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1 Introduction

Authenticated encryption mode is one of the commonly used method in the de-
sign of authenticated ciphers. The ISO/IEC 19772:2009 [9] standardized several
modes for authenticated encryption, including EAX [2], CCM [22], GCM [17]
and OCB 2.0 [21]. And a number of other authenticated encryption modes have
been proposed in the past two decades, e.g., IAPM [12], CWC [14], HBS [11],
BTM [10] and McOE [7].

An important trend in the current development of cryptography is to design
lightweight cryptographic primitives since the increasing needs for low-cost em-
bedded systems such as RFID tags, sensor networks and smart cards. Several
authenticated encryption schemes have been proposed for the lightweight usage,
such as Hummingbird-2 [6], ALE [4], and FIDES [3].

However, those above mentioned lightweight authenticated encryption schemes
are dedicated design and can not be used as a mode of operation to convert an
encryption scheme into an authenticated cipher. Moreover, it turns out that
it is quite difficult to construct a secure lightweight authenticated cipher. Se-
curity flaws were discovered for ALE and FIDES shortly after their publica-
tions [5, 13, 23]. Hence, it is meaningful to develop secure lightweight authenti-
cated encryption modes so that the previous designs of lightweight block ciphers
can be converted to lightweight authenticated ciphers.

In this document, we propose a lightweight authenticated encryption mode
JAMBU. Then we use the block ciphers SIMON and AES-128 to construct an
authenticated ciphers – SIMON-JAMBU and AES-JAMBU.

2 The JAMBU Mode of Operation

2.1 Preliminary

2.1.1 Operations

The following operations are used in JAMBU:
⊕ : bit-wise exclusive OR.
‖ : concatenation.

2.1.2 Notations and Constants

The following notations are used in JAMBU specifications.
0a : a bit of ‘0’s.
AD : associated data (this data will not be encrypted or decrypted).
adlen : bit length of the associated data with 0 ≤ adlen < 264.
C : ciphertext.
Ci : a ciphertext block (the last block may be a partial block).
EK : encryption of one block using the secret key K.
IV : initialization vector used in JAMBU.
K : secret key used in JAMBU.
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msglen : bit length of the plaintext/ciphertext with 0 ≤ msglen < 264.
mi : a data block.
n : half of the block size used in JAMBU.
N : number of the associated data blocks and plaintext blocks after

padding. N = NA +NP

NA : number of the associated data blocks after padding.
NP : number of the plaintext blocks after padding.
P : plaintext.
Pi : a plaintext block (the last block may be a partial block).
R : an additional state used for encryption. The size is half of the

block size.
S : an internal state which will be used for encryption.
T : authentication tag.
t : bit length of the authentication tag

2.2 Parameters

As an authenticated encryption mode, JAMBU accepts the underlying block
ciphers with even bits block size which is denoted by 2n. The key size is the
same as the one used in the block cipher. The tag length is n bits. We limit the
maximum length of messages to be 2n bits under a single key.

2.3 Padding

The following padding scheme is used in JAMBU . For associated data, a ’1’ bit
is padded followed by the least number of ‘0’ bits to make the length of padded
associated data a multiple of n-bit. Then the same padding method is applied
to the plaintext.

2.4 Initialization

JAMBU uses an n-bit initialization vector(IV). The initialization vector (public
message number) is public. Each key/IV pair should be used only once to achieve
the maximum security of the scheme.

Let (X,Y ) represent the composition of n-bit states X and Y which results
in a state of 2n-bit. The initial state is set as S−1 = (0n, IV ). The following
operations are used for initialization.

1. (X−1, Y−1) = EK(S−1);
2. R0 = X−1;
3. S0 = (X−1, Y−1 ⊕ 5).

The initialization of JAMBU is shown in Fig. 1.
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Fig. 1: Initialization of JAMBU .

2.5 Processing the associated data

The associated data is divided into n-bit blocks and processed sequentially. For
the last block, the padding scheme is applied to make it a full block. Note that
at least one block is processed in the processing of AD. Namely, if the length
of AD, adlen, is 0, a padded block 1 ‖ 0n−1 will be processed. Let NA be the
number of AD blocks after padding, the AD is processed as follows.

- For i = 0 to NA − 1, we update the states:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕Ai;
Vi+1 = Yi ⊕Ri ⊕ 1;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.

Fig. 2 shows the processing of two blocks of associated data.

Fig. 2: Processing associated data.

2.6 Encryption of JAMBU

In the encryption of JAMBU, the plaintext is divided into blocks of n-bit. And
the last block is padded using the padding scheme specified previously. In each
step of the encryption, a plaintext block Pi is encrypted to a ciphertext block
Ci.



6

If the last plaintext block is a full block, a block of “1||0n−1” is processed
without any output. Fig. 3 shows the encryption of two plaintext blocks.

Let NP be the number of plaint blocks after padding, the encryption is de-
scribed as follows:

- For i = NA to NA + NP − 1, we perform encryption and update the state:
(Xi, Yi) = EK(Si);
Ui+1 = Xi ⊕ Pi−NA

;
Vi+1 = Yi ⊕Ri;
Si+1 = (Ui+1, Vi+1);
Ri+1 = Ri ⊕ Ui+1.
Ci−NA

= Pi−NA
⊕ Vi+1 if i < NA +NP − 1 or the last plaintext block is a

partial block; otherwise, CNP−1 will not be computed.

- The final ciphertext block is truncated to the actual length of last plaintext
block from the most significant bit side.

Fig. 3: Processing the plaintext.

2.7 Finalization and tag generation

After all the padded plaintext blocks are processed, suppose the state is SN+1

and RN+1 (N = NA +NP − 1), we use following steps to generate the authen-
tication tag, see Fig. 4.

1. (XN+1, YN+1) = EK(SN+1);
2. UN+2 = XN+1;
3. VN+2 = YN+1 ⊕RN+1 ⊕ 3;
4. RN+2 = RN+1 ⊕XN+1;
5. SN+2 = (XN+2, YN+2);
6. Authentication tag is generated as T = RN+2 ⊕XN+2 ⊕ YN+2.
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Fig. 4: Finalization and tag generation.

2.8 The decryption and verification

The decryption and verification are similar to the encryption and authentication,
except that the ciphertext block is XORed with the sub-state V to compute the
plaintext block. For the final block, the ciphertext is padded using the same
scheme as the plaintext before the XOR operation. If the length of ciphertext
block is a multiple of n, another block of “1||0n−1” is processed similar as in the
encryption.

A tag T ′ is generated after the decryption and is compared to the tag T . If
the two tags match, the plaintext is outputted.

3 The SIMON-JAMBU and AES-JAMBU authenticated
ciphers

To construct a lightweight authenticated cipher using JAMBU, there are many
choices of underlying block ciphers. In this specification, we use SIMON [1] as our
primary choice of underlying block ciphers. We remark that JAMBU is capable
to be used with any other block ciphers, especially for those which are designed
for the lightweight applications.

The SIMON-JAMBU authenticated ciphers

In this specification, we take SIMON as our primary choice of the application
of JAMBU. SIMON is a family of lightweight blocks cipher published by NSA
in 2013. It specifies 10 block ciphers with block sizes 32, 48, 64, 96, 128 bits
and key sizes 64, 72, 96, 128, 144, 192, 256 bits in the SIMON family. SIMON
uses the Feistel network with simple round operations which are efficient in both
hardware and software. The Feistel network can be easily adopted in JAMBU
as the internal state of the block cipher is naturally divided into two sub-states.
In this document, we will use SIMON64/96, SIMON96/96, SIMON128/128 in
our designs of SIMON-JAMBU authenticated ciphers.
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As required by the CAESAR competition, we include a description of SIMON
block cipher in the Appendix A from the original paper [1] so as to make the
SIMON-JAMBU self-contained.

The AES-JAMBU authenticated cipher
We also apply the JAMBU mode to the most widely used block cipher AES-128
and construct an authenticated cipher AES-JAMBU. Although AES itself is not
designed for lightweight usage, it is often needed to be employed in constrained
devices. AES-JAMBU will be a good choice when authenticated encryption is
needed based on AES in such cases for the very small additional area.

Recommended parameter sets

• Primary recommendation: SIMON-JAMBU96/96
96-bit key, 48-bit nonce, 144-bit state, 48-bit tag
Reason: lightweight state size with reasonable security.
Use Case 1: Lightweight applications.
Use Case 3: Defense in depth.

• Secondary recommendation: SIMON-JAMBU64/96
96-bit key, 32-bit nonce, 96-bit state, 32-bit tag
Reason: very small state size to fit extremely constrained condition.
Use Case 1: Lightweight applications.
Use Case 3: Defense in depth.

• Tertiary recommendation: SIMON-JAMBU128/128
128-bit key, 64-bit nonce, 192-bit state, 64-bit tag
Reason: provide high security level with SIMON128/128.
Use Case 1: Lightweight applications.
Use Case 3: Defense in depth.

• Quaternary recommendation: AES-JAMBU
128-bit key, 64-bit nonce, 192-bit state, 64-bit tag
Reason: provide high security level with widely used AES-128.
Use Case 3: Defense in depth.
Use Case 1: Lightweight applications.

4 Security Goals

4.1 Security of JAMBU in a nonce-respecting scenario

The security goals of JAMBU are given in Table 1. The total length of messages
(plaintext and associated data) protected by a single key is limited to 2n bits
(for a block cipher with 2n-bit block size). To achieve the maximum security,
each key and IV pair should be used to protect only one message. If verification
fails, the new tag and the decrypted ciphertext should not be given as output.

Note that the integrity security in Table 1 includes the integrity security
of plaintext, associated data and nonce and under the assumption that κ-bit
encryption security is employed and n-bit tag is generated.
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Table 1: Security Goals of JAMBU. (κ-bit key, 2n-bit block size.)

Confidentiality (bits) Integrity (bits)

JAMBU κ n

4.2 Security of JAMBU in a nonce-misuse scenario

In case that nonce is reused under the same key, the integrity security of JAMBU
remains as n-bit. Currently, we proved that when the total message size is less
than 2n/2 bits, the integrity security of JAMBU remains as n-bit.

The confidentiality of JAMBU is partially compromised when nonce is reused.
If the first i plaintext blocks are the same, then the (i + 1)-th and (i + 2)-th
plaintext blocks are insecure. (It is obvious that the security of the (i + 1)-th
plaintext block is insecure when nonce is reused. It was shown in [19] that if the
first i plaintext blocks are the same, then the (i + 2)-th plaintext block is also
insecure if the attacker can repeat the attack using the same nonce and chosen
plaintexts for 2n/2 times.)

If the ciphertext is released when verification fails, the security of JAMBU is
similar to that of nonce reuse.

5 The Security Analysis of JAMBU

In this section, we analyze the encryption and authentication security of JAMBU.

5.1 Encryption Security of JAMBU

5.1.1 Nonce-Respecting Scenario

The encryption of JAMBU can be seen as a variant of the Cipher Feedback
(CFB) mode from the NIST recommendation [18]. The main difference is that
in JAMBU the message block and an additional state block R are XORed with
the internal state. The encryption of JAMBU is expected to be as strong as
the underlying block cipher as long as each key/IV is used to protect only one
message. Thus, the plaintext block and the additional state will not affect the
randomness of the output of the CFB mode, and the confidentiality of JABMU
can be implied from CFB.

5.1.2 Nonce Misuse Scenario

For JAMBU, the encryption has intermediate level of robustness in the nonce
reuse circumstances. More specifically, after the identical blocks in the prefix,
the first and second message blocks are insecure.

Regarding to the encryption security under IV misuse cases, it is not that
meaningful to consider the distinguishing attack, as it can be trivially done. For
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key recovery attack, it is as difficult as breaking the underlying block cipher.
Here we will discuss the plaintext recovery attack without the knowledge of the
key.

Suppose that a nonce-misuse chosen plaintext adversary wants to decrypt
a secure ciphertext block, say Ci+2. If he can find the correct plaintext with
probability greater than 1/2n, he has a better chance than the random guess.
Otherwise the ciphertext is secure. In our setting, the adversary may query
messages with common blocks up to Pi−1 so that the Ci+2 is secure. To de-
crypt Ci+2, Yi+2⊕Ri+2 must be known. Since, Xi+2||Yi+2 = EK(Ui+2||Vi+2), if
Ui+2||Vi+2 has never been queried before, Yi+2 will be random and the adversary
can not win the game. Thus, the adversary must be able to obtain a collision
of Ui+2||Vi+2. Note that Vi+2 = Yi+1 ⊕ Ri+1 does not have common prefix the
any other queries and the value of Ri+1 is secret, this condition can only be
satisfied with probability 1/2n. But since Ci+1 is known and the plaintext can
be chosen, it is possible to obtain a collision on Vi+2. Suppose that there is some
Vj satisfies that Vi+2 = Vj , the probability that Ui+2 = Uj is 1/2n. To see this,
we write the condition as Xi+1⊕Pi+1 = Xj⊕Pj . Since Pi+1 has unique prefix by
our assumption, the value is fixed, and Xi+1, Xj are the output of encryption
which can not be controlled. The probability that Pj = Pi+1 ⊕ Xi+1 ⊕ Xj is
1/2n. Therefore, the probability to obtain a collision of Ui+2||Vi+2 is at most
1/2n. Hence, except the first two blocks after the common prefix, the blocks are
secure.

5.2 Authentication Security of JAMBU

In this section, we analyze the authentication security of JAMBU. We consider
the nonce misuse scenario in our analysis.

Let A be a nonce misuse adversary. Suppose that the total number of queries
A made is q. We assume that the adversary does not make repeated queries or
trivial queries such as decrypting of ciphertext and tag obtained from encryption.
For query j, the message block length is lj . Let the maximum message block
length for all queries be lmax. Since the padding of JAMBU is injective, we only
consider the fully block messages without padding block. For simplicity, we let
all the message blocks be plaintext blocks. When the associated data blocks
are considered, the analysis will be similar. Let (Sj

i , R
j
i ) be the state of before

the block cipher encryption calls to encrypt the i-th plaintext block of the j-th
query (See Fig. 3). M j

i indicates the i-th message block in query j. Using the

same notation as Section 2, Sj
i = (U j

i , V
j
i ) and EK(Sj

i ) = (Xj
i , Y

j
i ). Let CollR

be the event that there exists Rj
lj+2

= Rj′

l′ for 1 ≤ j, j′ ≤ q, 1 ≤ l′ ≤ lj′+2

and (j, lj+2) 6= (j′, l′). Let CollS be the event that there exists Sj
lj+2 = Sj′

l′ for

1 ≤ j, j′ ≤ q, 1 ≤ l′ ≤ lj′+2, and (j, lj+2) 6= (j′, l′).
Then we define event bad = CollR ∧ CollS.
We have the following lemma:

Lemma 1. When event bad does not occur, the adversary A has no advantage
over a random guess.
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Proof. We consider the tag generation in each query. For query j, Tj = Rj
lj+2 ⊕

Xlj+2⊕Ylj+2. Given that the event bad does not occur, either Rj
lj+2 is unknown

to the adversary or the output state of the encryption (Xlj+2, Ylj+2) is unknown
to the adversary. In both case, the best the adversary can do is to make a random
guess on the tag value. ut

Now we need to bound the probability of the event bad.

Lemma 2. Suppose that an adversary makes q queries and each query has max-
imum message length lmax, the probability of event bad occurs is:

Pr(bad) ≤ 3q2l2max

22n
+

2q2lmax

22n
+

5q2

22n+1
− q(lmax + 2)

22n+1

Proof. First, we consider an event CollIn such that there exists internal state

collisions (Sj
i , R

j
i ) = (Sj′

i′ , R
j′

i′ ) for 1 ≤ i < lj + 2, 1 ≤ i′ < lj′ + 2, 1 ≤ j, j′ ≤ q,

(i, j) 6= (i′, j′) and M j
1,...,i 6= M j′

1,...,i′ .
A general approach to construct an internal collision is from the birthday

attack. This was discussed by Preneel and van Oorschot [20], in which it was
shown that all iterated MACs with n-bit internal state can be attacked with
O(2n/2) queries. For JAMBU, the internal state size is 3n bits. Thus, around
23n/2 messages are needed for an internal collision using the birthday attack.

Assume that event CollIn occurs, we will decide the probability. Suppose we
have the first internal collision for query j and j′ such that (Rj

i+1, U
j
i+1, V

j
i+1) =

(Rj′

i′+1, U
j′

i′+1, V
j′

i′+1) (Here we write S as (U, V )). We have Rj
i+1 = Rj

i ⊕ U
j
i+1,

U j
i+1 = Xj

i ⊕M
j
i , and V j

i+1 = Y j
i ⊕R

j
i , and the similar expressions holds for the

states at query j′. Hence, we can derive the following necessary conditions for
the internal collision:

Rj
i = Rj′

i′ (1)

Y j
i = Y j′

i′ (2)

Xj
i ⊕X

j′

i′ = M j
i ⊕M

j′

i′ = δ 6= 0 (3)

Note that condition (3) is non-zero since otherwise another internal state
collision would occur in the previous blocks. We consider two cases:

(a) The adversary does not known δ, so the condition (3) is satisfied with
probability 1/2n. The probability of condition (2) is 1/2n as they are just the
output of an ideal block cipher with a difference in the input. In this case, the
probability of collision for the pair of internal state is bounded by 1/22n.

(b) The adversary obtained the difference δ for M j
1,...,i−1 and M j′

1,...,i′−1.
This is possible in the nonce reuse cases using the method proposed in [19]. Now

we consider condition (1). If U j
i = U j′

i′ , condition (1) implies Xj
i−1 ⊕ X

j′

i′−1 =

M j
i−1 ⊕Mj′i′−1 and Y j

i−1 6= Y j′

i′−1. Note that Xj
i−1 ⊕X

j′

i′−1 = M j
i−1 ⊕Mj′i′−1

holds with probability 1/2n. On the other hand, If U j
i 6= U j′

i′ , M j
i−1⊕Mj′i′−1 =
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Xj
i−1⊕X

j′

i′−1⊕R
j
i−1⊕R

j′

i′−1 which has probability 1/2n. Together with condition
(2), the probability of collision for the pair of internal state is bounded by 1/22n

in this case.
From the above analysis,

Pr(CollIn) ≤ (lmax + 1)2q2

22n
− (lmax + 1)q

22n
(4)

Now consider the conditional probability of event bad on event CollIn. Then
we have

Pr(bad) ≤ Pr(bad | ¬CollIn) + Pr(CollIn) (5)

To bound Pr(bad | ¬CollIn), we consider the tag generation in each query.
For query j, Tj = Rj

lj+2⊕Xlj+2⊕Ylj+2. Given that the event bad does not occur,

either Rj
lj+2 is unknown to the adversary or the output state of the encryption

(Xlj+2, Ylj+2) is unknown to the adversary. In both case, the best the adversary
can do is to make a random guess on the tag value.

Consider the event CollS first. Given that Sj
lj+2 = Sj′

l′ , it can be divided into

two cases: l′ 6= lj′ + 2 and l′ = lj′ + 2.

Case 1: l′ 6= lj′ + 2. It indicates that Sj
lj+2 collides with a state S which is not

the final state of a query. In this case, the following conditions holds:

Xj
lj+1 = Xj′

l′−1 (6)

Y j
lj+1 ⊕ Y

j′

l′−1 = Rj
lj+1 ⊕R

j′

l′−1 ⊕ 3 (7)

We further consider two sub-cases.

Subcase A: Sj
lj+1 = Sj′

l′−1. Under this condition, Rj
lj+1 ⊕ R

j′

l′−1 = 3 holds.

Then M j
lj
⊕M j′

l′−2 = Rj
lj
⊕ Rj′

l′−2 ⊕ 3. Given that ¬CollIn occurs and no

repeated queries are made, Pr((Y j
lj
⊕ Y j′

l′−2 = 3) ∧ (Xj
lj
⊕ Xj′

l′−2 = M j
lj
⊕

M j′

l′−2)) = 1/22n.

Subcase B : Sj
lj+1 6= Sj′

l′−1. Under this condition, the input of a block cipher

encryption has difference and the output difference is fixed by equation (1)
and (2). Hence, the probability is 1/22n.

Summing up the above probabilities, the probability for this case is upper
bounded by q2(lmax + 1)/22n.
Case 2: l′ = lj′ + 2 indicates that Sj

lj+2 collides with a state S which is the

final state of a query. Consider the state Rj and Rj′ .

When Rj
lj+2 = Rj′

lj′+2, immediately we obtain an internal state collision

(Sj
lj+1, R

j
lj+1) = (Sj′

lj′+1, R
j′

lj′+1), which violates the assumption that ¬CollIn.
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When Rj
lj+2 6= Rj′

lj′+2, let Rj
lj+2⊕R

j′

lj′+2 = δ. Then, we have (Y j
lj+1⊕Y

j′

lj′+1 =

δ) and ((Xj
lj+1 ⊕X

j′

lj′+1 = 0. The probability is 1/22n for these two conditions

to hold.

From above analysis,

Pr(bad | ¬CollIn) ≤ 2q2l2max

22n
+

3q2

22n+1
− q

22n+1
(8)

From equation (4), (5) and (8) we get

Pr(bad) ≤ 3q2l2max

22n
+

2q2lmax

22n
+

5q2

22n+1
− q(lmax + 2)

22n+1
(9)

ut

From the Lemma 1 and Lemma 2, we have the following theorem for the
authentication security of JAMBU.

Theorem 1. For a nonce misuse adversary A making at most q queries to
JAMBU with at most lmax blocks of message in each query, the advantage that
the adversary can make a successful forge over random guess has the following
bound

AdvauthJAMBU ≤
3q2l2max

22n
+

2q2lmax

22n
+

5q2

22n+1
− q(lmax + 2)

22n+1
.

Theorem 1 shows that the authentication security of JAMBU is n-bit when the
total message size is less than 2n/2 bits.

6 Features

- Lightweight. In addition to the registers used in the underlying block cipher,
the JAMBU authenticated encryption mode only requires one additional
register with half of the block size. For AES-GCM, two additional registers1

are needed and each has equal length as the block size. And for fast im-
plementation of GCM operations, a look up table is very helpful. However,
when the table is used, a much larger amount of memory will be needed. It
makes AES-GCM not suitable for lightweight implementations.

- Partial resistance against IV reuse. When the IV is accidentally reused under
the same key, the security of encryption and authentication is not completely
compromised. Notice that in AES-GCM, the nonce reuse will lead to the lost
of all confidentially and integrity.

1 The two registers are used to: store the length of P and AD; store the chaining value
for authentication.
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7 Performance

7.1 Hardware performance

The design of JAMBU is hardware-oriented. In the hardware implementation of
authenticated ciphers, the state size is an important factor, especially for low-
cost embedded systems. To compare the hardware efficiency of the authenticated
encryption modes in term of area, We look at the state size when an authenti-
cated encryption mode is applied to a 2n-bit block cipher. We compare the state
size in JAMBU with the existing authentication modes. The results are given in
Table 3. As a lightweight authenticated encryption mode, JAMBU provides the
minimum state size for the hardware implementation.

Table 2: The comparison (in state size) for authenticated encryption modes, assuming
the underlying block cipher has block size 2n bits

Modes State size Increments

CCM 4n 2n
GCM 6n 4n
OCB3 6n 4n
EAX 8n 6n
COPA 6n 4n
CPFB 6n 4n
ELmD 8n 6n
SILC 4n 2n
CLOC 4n 2n

JAMBU 3n n

We implemented SIMON-JAMBU96/96 using the CAESAR hardware API
proposed by Homsirikamolet al. from GMU [8]. On modern FPGA Vertix-7, the
frequency of SIMON-JAMBU96/96 is 434 MHz, using 375 slices (1254 LUTs) in
area. The throughput of SIMON-JAMBU96/96 for long message is 385 Mbits/s.

7.2 Software performance

We implemented SIMON-JAMBU and AES-JAMBU in C code, the AES in-
struction is used in AES-JAMBU. We tested the speed on the Intel Core i7-
4770 3.4GHz processor (Haswell) running 64-bit Linux 14.04. The turbo boost
is turned off, so the CPU runs at 3.4GHz in the experiment. The compiler be-
ing used is gcc 4.8.2, and the options “-O3 -msse2 -maes” are used. The test
is performed by encrypting/decrypting a message repeatedly, and printing out
the final message. To ensure that the tag generation is not removed during the
compiler optimization process, we use the tag as the IV for processing the next
message. To ensure that the tag verification is not removed during the compiler
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optimization process, we sum up the number of failed verifications and print out
the final result.

We tested the speed of CTR, OCB3, GCM, CCM (AES-128 is used in these
modes) on the same machine for comparison. The testing programs of CTR,
OCB3, GCM and CCM are downloaded following the description given Krovetz
and Rogaway in the OCB3 paper [16] and their website [15]. The performance
comparison is given in Table 3.

For 4096-byte messages, the speed of SIMON-JAMBU64/96 is 51.94 cpb
which is about two times of the SIMON64/96 speed, 27.3 cpb, mentioned in [1].
The speed of AES-JAMBU is about 11.6 cpb.

Table 3: The software speed comparison (in cycles per byte) for different message length
on Intel Haswell.

64B 128B 256B 512B 1024B 4096B

AES-128-CTR 1.71 1.52 1.13 1.09 1.00 0.97
AES-128-CCM 6.62 5.56 5.03 4.76 4.63 4.53
AES-128-GCM 5.93 3.84 2.91 2.46 2.24 2.07
AES-128-OCB3 3.46 2.15 1.43 1.09 0.93 0.78

SIMON-JAMBU64/96 83.24 62.78 57.21 54.79 53.21 51.94
SIMON-JAMBU96/96 124.72 95.67 84.93 79.67 76.93 75.08
SIMON-JAMBU128/128 76.11 58.26 49.55 45.61 43.06 41.45
AES-JAMBU 24.41 17.08 13.41 11.57 10.65 9.98

8 Design rationale

JAMBU is designed to be a lightweight authenticated encryption mode which
can offer partial resistance against IV reuse.

To make this mode lightweight, we introduces only an n-bit extra register for
a 2n-bit block size. And we only use the bit-wise XOR operations in the JAMBU
mode.

The padding scheme used in JAMBU does not require the length information
to be stored in a register. This reduces the memory requirements.

To offer a certain level of security against IV reuse, we use a block cipher
encryption in the state update and only half of the state is leaked after encryp-
tion. The plaintext is injected into the other half of the state which is unknown
to the attacker.

Several constants are XORed with the state in JAMBU. They are used to
separate the initialization, associate data processing, plaintext processing, and
finalization.

SIMON-JAMBU takes advantage of the lightweight block cipher SIMON. It
can achieve a very lightweight hardware implementation.
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AES-JAMBU uses AES as the underlying block cipher. It can take advan-
tages from the security analysis AES as well as the fast implementation of AES
using AES-NI.

9 Changes

9.1 Changes from v2 to v2.1

1. There is no tweak to the JAMBU mode.
2. We have re-written the security analysis of JAMBU, which gives more details

of the security bound of JAMBU authentication.
3. Hardware performance data of SIMON-JAMBU96/96 on FPGA is added.
4. Some editorial changes.

9.2 Changes from v1 to v2

1. There is no tweak to the JAMBU mode.
2. We gave more security analysis of the JAMBU mode in Section 5 and Section

6.
3. The lightweight block cipher SIMON is added to the recommended under-

lying block ciphers used in JAMBU mode in Section 3. And the software
performance of SIMON-JAMBU is included in Section 8. In fact, any secure
block cipher can be used in the JAMBU mode.

4. The security claim on encryption security for nonce reuse is slightly changed
in Section 4. The new claim is that if nonce is reused, and if the first i blocks
are the same, then the security of the (i+1)-th and (i+2)-th plaintext blocks
are insecure. (In the v1 document, we claimed that if nonce is reused, and
if the first n blocks are the same, then the security of the (i+ 1)-th block is
insecure.)

10 Intellectual property

JAMBU is not patented and it is free of intellectual property restrictions. If any
of this information changes, the submitter/submitters will promptly (and within
at most one month) announce these changes on the crypto-competitions mailing
list.

11 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission as
a second-round candidate, a third-round candidate, a finalist, a member of the
final portfolio, or any other designation provided by the committee. The sub-
mitter/submitters understand that the committee will not comment on the al-
gorithms, except that for each selected algorithm the committee will simply cite
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the previously published analyses that led to the selection of the algorithm. The
submitter/submitters understand that the selection of some algorithms is not a
negative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision. The submitter/submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee
members and are not subject to appeal. The submitter/submitters understand
that if they disagree with published analyses then they are expected to promptly
and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter/submitters understand that this statement is required
as a condition of consideration of this submission by the CAESAR selection
committee.
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A The specification of SIMON family of block ciphers

SIMON is a family of lightweight blocks cipher published by NSA in 2013. It spec-
ifies 10 block ciphers with block sizes 32, 48, 64, 96, 128 bits and key sizes 64, 72,
96, 128, 144, 192, 256 bits in the SIMON family. SIMON uses the Feistel network
with simple round operations which are efficient in both hardware and software.
Hence the state is denoted as Simon2n for n-bit word. And SIMON2n/mn refers
to 2n-bit internal state with mn-bit key. Note that the key size is always a multi-
ple of the word size n and the value of m can be 2, 3, or 4. In this specification, we
only describe SIMON64/96, SIMON96/96 and SIMON128/128 which are used
to instantiate JAMBU.

Round function:

SIMON2n encryption makes use of the following n-bit operations:

1. bitwise XOR, ⊕,
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2. bitwise AND, &, and
3. left circular shift, Sj by j bits.

For round key k ∈ GF (2)n, the round function is the two-stage Feistel map
Rk : GF (2)n ×GF (2)n → GF (2)n ×GF (2)n define by:

Rk(x, y) = (y ⊕ f(x)⊕ k, x),

where f(x) = (Sx&S8x)⊕ S2x.

Number of rounds:

For SIMON64/96, the number of rounds is 42.
For SIMON96/96, the number of rounds is 52.
For SIMON128/128, the number of rounds is 68.

Key schedule:

The SIMON key schedules take a key and from it generate a sequence of T key
words k0, ..., kT−1, where T is the number of rounds. The round key generation
function depends on the value m for key size mn. The round key (only the cases
used in this specification are provided here) can be computed as follows:

- For k0, ..., km−1, the original m key words are used.
- For ki+m (0 ≤ i < T −m),

ki+m = c⊕ (z2)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2,

ki+m = c⊕ (z2)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3,

where c = 2n−4 is a constant, I is the identity and z2(j) is the jth bit of constant

z2 = 10101111011100000011010010011000101000010001111110010110110011.


