.

(c) (from v1.4 to v1.41) Replaced the modular addition by an XOR in the tweak inputs of
the encryption part of Deoxys-II for faster implementations.

(d) (from v1.4 to v1.41) Increased the message length counter by one when handling the
checksum in Deoxys-I for faster implementations.

2. Renamed the modes Deoxys-6= and Deoxys-= to Deoxys-I and Deoxys-II, respectively.

3. Removed the STK construction security explanation, added instead the exact cancellations
periods for the Deoxys-BC tweakey schedule.

4. Added use-cases in recommended parameter set of Section 2.2.

5. Added a paragraph on cipher instances separation.

6. Completed the hardware implementation Section 7.2.

7. Completed the security analysis Section 4.

8. Added a section on comparing Deoxys-BC with AES.

B.2 Changelog from v1.2 to v1.3

We detail here the differences between v1.2 and v1.3 of this document.

1. the most important modification is the replacement of the COPA-based mode by the new
Synthetic Counter in Tweak (SCT) mode when nonce-misuse resistance is required.

2. for the the nonce-respecting mode E 6= and D 6=, the nonce N is removed from the tweak
input during the processing of the associated data, offering considerable speed-up when the
associated data is fixed.

36

3. made the security claims more precise.

B.3 Changelog from v1.1 to v1.2

We detail here the differences between v1.1 and v1.2 of this document.

1. Removed one block cipher call in the associated data in the case this input is empty.

2. Changed the wrong ”nibble” wording to ”byte”.

B.4 Changelog from v1 to v1.1

1. Complete specifications of the nonce-misuse resistant mode.

2. Website link added.

3. Acknowledgments section added.

4. Typos and minor inconsistencies corrected.

5. Absence of hidden weaknesses statement added.

37

	Introduction
	Specification
	Parameters
	Recommended Parameter Sets
	The Authenticated Encryption Deoxys
	The Tweakable Block Cipher Deoxys-BC

	Security Claims
	Claims
	Comparison of Deoxys Modes With Other Modes

	Security Analysis
	Differential Cryptanalysis
	Linear Cryptanalysis
	Meet-in-the-Middle Attacks
	Security Against Other Attacks
	Comparing Deoxys-BC with AES

	Features
	Design Rationale
	Details for the STK Construction
	From Block Cipher to Tweakable Block Cipher

	Implementations
	Software Performances
	Hardware Performances

	Intellectual Property
	Consent
	AES Sbox and constants
	AES Sbox and its inverse
	RCON constants

	Changelog
	Changelog from v1.3 to v1.41
	Changelog from v1.2 to v1.3
	Changelog from v1.1 to v1.2
	Changelog from v1 to v1.1

