
OCB (v1.1)
Submitted and designed by

Ted Krovetz and Phillip Rogaway
ted@krovetz.net

15 September 2016

Here OCB means the algorithm of RFC 7253 [1]. Rather than rewrite that specification into a new format,
we attach the final RFC as the bulk of this CAESAR submission. We also attach the FSE 2011 paper on
which the RFC is based. It includes a security analysis, design rationale, and performance characteristics.
The first few pages of this submission contain all elements not addressed by the RFC or FSE paper.

0 Change Log

The only changes in this document since submission “OCB (v1)” (15 March 2014) are updating a citation
and adding the paragraph marked “Targeted use cases” (as requested by the CAESAR secretary).

1 Specification

See the attached RFC, Sections 2–4, for a complete specification of OCB. See Section 3 for parameter defi-
nitions and named parameter sets. There are only two parameters in OCB, defining which authenticator
length and which block cipher is used.

2 Security Goals

OCB achieves two security properties, confidentiality and authenticity. Confidentiality is defined via
“indistinguishability from random bits”, meaning that an adversary is unable to distinguish OCB-outputs
from an equal number of random bits. Authenticity is defined via “authenticity of ciphertexts”, meaning
that an adversary is unable to produce any valid nonce-ciphertext pair that it has not already acquired.
When using OCB with a τ-bit authenticator to encrypt messages with ` bytes of combined plaintext and
associated data, an adversary is unable to subvert privacy with probability more than `2/2128, and it is
unable to subvert authenticity with probability more than `2/2128 + 1/2τ .

Name Key Bits Authenticator Bits
AEAD_AES_128_OCB_TAGLEN128 128 128
AEAD_AES_128_OCB_TAGLEN96 128 96
AEAD_AES_128_OCB_TAGLEN64 128 64
AEAD_AES_192_OCB_TAGLEN128 192 128
AEAD_AES_192_OCB_TAGLEN96 192 96
AEAD_AES_192_OCB_TAGLEN64 192 64
AEAD_AES_256_OCB_TAGLEN128 256 128
AEAD_AES_256_OCB_TAGLEN96 256 96
AEAD_AES_256_OCB_TAGLEN64 256 64

The above table lists key and authenticator lengths. The various key lengths provide for different security
levels when brute-force key search is a concern. The tag lengths provide different security levels against
repeated forgery attempts. Integrity guarantees are provided by OCB for the nonce (“public message
number”), ciphertext, and associated data. No “private message number” is employed in OCB. The cipher
may lose all integrity and confidentiality if the legitimate key holder uses the same nonce to encrypt two
different (plaintext, authenticated data) pairs under the same key.

Targeted use cases: OCB primarily targets use case 2: high-performance applications. In particular, OCB
(when based on AES, as in this spec) is intended to have good performance on any platform that has good
AES performance. We have tried to come as close to AES-CTR performance as possible, for strings of all
lengths, subject to preserving provable security.

3 Security Analysis

See the attached paper, “The Software Performance of Authenticated-Encryption Modes”, which first
appeared at FSE 2011 [2].

4 Features

OCB was designed to have the following features.

Fast. OCB is nearly as fast as CTR. Each block encryption requires just a few xor’s on top of an AES call.
Authentication of the ciphertext requires on average just 1.02 additional AES calls per message.

Provably secure. OCB is the result of over a decade of research and development, with several papers
published in well-known outlets [2, 3, 4]. It is secure, in the sense of a nonce-based AE scheme, if its
underlying blockcipher is a strong PRP.

Parallel. Most OCB computations are independent of one another, allowing both hardware and software
acceleration proportional to the available computational units. For example Intel’s Haswell CPU
allows up to seven AES computations to be executed at once, and OCB easily exploits these resources.

Timing-attack resistant. There are no conditional computations in OCB which depend on secret data
(provided the block cipher implementation also has none).

Online. One need not know all of the plaintext or associated data before beginning processing, and the
two can be processed in any order. This is useful when data is streaming and when associated data
is not finalized until after the plaintext is complete.

Static AD. When associated data is unchanging over a series of encryptions, the associated data’s contri-
bution need not be recalculated each time. This reduces successive computation work when multiple
encryptions are associated with the same associated data.

OCB’s security and feature set is similar to GCM’s, but, in many settings, OCB is much more efficient in
software. Also, OCB tags can be truncated to short lengths, which is not true of GCM.

5 Design Rationale

OCB is designed for minimal authentication overhead beyond what is required for provable security and
simple encryption using a block cipher. It is not designed to resist nonce reuse. It is not designed to enjoy
beyond-birthday-bound security. For further discussion of OCB’s design rationale, see the attached FSE
2011 paper [2]. The designers have not hidden any weaknesses in this cipher and know of no hidden
weaknesses.

6 Intellectual Property

Rogaway has received US patents 7,046,802, 7,200,227, 7,949,129, and 8,321,675 on OCB. These patents
are freely licensed over a large space: open-source software, non-military software, and OpenSSL. See
http://www.cs.ucdavis.edu/∼rogaway/ocb/license.htm for more information.

Gligor and Donescu (VDG) and Jutla (IBM) are inventors (owners) on US patents 6,963,976, 6,973,187,
7,093,126, and 8,107,620, all which concern AE but which may or may not apply to OCB.

2

If any of this information changes, the submitters will promptly (and within at most one month) announce
these changes on the crypto-competitions mailing list.

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitters
understand that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
algorithm. The submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are not subject
to appeal. The submitters understand that if they disagree with published analyses then they are expected
to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions. The
submitters understand that this statement is required as a condition of consideration of this submission
by the CAESAR selection committee.

Acknowledgments Mihir Bellare and John Black were coauthors on the CCS 2001 paper that defined the
first version of OCB. Charanjit Jutla’s earlier work, from Eurocrypt 2001, provided our inspiration.

References

[1] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption Algorithm. Internet Engineering Task Force
(IETF) RFC 7253. https://tools.ietf.org/html/rfc7253. May 2014.

[2] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-Encryption Modes. Fast Software
Encryption 2011 (FSE 2011). Lecture Notes in Computer Science, Springer, 2011.

[3] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.
Advances in Cryptology — ASIACRYPT 2004. Lecture Notes in Computer Science, vol. 3329, Springer, pp. 16—31,
2004.

[4] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A Block-Cipher Mode of Operation for Efficient
Authenticated Encryption. ACM Conference on Computer and Communications Security (CCS 2001), ACM Press,
pp. 196–205, 2001.

3

Internet Research Task Force (IRTF) T. Krovetz
Request for Comments: 7253 Sacramento State
Category: Informational P. Rogaway
ISSN: 2070-1721 UC Davis
 May 2014

 The OCB Authenticated-Encryption Algorithm

Abstract

 This document specifies OCB, a shared-key blockcipher-based
 encryption scheme that provides confidentiality and authenticity for
 plaintexts and authenticity for associated data. This document is a
 product of the Crypto Forum Research Group (CFRG).

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Research Task Force
 (IRTF). The IRTF publishes the results of Internet-related research
 and development activities. These results might not be suitable for
 deployment. This RFC represents the consensus of the Crypto Forum
 Research Group of the Internet Research Task Force (IRTF). Documents
 approved for publication by the IRSG are not a candidate for any
 level of Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7253.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Krovetz & Rogaway Informational [Page 1]

https://tools.ietf.org/pdf/rfc5741#section-2
http://www.rfc-editor.org/info/rfc7253
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

RFC 7253 OCB Authenticated Encryption May 2014

Table of Contents

 1. Introduction ..2
 2. Notation and Basic Operations4
 3. OCB Global Parameters ...5
 3.1. Named OCB Parameter Sets and RFC 5116 Constants6
 4. OCB Algorithms ..6
 4.1. Processing Associated Data: HASH6
 4.2. Encryption: OCB-ENCRYPT8
 4.3. Decryption: OCB-DECRYPT9
 5. Security Considerations ..11
 5.1. Nonce Requirements ..12
 6. IANA Considerations ..13
 7. Acknowledgements ...13
 8. References ...14
 8.1. Normative References14
 8.2. Informative References14
 Appendix A. Sample Results15

1. Introduction

 Schemes for authenticated encryption (AE) simultaneously provide for
 confidentiality and authentication. While this goal would
 traditionally be achieved by melding separate encryption and
 authentication mechanisms, each using its own key, integrated AE
 schemes intertwine what is needed for confidentiality and what is
 needed for authenticity. By conceptualizing AE as a single
 cryptographic goal, AE schemes are less likely to be misused than
 conventional encryption schemes. Also, integrated AE schemes can be
 significantly faster than what one sees from composing separate
 confidentiality and authenticity means.

 When an AE scheme allows for the authentication of unencrypted data
 at the same time that a plaintext is being encrypted and
 authenticated, the scheme is an authenticated encryption with
 associated data (AEAD) scheme. Associated data can be useful when,
 for example, a network packet has unencrypted routing information and
 an encrypted payload.

 OCB is an AEAD scheme that depends on a blockcipher. This document
 fully defines OCB encryption and decryption except for the choice of
 the blockcipher and the length of authentication tag that is part of
 the ciphertext. The blockcipher must have a 128-bit blocksize. Each
 choice of blockcipher and tag length specifies a different variant of
 OCB. Several AES-based variants are defined in Section 3.1.

Krovetz & Rogaway Informational [Page 2]

https://tools.ietf.org/pdf/rfc7253
https://tools.ietf.org/pdf/rfc5116

RFC 7253 OCB Authenticated Encryption May 2014

 OCB encryption and decryption employ a nonce N, which must be
 distinct for each invocation of the OCB encryption operation. OCB
 requires the associated data A to be specified when one encrypts or
 decrypts, but it may be zero-length. The plaintext P and the
 associated data A can have any bitlength. The ciphertext C one gets
 by encrypting P in the presence of A consists of a ciphertext-core
 having the same length as P, plus an authentication tag. One can
 view the resulting ciphertext as either the pair (ciphertext-core,
 tag) or their concatenation (ciphertext-core || tag), the difference
 being purely how one assembles and parses ciphertexts. This document
 uses concatenation.

 OCB encryption protects the confidentiality of P and the authenticity
 of A, N, and P. It does this using, on average, about a + m + 1.02
 blockcipher calls, where a is the blocklength of A, m is the
 blocklength of P, and the nonce N is implemented as a counter (if N
 is random, then OCB uses a + m + 2 blockcipher calls). If A is fixed
 during a session, then, after preprocessing, there is effectively no
 cost to having A authenticated on subsequent encryptions, and the
 mode will average m + 1.02 blockcipher calls. OCB requires a single
 key K for the underlying blockcipher, and all blockcipher calls are
 keyed by K. OCB is online. In particular, one need not know the
 length of A or P to proceed with encryption, nor need one know the
 length of A or C to proceed with decryption. OCB is parallelizable:
 the bulk of its blockcipher calls can be performed simultaneously.
 Computational work beyond blockcipher calls consists of a small and
 fixed number of logical operations per call. OCB enjoys provable
 security: the mode of operation is secure assuming that the
 underlying blockcipher is secure. As with most modes of operation,
 security degrades as the number of blocks processed gets large (see
 Section 5 for details).

 For reasons of generality, OCB is defined to operate on arbitrary
 bitstrings. But for reasons of simplicity and efficiency, most
 implementations will assume that strings operated on are bytestrings
 (i.e., strings that are a multiple of 8 bits). To promote
 interoperability, implementations of OCB that communicate with
 implementations of unknown capabilities should restrict all provided
 values (nonces, tags, plaintexts, ciphertexts, and associated data)
 to bytestrings.

 The version of OCB defined in this document is a refinement of two
 prior schemes. The original OCB version was published in 2001 [OCB1]
 and was listed as an optional component in IEEE 802.11i. A second
 version was published in 2004 [OCB2] and is specified in ISO 19772.
 The scheme described here is called OCB3 in the 2011 paper describing
 the mode [OCB3]; it shall be referred to simply as OCB throughout
 this document. The only difference between the algorithm of this RFC

Krovetz & Rogaway Informational [Page 3]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 and that of the [OCB3] paper is that the tag length is now encoded
 into the internally formatted nonce. See [OCB3] for complete
 references, timing information, and a discussion of the differences
 between the algorithms. OCB was initially the acronym for Offset
 Codebook but is now the algorithm’s full name.

 OCB has received years of in-depth analysis previous to its
 submission to the CFRG and has been under review by the members of
 the CFRG for over a year. It is the consensus of the CFRG that the
 security mechanisms provided by the OCB AEAD algorithm described in
 this document are suitable for use in providing confidentiality and
 authentication.

2. Notation and Basic Operations

 There are two types of variables used in this specification, strings
 and integers. Although strings processed by most implementations of
 OCB will be strings of bytes, bit-level operations are used
 throughout this specification document for defining OCB. String
 variables are always written with an initial uppercase letter while
 integer variables are written in all lowercase. Following C’s
 convention, a single equals ("=") indicates variable assignment and
 double equals ("==") is the equality relation. Whenever a variable
 is followed by an underscore ("_"), the underscore is intended to
 denote a subscript, with the subscripted expression requiring
 evaluation to resolve the meaning of the variable. For example, when
 i == 2, then P_i refers to the variable P_2.

 c^i The integer c raised to the i-th power.

 bitlen(S) The length of string S in bits (e.g., bitlen(101) ==
 3).

 zeros(n) The string made of n zero bits.

 ntz(n) The number of trailing zero bits in the base-2
 representation of the positive integer n. More
 formally, ntz(n) is the largest integer x for which 2^x
 divides n.

 S xor T The string that is the bitwise exclusive-or of S and T.
 Strings S and T will always have the same length.

 S[i] The i-th bit of the string S (indices begin at 1, so if
 S is 011, then S[1] == 0, S[2] == 1, S[3] == 1).

 S[i..j] The substring of S consisting of bits i through j,
 inclusive.

Krovetz & Rogaway Informational [Page 4]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 S || T String S concatenated with string T (e.g., 000 || 111
 == 000111).

 str2num(S) The base-2 interpretation of bitstring S (e.g.,
 str2num(1110) == 14).

 num2str(i,n) The n-bit string whose base-2 interpretation is i
 (e.g., num2str(14,4) == 1110 and num2str(1,2) == 01).

 double(S) If S[1] == 0, then double(S) == (S[2..128] || 0);
 otherwise, double(S) == (S[2..128] || 0) xor
 (zeros(120) || 10000111).

3. OCB Global Parameters

 To be complete, the algorithms in this document require specification
 of two global parameters: a blockcipher operating on 128-bit blocks
 and the length of authentication tags in use.

 Specifying a blockcipher implicitly defines the following symbols.

 KEYLEN The blockcipher’s key length in bits.

 ENCIPHER(K,P) The blockcipher function mapping 128-bit plaintext
 block P to its corresponding ciphertext block using
 KEYLEN-bit key K.

 DECIPHER(K,C) The inverse blockcipher function mapping 128-bit
 ciphertext block C to its corresponding plaintext
 block using KEYLEN-bit key K.

 The TAGLEN parameter specifies the length of authentication tag used
 by OCB and may be any value up to 128. Greater values for TAGLEN
 provide greater assurances of authenticity, but ciphertexts produced
 by OCB are longer than their corresponding plaintext by TAGLEN bits.
 See Section 5 for details about TAGLEN and security.

 As an example, if 128-bit authentication tags and AES with 192-bit
 keys are to be used, then KEYLEN is 192, ENCIPHER refers to the
 AES-192 cipher, DECIPHER refers to the AES-192 inverse cipher, and
 TAGLEN is 128 [AES].

Krovetz & Rogaway Informational [Page 5]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

3.1. Named OCB Parameter Sets and RFC 5116 Constants

 The following table gives names to common OCB global parameter sets.
 Each of the AES variants is defined in [AES].

 +----------------------------+-------------+--------+
 | Name | Blockcipher | TAGLEN |
 +----------------------------+-------------+--------+
 | AEAD_AES_128_OCB_TAGLEN128 | AES-128 | 128 |
 | AEAD_AES_128_OCB_TAGLEN96 | AES-128 | 96 |
 | AEAD_AES_128_OCB_TAGLEN64 | AES-128 | 64 |
 | AEAD_AES_192_OCB_TAGLEN128 | AES-192 | 128 |
 | AEAD_AES_192_OCB_TAGLEN96 | AES-192 | 96 |
 | AEAD_AES_192_OCB_TAGLEN64 | AES-192 | 64 |
 | AEAD_AES_256_OCB_TAGLEN128 | AES-256 | 128 |
 | AEAD_AES_256_OCB_TAGLEN96 | AES-256 | 96 |
 | AEAD_AES_256_OCB_TAGLEN64 | AES-256 | 64 |
 +----------------------------+-------------+--------+

 RFC 5116 defines an interface for authenticated-encryption schemes
 [RFC5116]. RFC 5116 requires the specification of certain constants
 for each named AEAD scheme. For each of the OCB parameter sets
 listed above: P_MAX, A_MAX, and C_MAX are all unbounded; N_MIN is 1
 byte, and N_MAX is 15 bytes. The parameter sets indicating the use
 of AES-128, AES-192, and AES-256 have K_LEN equal to 16, 24, and 32
 bytes, respectively.

 Each ciphertext is longer than its corresponding plaintext by exactly
 TAGLEN bits, and TAGLEN is given at the end of each name. For
 instance, an AEAD_AES_128_OCB_TAGLEN64 ciphertext is exactly 64 bits
 longer than its corresponding plaintext.

4. OCB Algorithms

 OCB is described in this section using pseudocode. Given any
 collection of inputs of the required types, following the pseudocode
 description for a function will produce the correct output of the
 promised type.

4.1. Processing Associated Data: HASH

 OCB has the ability to authenticate unencrypted associated data at
 the same time that it provides for authentication and encrypts a
 plaintext. The following hash function is central to providing this
 functionality. If an application has no associated data, then the
 associated data should be considered to exist and to be the empty
 string. HASH, conveniently, always returns zeros(128) when the
 associated data is the empty string.

Krovetz & Rogaway Informational [Page 6]

https://tools.ietf.org/pdf/rfc7253
https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/rfc5116

RFC 7253 OCB Authenticated Encryption May 2014

 Function name:
 HASH
 Input:
 K, string of KEYLEN bits // Key
 A, string of any length // Associated data
 Output:
 Sum, string of 128 bits // Hash result

 Sum is defined as follows.

 //
 // Key-dependent variables
 //
 L_* = ENCIPHER(K, zeros(128))
 L_$ = double(L_*)
 L_0 = double(L_$)
 L_i = double(L_{i-1}) for every integer i > 0

 //
 // Consider A as a sequence of 128-bit blocks
 //
 Let m be the largest integer so that 128m <= bitlen(A)
 Let A_1, A_2, ..., A_m and A_* be strings so that
 A == A_1 || A_2 || ... || A_m || A_*, and
 bitlen(A_i) == 128 for each 1 <= i <= m.
 Note: A_* may possibly be the empty string.

 //
 // Process any whole blocks
 //
 Sum_0 = zeros(128)
 Offset_0 = zeros(128)
 for each 1 <= i <= m
 Offset_i = Offset_{i-1} xor L_{ntz(i)}
 Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i)
 end for

 //
 // Process any final partial block; compute final hash value
 //
 if bitlen(A_*) > 0 then
 Offset_* = Offset_m xor L_*
 CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_*
 Sum = Sum_m xor ENCIPHER(K, CipherInput)
 else
 Sum = Sum_m
 end if

Krovetz & Rogaway Informational [Page 7]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

4.2. Encryption: OCB-ENCRYPT

 This function computes a ciphertext (which includes a bundled
 authentication tag) when given a plaintext, associated data, nonce,
 and key. For each invocation of OCB-ENCRYPT using the same key K,
 the value of the nonce input N must be distinct.

 Function name:
 OCB-ENCRYPT
 Input:
 K, string of KEYLEN bits // Key
 N, string of no more than 120 bits // Nonce
 A, string of any length // Associated data
 P, string of any length // Plaintext
 Output:
 C, string of length bitlen(P) + TAGLEN bits // Ciphertext

 C is defined as follows.

 //
 // Key-dependent variables
 //
 L_* = ENCIPHER(K, zeros(128))
 L_$ = double(L_*)
 L_0 = double(L_$)
 L_i = double(L_{i-1}) for every integer i > 0

 //
 // Consider P as a sequence of 128-bit blocks
 //
 Let m be the largest integer so that 128m <= bitlen(P)
 Let P_1, P_2, ..., P_m and P_* be strings so that
 P == P_1 || P_2 || ... || P_m || P_*, and
 bitlen(P_i) == 128 for each 1 <= i <= m.
 Note: P_* may possibly be the empty string.

 //
 // Nonce-dependent and per-encryption variables
 //
 Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
 bottom = str2num(Nonce[123..128])
 Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
 Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
 Offset_0 = Stretch[1+bottom..128+bottom]
 Checksum_0 = zeros(128)

Krovetz & Rogaway Informational [Page 8]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 //
 // Process any whole blocks
 //
 for each 1 <= i <= m
 Offset_i = Offset_{i-1} xor L_{ntz(i)}
 C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i)
 Checksum_i = Checksum_{i-1} xor P_i
 end for

 //
 // Process any final partial block and compute raw tag
 //
 if bitlen(P_*) > 0 then
 Offset_* = Offset_m xor L_*
 Pad = ENCIPHER(K, Offset_*)
 C_* = P_* xor Pad[1..bitlen(P_*)]
 Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
 Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
 else
 C_* = <empty string>
 Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
 end if

 //
 // Assemble ciphertext
 //
 C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]

4.3. Decryption: OCB-DECRYPT

 This function computes a plaintext when given a ciphertext,
 associated data, nonce, and key. An authentication tag is embedded
 in the ciphertext. If the tag is not correct for the ciphertext,
 associated data, nonce, and key, then an INVALID signal is produced.

 Function name:
 OCB-DECRYPT
 Input:
 K, string of KEYLEN bits // Key
 N, string of no more than 120 bits // Nonce
 A, string of any length // Associated data
 C, string of at least TAGLEN bits // Ciphertext
 Output:
 P, string of length bitlen(C) - TAGLEN bits, // Plaintext
 or INVALID indicating authentication failure

Krovetz & Rogaway Informational [Page 9]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 P is defined as follows.

 //
 // Key-dependent variables
 //
 L_* = ENCIPHER(K, zeros(128))
 L_$ = double(L_*)
 L_0 = double(L_$)
 L_i = double(L_{i-1}) for every integer i > 0

 //
 // Consider C as a sequence of 128-bit blocks
 //
 Let m be the largest integer so that 128m <= bitlen(C) - TAGLEN
 Let C_1, C_2, ..., C_m, C_* and T be strings so that
 C == C_1 || C_2 || ... || C_m || C_* || T,
 bitlen(C_i) == 128 for each 1 <= i <= m, and
 bitlen(T) == TAGLEN.
 Note: C_* may possibly be the empty string.

 //
 // Nonce-dependent and per-decryption variables
 //
 Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N
 bottom = str2num(Nonce[123..128])
 Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6))
 Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72])
 Offset_0 = Stretch[1+bottom..128+bottom]
 Checksum_0 = zeros(128)

 //
 // Process any whole blocks
 //
 for each 1 <= i <= m
 Offset_i = Offset_{i-1} xor L_{ntz(i)}
 P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i)
 Checksum_i = Checksum_{i-1} xor P_i
 end for

 //
 // Process any final partial block and compute raw tag
 //
 if bitlen(C_*) > 0 then
 Offset_* = Offset_m xor L_*
 Pad = ENCIPHER(K, Offset_*)
 P_* = C_* xor Pad[1..bitlen(C_*)]
 Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
 Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)

Krovetz & Rogaway Informational [Page 10]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 else
 P_* = <empty string>
 Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A)
 end if

 //
 // Check for validity and assemble plaintext
 //
 if (Tag[1..TAGLEN] == T) then
 P = P_1 || P_2 || ... || P_m || P_*
 else
 P = INVALID
 end if

5. Security Considerations

 OCB achieves two security properties, confidentiality and
 authenticity. Confidentiality is defined via "indistinguishability
 from random bits", meaning that an adversary is unable to distinguish
 OCB outputs from an equal number of random bits. Authenticity is
 defined via "authenticity of ciphertexts", meaning that an adversary
 is unable to produce any valid nonce-ciphertext pair that it has not
 already acquired. The security guarantees depend on the underlying
 blockcipher being secure in the sense of a strong pseudorandom
 permutation. Thus, if OCB is used with a blockcipher that is not
 secure as a strong pseudorandom permutation, the security guarantees
 vanish. The need for the strong pseudorandom permutation property
 means that OCB should be used with a conservatively designed, well-
 trusted blockcipher, such as AES.

 Both the confidentiality and the authenticity properties of OCB
 degrade as per s^2 / 2^128, where s is the total number of blocks
 that the adversary acquires. The consequence of this formula is that
 the proven security disappears when s becomes as large as 2^64.
 Thus, the user should never use a key to generate an amount of
 ciphertext that is near to, or exceeds, 2^64 blocks. In order to
 ensure that s^2 / 2^128 remains small, a given key should be used to
 encrypt at most 2^48 blocks (2^55 bits or 4 petabytes), including the
 associated data. To ensure these limits are not crossed, automated
 key management is recommended in systems exchanging large amounts of
 data [RFC4107].

 When a ciphertext decrypts as INVALID, it is the implementor’s
 responsibility to make sure that no information beyond this fact is
 made adversarially available.

 OCB encryption and decryption produce an internal 128-bit
 authentication tag. The parameter TAGLEN determines how many bits of

Krovetz & Rogaway Informational [Page 11]

https://tools.ietf.org/pdf/rfc7253
https://tools.ietf.org/pdf/rfc4107

RFC 7253 OCB Authenticated Encryption May 2014

 this internal tag are included in ciphertexts and used for
 authentication. The value of TAGLEN has two impacts: an adversary
 can trivially forge with probability 2^{-TAGLEN}, and ciphertexts are
 TAGLEN bits longer than their corresponding plaintexts. It is up to
 the application designer to choose an appropriate value for TAGLEN.
 Long tags cost no more computationally than short ones.

 Normally, a given key should be used to create ciphertexts with a
 single tag length, TAGLEN, and an application should reject any
 ciphertext that claims authenticity under the same key but a
 different tag length. While the ciphertext core and all of the bits
 of the tag do depend on the tag length, this is done for added
 robustness to misuse and should not suggest that receivers accept
 ciphertexts employing variable tag lengths under a single key.

 Timing attacks are not a part of the formal security model and an
 implementation should take care to mitigate them in contexts where
 this is a concern. To render timing attacks impotent, the amount of
 time to encrypt or decrypt a string should be independent of the key
 and the contents of the string. The only explicitly conditional OCB
 operation that depends on private data is double(), which means that
 using constant-time blockcipher and double() implementations
 eliminates most (if not all) sources of timing attacks on OCB.
 Power-usage attacks are likewise out of the scope of the formal model
 and should be considered for environments where they are threatening.

 The OCB encryption scheme reveals in the ciphertext the length of the
 plaintext. Sometimes the length of the plaintext is a valuable piece
 of information that should be hidden. For environments where
 "traffic analysis" is a concern, techniques beyond OCB encryption
 (typically involving padding) would be necessary.

 Defining the ciphertext that results from OCB-ENCRYPT to be the pair
 (C_1 || C_2 || ... || C_m || C_*, Tag[1..TAGLEN]) instead of the
 concatenation C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN]
 introduces no security concerns. Because TAGLEN is fixed, both
 versions allow ciphertexts to be parsed unambiguously.

5.1. Nonce Requirements

 It is crucial that, as one encrypts, one does not repeat a nonce.
 The inadvertent reuse of the same nonce by two invocations of the OCB
 encryption operation, with the same key, but with distinct plaintext
 values, undermines the confidentiality of the plaintexts protected in
 those two invocations and undermines all of the authenticity and
 integrity protection provided by that key. For this reason, OCB
 should only be used whenever nonce uniqueness can be provided with
 certainty. Note that it is acceptable to input the same nonce value

Krovetz & Rogaway Informational [Page 12]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 multiple times to the decryption operation. We emphasize that the
 security consequences are quite serious if an attacker observes two
 ciphertexts that were created using the same nonce and key values,
 unless the plaintext and associated data values in both invocations
 of the encrypt operation were identical. First, a loss of
 confidentiality ensues because the attacker will be able to infer
 relationships between the two plaintext values. Second, a loss of
 authenticity ensues because the attacker will be able to recover
 secret information used to provide authenticity, making subsequent
 forgeries trivial. Note that there are AEAD schemes, particularly
 the Synthetic Initialization Vector (SIV) [RFC5297], appropriate for
 environments where nonces are unavailable or unreliable. OCB is not
 such a scheme.

 Nonces need not be secret, and a counter may be used for them. If
 two parties send OCB-encrypted plaintexts to one another using the
 same key, then the space of nonces used by the two parties must be
 partitioned so that no nonce that could be used by one party to
 encrypt could be used by the other to encrypt (e.g., odd and even
 counters).

6. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) has defined a registry
 for Authenticated Encryption with Associated Data parameters. The
 IANA has added the following entries to the AEAD Registry. Each name
 refers to a set of parameters defined in Section 3.1.

 +----------------------------+-------------+------------+
 | Name | Reference | Numeric ID |
 +----------------------------+-------------+------------+
 | AEAD_AES_128_OCB_TAGLEN128 | Section 3.1 | 20 |
 | AEAD_AES_128_OCB_TAGLEN96 | Section 3.1 | 21 |
 | AEAD_AES_128_OCB_TAGLEN64 | Section 3.1 | 22 |
 | AEAD_AES_192_OCB_TAGLEN128 | Section 3.1 | 23 |
 | AEAD_AES_192_OCB_TAGLEN96 | Section 3.1 | 24 |
 | AEAD_AES_192_OCB_TAGLEN64 | Section 3.1 | 25 |
 | AEAD_AES_256_OCB_TAGLEN128 | Section 3.1 | 26 |
 | AEAD_AES_256_OCB_TAGLEN96 | Section 3.1 | 27 |
 | AEAD_AES_256_OCB_TAGLEN64 | Section 3.1 | 28 |
 +----------------------------+-------------+------------+

7. Acknowledgements

 The design of the original OCB scheme [OCB1] was done while Rogaway
 was at Chiang Mai University, Thailand. Follow-up work [OCB2] was
 done with support of NSF grant 0208842 and a gift from Cisco. The
 final work by Krovetz and Rogaway [OCB3] that has resulted in this

Krovetz & Rogaway Informational [Page 13]

https://tools.ietf.org/pdf/rfc7253
https://tools.ietf.org/pdf/rfc5297

RFC 7253 OCB Authenticated Encryption May 2014

 specification was supported by NSF grant 0904380. Thanks go to the
 many members of the Crypto Forum Research Group (CFRG) who provided
 feedback on earlier drafts. Thanks in particular go to David McGrew
 for contributing some text and for managing the RFC approval process,
 to James Manger for initiating a productive discussion on tag-length
 dependency and for greatly improving Appendix A, to Matt Caswell and
 Peter Dettman for writing implementations and verifying test vectors,
 and to Stephen Farrell and Spencer Dawkins for their careful reading
 and suggestions.

8. References

8.1. Normative References

 [AES] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

8.2. Informative References

 [OCB1] Rogaway, P., Bellare, M., Black, J., and T. Krovetz, "OCB:
 A Block-Cipher Mode of Operation for Efficient
 Authenticated Encryption", ACM Conference on Computer and
 Communications Security 2001 - CCS 2001, ACM Press, 2001.

 [OCB2] Rogaway, P., "Efficient Instantiations of Tweakable
 Blockciphers and Refinements to Modes OCB and PMAC",
 Advances in Cryptology - ASIACRYPT 2004, Springer, 2004.

 [OCB3] Krovetz, T. and P. Rogaway, "The Software Performance of
 Authenticated-Encryption Modes", Fast Software Encryption
 - FSE 2011 Springer, 2011.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, October 2008.

Krovetz & Rogaway Informational [Page 14]

https://tools.ietf.org/pdf/rfc7253
https://tools.ietf.org/pdf/rfc5116
https://tools.ietf.org/pdf/bcp107
https://tools.ietf.org/pdf/rfc4107
https://tools.ietf.org/pdf/rfc5297

RFC 7253 OCB Authenticated Encryption May 2014

Appendix A. Sample Results

 This section gives sample output values for various inputs when using
 OCB with AES as per the parameters defined in Section 3.1. All
 strings are represented in hexadecimal (e.g., 0F represents the
 bitstring 00001111).

 The following 16 (N,A,P,C) tuples show the ciphertext C that results
 from OCB-ENCRYPT(K,N,A,P) for various lengths of associated data (A)
 and plaintext (P). The key (K) has a fixed value, the tag length is
 128 bits, and the nonce (N) increments.

 K : 000102030405060708090A0B0C0D0E0F

 An empty entry indicates the empty string.

 N: BBAA99887766554433221100
 A:
 P:
 C: 785407BFFFC8AD9EDCC5520AC9111EE6

 N: BBAA99887766554433221101
 A: 0001020304050607
 P: 0001020304050607
 C: 6820B3657B6F615A5725BDA0D3B4EB3A257C9AF1F8F03009

 N: BBAA99887766554433221102
 A: 0001020304050607
 P:
 C: 81017F8203F081277152FADE694A0A00

 N: BBAA99887766554433221103
 A:
 P: 0001020304050607
 C: 45DD69F8F5AAE72414054CD1F35D82760B2CD00D2F99BFA9

 N: BBAA99887766554433221104
 A: 000102030405060708090A0B0C0D0E0F
 P: 000102030405060708090A0B0C0D0E0F
 C: 571D535B60B277188BE5147170A9A22C3AD7A4FF3835B8C5
 701C1CCEC8FC3358

 N: BBAA99887766554433221105
 A: 000102030405060708090A0B0C0D0E0F
 P:
 C: 8CF761B6902EF764462AD86498CA6B97

Krovetz & Rogaway Informational [Page 15]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 N: BBAA99887766554433221106
 A:
 P: 000102030405060708090A0B0C0D0E0F
 C: 5CE88EC2E0692706A915C00AEB8B2396F40E1C743F52436B
 DF06D8FA1ECA343D

 N: BBAA99887766554433221107
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 C: 1CA2207308C87C010756104D8840CE1952F09673A448A122
 C92C62241051F57356D7F3C90BB0E07F

 N: BBAA99887766554433221108
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 P:
 C: 6DC225A071FC1B9F7C69F93B0F1E10DE

 N: BBAA99887766554433221109
 A:
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 C: 221BD0DE7FA6FE993ECCD769460A0AF2D6CDED0C395B1C3C
 E725F32494B9F914D85C0B1EB38357FF

 N: BBAA9988776655443322110A
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F
 C: BD6F6C496201C69296C11EFD138A467ABD3C707924B964DE
 AFFC40319AF5A48540FBBA186C5553C68AD9F592A79A4240

 N: BBAA9988776655443322110B
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F
 P:
 C: FE80690BEE8A485D11F32965BC9D2A32

 N: BBAA9988776655443322110C
 A:
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F
 C: 2942BFC773BDA23CABC6ACFD9BFD5835BD300F0973792EF4
 6040C53F1432BCDFB5E1DDE3BC18A5F840B52E653444D5DF

Krovetz & Rogaway Informational [Page 16]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 N: BBAA9988776655443322110D
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 C: D5CA91748410C1751FF8A2F618255B68A0A12E093FF45460
 6E59F9C1D0DDC54B65E8628E568BAD7AED07BA06A4A69483
 A7035490C5769E60

 N: BBAA9988776655443322110E
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 P:
 C: C5CD9D1850C141E358649994EE701B68

 N: BBAA9988776655443322110F
 A:
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 C: 4412923493C57D5DE0D700F753CCE0D1D2D95060122E9F15
 A5DDBFC5787E50B5CC55EE507BCB084E479AD363AC366B95
 A98CA5F3000B1479

 Next are several internal values generated during the OCB-ENCRYPT
 computation for the last test vector listed above.

 L_* : C6A13B37878F5B826F4F8162A1C8D879
 L_$: 8D42766F0F1EB704DE9F02C54391B075
 L_0 : 1A84ECDE1E3D6E09BD3E058A8723606D
 L_1 : 3509D9BC3C7ADC137A7C0B150E46C0DA
 bottom : 15 (decimal)
 Ktop : 9862B0FDEE4E2DD56DBA6433F0125AA2
 Stretch : 9862B0FDEE4E2DD56DBA6433F0125AA2FAD24D13A063F8B8
 Offset_0 : 587EF72716EAB6DD3219F8092D517D69
 Offset_1 : 42FA1BF908D7D8D48F27FD83AA721D04
 Offset_2 : 77F3C24534AD04C7F55BF696A434DDDE
 Offset_* : B152F972B3225F459A1477F405FC05A7
 Checksum_1: 000102030405060708090A0B0C0D0E0F
 Checksum_2: 10101010101010101010101010101010
 Checksum_*: 30313233343536379010101010101010

Krovetz & Rogaway Informational [Page 17]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

 The next tuple shows a result with a tag length of 96 bits and a
 different key.

 K: 0F0E0D0C0B0A09080706050403020100

 N: BBAA9988776655443322110D
 A: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 P: 000102030405060708090A0B0C0D0E0F1011121314151617
 18191A1B1C1D1E1F2021222324252627
 C: 1792A4E31E0755FB03E31B22116E6C2DDF9EFD6E33D536F1
 A0124B0A55BAE884ED93481529C76B6AD0C515F4D1CDD4FD
 AC4F02AA

 The following algorithm tests a wider variety of inputs. Results are
 given for each parameter set defined in Section 3.1.

 K = zeros(KEYLEN-8) || num2str(TAGLEN,8)
 C = <empty string>
 for i = 0 to 127 do
 S = zeros(8i)
 N = num2str(3i+1,96)
 C = C || OCB-ENCRYPT(K,N,S,S)
 N = num2str(3i+2,96)
 C = C || OCB-ENCRYPT(K,N,<empty string>,S)
 N = num2str(3i+3,96)
 C = C || OCB-ENCRYPT(K,N,S,<empty string>)
 end for
 N = num2str(385,96)
 Output : OCB-ENCRYPT(K,N,C,<empty string>)

 Iteration i of the loop adds 2i + (3 * TAGLEN / 8) bytes to C,
 resulting in an ultimate length for C of 22,400 bytes when TAGLEN ==
 128, 20,864 bytes when TAGLEN == 192, and 19,328 bytes when TAGLEN ==
 64. The final OCB-ENCRYPT has an empty plaintext component, so
 serves only to authenticate C. The output should be:

 AEAD_AES_128_OCB_TAGLEN128 Output: 67E944D23256C5E0B6C61FA22FDF1EA2
 AEAD_AES_192_OCB_TAGLEN128 Output: F673F2C3E7174AAE7BAE986CA9F29E17
 AEAD_AES_256_OCB_TAGLEN128 Output: D90EB8E9C977C88B79DD793D7FFA161C
 AEAD_AES_128_OCB_TAGLEN96 Output : 77A3D8E73589158D25D01209
 AEAD_AES_192_OCB_TAGLEN96 Output : 05D56EAD2752C86BE6932C5E
 AEAD_AES_256_OCB_TAGLEN96 Output : 5458359AC23B0CBA9E6330DD
 AEAD_AES_128_OCB_TAGLEN64 Output : 192C9B7BD90BA06A
 AEAD_AES_192_OCB_TAGLEN64 Output : 0066BC6E0EF34E24
 AEAD_AES_256_OCB_TAGLEN64 Output : 7D4EA5D445501CBE

Krovetz & Rogaway Informational [Page 18]

https://tools.ietf.org/pdf/rfc7253

RFC 7253 OCB Authenticated Encryption May 2014

Authors’ Addresses

 Ted Krovetz
 Computer Science Department
 California State University, Sacramento
 6000 J Street
 Sacramento, CA 95819-6021
 USA

 EMail: ted@krovetz.net

 Phillip Rogaway
 Computer Science Department
 University of California, Davis
 One Shields Avenue
 Davis, CA 95616-8562
 USA

 EMail: rogaway@cs.ucdavis.edu

Krovetz & Rogaway Informational [Page 19]

https://tools.ietf.org/pdf/rfc7253

The Software Performance of
Authenticated-Encryption Modes

Ted Krovetz∗ Phillip Rogaway†

March 21, 2011

Abstract

We study the software performance of authenticated-encryption modes CCM, GCM, and OCB.
Across a variety of platforms, we find OCB to be substantially faster than either alternative. For
example, on an Intel i5 (“Clarkdale”) processor, good implementations of CCM, GCM, and OCB
encrypt at around 4.2 cpb, 3.7 cpb, and 1.5 cpb, while CTR mode requires about 1.3 cpb. Still
we find room for algorithmic improvements to OCB, showing how to trim one blockcipher call
(most of the time, assuming a counter-based nonce) and reduce latency. Our findings contrast
with those of McGrew and Viega (2004), who claimed similar performance for GCM and OCB.

Key words: authenticated encryption, cryptographic standards, encryption speed, modes of
operation, CCM, GCM, OCB.

An earlier version of this paper appears at Fast Software Encryption 2011 (FSE 2011).

1 Introduction

Background. Over the past few years, considerable effort has been spent constructing schemes for
authenticated encryption (AE). One reason is recognition of the fact that a scheme that delivers both
privacy and authenticity may be more efficient than the straightforward amalgamation of separate
privacy and authenticity techniques. A second reason is the realization that an AE scheme is less
likely to be incorrectly used than an encryption scheme designed for privacy alone.

While other possibilities exist, it is natural to build AE schemes from blockciphers, employing
some mode of operation. There are two approaches. In a composed (“two-pass”) AE scheme one
conjoins essentially separate privacy and authenticity modes. For example, one might apply CTR-
mode encryption and then compute some version of the CBC MAC. Alternatively, in an integrated
(“one-pass”) AE scheme the parts of the mechanism responsible for privacy and for authenticity
are tightly coupled.1 Such schemes emerged around a decade ago, with the work of Jutla [21], Katz
and Yung [23], and Gligor and Donescu [11].

Integrated AE schemes were invented to improve performance of composed ones, but it has not
been clear if they do. In the only comparative study to date [31], McGrew and Viega found that their
composed scheme, GCM, was about as fast as, and sometimes faster than, the integrated scheme
OCB [35] (hereinafter OCB1, to distinguish it from a subsequent variant we’ll call OCB2 [34]).

∗ Computer Science Department, California State University, 6000 J Street, Sacramento, California 95819, USA.
E-mail: tdk@acm.org, URL: http://krovetz.net/csus

† Department of Computer Science, Kemper Hall of Engineering, University of California, Davis, California 95616,
USA. E-mail: rogaway@cs.ucdavis.edu, URL: http://www.cs.ucdavis.edu/~rogaway

1 The distinction between composed and integrated AE schemes is useful but not formal.

http://krovetz.net/csus
http://www.cs.ucdavis.edu/~rogaway

scheme ref date ty high-level description standard

EtM [1] 2000 C Encrypt-then-MAC (and other) generic comp. schemes ISO 19772

RPC [23] 2000 I Insert counters and sentinels in blocks, then ECB —

IAPM [21] 2001 I Seminal integrated scheme. Also IACBC —

XCBC [11] 2001 I Concurrent with Jutla’s work. Also XECB —

! OCB1 [35] 2001 I Optimized design similar to IAPM —

TAE [28] 2002 I Recasts OCB1 using a tweakable blockcipher —

! CCM [39] 2002 C CTR encryption + CBC MAC NIST 800-38C

CWC [24] 2004 C CTR encryption + GF(2127−1)-based CW MAC —

! GCM [31] 2004 C CTR encryption + GF(2128)-based CW MAC NIST 800-38D

EAX [2] 2004 C CTR encryption + CMAC, a cleaned-up CCM ISO 19772

! OCB2 [34] 2004 I OCB1 with AD and alleged speed improvements ISO 19772

CCFB [29] 2005 I Similar to RPC [23], but with chaining —

CHM [18] 2006 C Beyond-birthday-bound security —

SIV [36] 2006 C Deterministic/misuse-resistant AE RFC 5297

CIP [17] 2008 C Beyond-birthday-bound security —

HBS [20] 2009 C Deterministic AE. Single key —

BTM [19] 2009 C Deterministic AE. Single key, no blockcipher inverse —

! OCB3 new 2010 I Refines the prior versions of OCB —

Figure 1: Authenticated-encryption schemes built from a blockcipher. Checks ! indicate schemes
included in our performance study. The column labeled ty (type) specifies if the scheme is integrated (I) or
composed (C). When a scheme is in multiple standards, only a single one is named.

After McGrew and Viega’s 2004 paper, no subsequent performance study was ever published.
This is unfortunate, as there seems to have been a major problem with their work: reference
implementations were compared against optimized ones, and none of the results are repeatable due
to the use of proprietary code. In the meantime, CCM and GCM have become quite important to
cryptographic practice. For example, CCM underlies modern WiFi (802.11i) security, while GCM
is supported in IPsec and TLS.

McGrew and Viega identified two performance issues in the design of OCB1. First, the mode
uses m + 2 blockcipher calls to encrypt a message of m = ⌈|M |/128⌉ blocks. In contrast, GCM
makes do with m+ 1 blockcipher calls. Second, OCB1 twice needs one AES result before another
AES computation can proceed. Both in hardware and in software, this can degrade performance.
Beyond these facts, existing integrated modes cannot exploit the “locality” of counters in CTR
mode—that high-order bits of successive input blocks are usually unchanged, an observation first
exploited, for software speed, by Hongjun Wu [4]. Given all of these concerns, maybe GCM really
is faster than OCB—and, more generally, maybe composed schemes are the fastest way to go. The
existence of extremely high-speed MACs supports this possibility [3, 5, 25].

Contributions. We begin by refining the definition of OCB to address the performance concerns
just described. When the provided nonce is a counter, the mode that we call OCB3 shaves off
one AES encipherment per message encrypted about 98% of the time. In saying that the nonce
is a counter we mean that, in a given session, its top portion stays fixed, while, with each suc-
cessive message, the bottom portion gets bumped by one. This is the approach recommended in
RFC 5116 [30, Section 3.2] and, we believe, the customary way to use an AE scheme. We do not

2

Figure 2: Performance of CCM, GCM, and OCB3 on an x86 with AES-NI. The x-coordinate
is the message length, in bytes; the y-coordinate is the measured number of cycles per byte. From top-to-
bottom on the right-hand side, the curves are for CCM, GCM, and OCB3. The shaded region shows the
time for CTR mode. This and subsequent graphs are best viewed in color.

introduce something like a GF(2128) multiply to compensate for the usually-eliminated blockcipher
call, and no significant penalty is paid, compared to OCB1, if the provided nonce is not a counter
(one just fails to save the blockcipher call). We go on to eliminate the latency that used to occur
when computing the “checksum” and processing the AD (associated data).

Next we study the relative software performance of CCM, GCM, and the different versions of
OCB. We employ the fastest publicly available code for Intel x86, both with and without Intel’s new
instructions for accelerating AES and GCM. For other platforms—ARM, PowerPC, and SPARC—
we use a refined and popular library, OpenSSL. We test the encryption speed on messages of every
byte length from 1 byte to 1 Kbyte, plus selected lengths beyond. The OCB code is entirely
in C, except for a few lines of inline assembly on ARM and compiler intrinsics to access byteswap,
trailing-zero count, and SSE/AltiVec functionality.

We find that, across message lengths and platforms, OCB, in any variant, is well faster than
CCM and GCM. While the performance improvements from our refining OCB are certainly mea-
surable, those differences are comparatively small. Contrary to McGrew and Viega’s findings, the
speed differences we observe between GCM and OCB1 are large and favor OCB1.

As an example of our experimental findings, for 4 KB messages on an Intel i5 (“Clarkdale”)
processor, we clock CCM at 4.17 CPU cycles per byte (cpb), GCM at 3.73 cpb, OCB1 at 1.48 cpb,
OCB2 at 1.80 cpb, and OCB3 at 1.48 cpb. As a baseline, CTR mode runs at 1.27 cpb. See Figures 2
and 3. These implementations exploit the processor’s AES New Instructions (AES-NI), including
“carryless multiplication” for GCM. The OCB3 authentication overhead—the time the mode spends
in excess of the time to encrypt with CTR—is about 0.2 cpb, and the difference between OCB
and GCM overhead is about a factor of 10. Even written in C, our OCB implementations provide,
on this platform, the fastest reported times for AE.

The means for refining OCB are not complex, but it took much work to understand what
optimization would and would not help. First we wanted to arrange that nonces agreeing on all
but their last few bits be processed using the same blockcipher call. To accomplish this in a way that
minimizes runtime state and key-setup costs, we introduce a new hash-function family, a stretch-
then-shift xor-universal hash. The latency reductions are achieved quite differently, by changes in
how the mode defines and operates on the Checksum. Further structural changes improve support
for incremental APIs.

3

Figure 3: Performance of OCB variants on an x86 with AES-NI. From top-to-bottom, the curves
are for OCB2, OCB1, and OCB3. The shaded region shows the time for CTR mode.

One surprising finding is that, on almost all platforms, OCB2 is slightly slower than OCB1. To
explain, recall that most integrated schemes (all of Figure 1 except for RPC) involve computing an
offset for each blockcipher call. With OCB1, each offset is computed by xoring a key-dependent
value, an approach going back to Jutla [21]; with OCB2, each offset is computed by a “doubling”
in GF(2128). The former approach turns out to be faster. The finding emphasizes the utility of
doing implementation work alongside mode design—the approach adopted for OCB3.

During our work we investigated novel ways to realize a maximal period, software-efficient,
128-bit LFSR; such constructions can also be used to make the needed offsets. A computer-aided
search identified constructions like A ∥B ∥C ∥D "→ C ∥D ∥B ∥ ((A≪1)⊕ (A≫1)⊕ (D≪15)); see
Appendix B. Here |A| = |B| = |C| = |D| = 32. While very fast, such maps are still slower than
xoring a precomputed value. Our findings thus concretize Chakraborty and Sarkar’s suggestion [6]
to improve OCB using a fast, 128-bit, word-oriented LFSR—but, in the end, we conclude that the
idea doesn’t really help. Of course software-optimized 128-bit LFSRs may have other applications.

All code and data used in this paper, plus a collection of clickable tables and graphs, are available
from the second author’s webpage.

2 The Mode OCB3

Preliminaries. We begin with a few basics. A blockcipher is a deterministic algorithm E :
K×{0, 1}n→{0, 1}n where K is a finite set and n≥ 1is a number, the key space and blocklength. We
require EK(·)=E(K, ·) be a permutation for all K ∈ K. Let D=E−1 be the map from K× {0, 1}n
to {0, 1}n defined by DK(Y) = D(K,Y) being the unique point X such that EK(X) = Y .

Following recent formalizations [1,23,33,35], a scheme for (nonce-based) authenticated encryp-
tion (with associated-data) is a three-tuple Π = (K, E ,D). The key space K is a finite, nonempty
set. The encryption algorithm E takes in a key K ∈ K, a nonce N ∈ N ⊆ {0, 1}∗, a plaintext
M ∈ M ⊆ {0, 1}∗, and associated data A ∈ A ⊆ {0, 1}∗. It returns, deterministically, either a
ciphertext C = EN,A

K (M) ∈ C ⊆ {0, 1}∗ or the distinguished value Invalid. Sets N , M, C, and A
are called the nonce space, message space, ciphertext space, and AD space ofΠ . The decryption
algorithm D takes a tuple (K,N,A,C) ∈ K×N ×A× C and returns, deterministically, either
Invalid or a string M = DN,A

K (C) ∈M ⊆ {0, 1}∗. We require that DN,A
K (C) = M for any string

C = EN,A
K (M) and that E and D return Invalid if provided an input outside of K×N ×A×M or

4

K×N ×A×C, respectively. We require |EN,A
K (M)| = |EN,A

K (M ′)| when the encryptions are strings
and |M | = |M ′|. If this value is always |M |+ τ we call τ the tag length of the scheme.

Definition of OCB3. Fix a blockcipher E : K × {0, 1}128 → {0, 1}128 and a tag length τ ∈
[0 .. 128]. In Figure 4 we define from E and τ the AE scheme Π = OCB3[E,τ] = (K, E ,D). The
nonce space N is the set of all binary strings with fewer than 128 bits.2 The message space M and
AD-space A are all binary strings. The ciphertext space C is the set of all strings whose length is at
least τ bits. Figure 4’s procedure Setup is implicitly run on or before the first call to E or D. The
variables it defines are understood to be global. In the protocol definition we write ntz(i) for the
number of trailing zeros in the binary representation of positive integer i (eg, ntz(1)=ntz(3)= 0,
ntz(4) = 2), we write msb(X) for the first (most significant) bit of X, we write A ∧ B for the
bitwise-and of A and B, and we write A≪i for the shift of A by i positions to the left (maintaining
string length, leftmost bits falling off, zero-bits entering at the right). At lines 111 and 311 we
regard Bottom as a number instead of a string.

In Figure 5 we illustrate the mode. Functions Init and Inc implicitly depend on K. Init(N)
has the functionality corresponding to lines 106–111 of Figure 4. The other maps are simpler, with
Inci(∆)=∆ ⊕ L[ntz(i)], Inc$(∆)=∆ ⊕ L$, Inc∗(∆)=∆ ⊕ L∗, and Init=0128. Here L∗=EK(0128),
L$ = 2 · L∗ =double(L∗), and L[i] = 22+i · L∗ for all i ≥ 0, the multiplication in GF(2128). Value
2 = 012610 = x is a particular point of the finite field.

Design rationale. We now explain some of the design choices made for OCB3. While not a
large departure from OCB1 or OCB2, the refinements do help.

Trimming a blockcipher call. OCB1 and OCB2 took m + 2 blockcipher calls to encrypt an m-
block string M : one to map the nonce N into an initial offset ∆; one for each block of M ;
one to encipher the final Checksum. The first of these is easy to eliminate if one is willing to
replace the EK(N) computation by, say, K1 · N , the product in GF(2128) of nonce N and a
variant K1 of K. The idea has been known since Halevi [14]. But such a change would necessitate
implementing a GF(2128) multiply for just this one step. Absent hardware support, one would
need substantial precomputation and enlarged internal state to see any savings; not a net win. We
therefore compute the initial offset ∆ using a different xor-universal hash function: ∆= HK(N) =
(Stretch≪Bottom)[1 .. 128] where Bottom is the last six bits of N and the (128+64)-bit string
Stretch is made by a process involving enciphering N with its last six bits zeroed out. This stretch-
then-shift hash will be proven xor-universal in Section 4.1. Its use ensures that, when the nonce N
is a counter, the initial offset ∆ can be computed without a new blockcipher call 63/64 ≈ 98%
of the time. In this way we reduce cost from m + 2 blockcipher calls to an amortized m+1.016
blockcipher calls, plus tiny added time for the hash.

Reduced latency. Assume the message being encrypted is not a multiple of 128 bits; there is a final
block M∗ having 1–127 bits. In prior versions of OCB one would need to wait on the penultimate
blockcipher call to compute the Checksum and, from it, the final blockcipher call. Not only might
this result in pipeline stalls [31], but if the blockcipher’s efficient implementation needs a long
string to ECB, then the lack of parallelizability translates to extra work. For example, Käsper
and Schwabe’s bit-sliced AES [22] ECB-encrypts eight AES blocks in a single shot. Using this in
OCB1 or OCB2 would result in enciphering 24 blocks to encrypt a 100-byte string—three times
more than what “ought” to be needed—since twice one must wait on AES output to form the
next AES input. In OCB3 we restructure the algorithm so that the Checksum never depends on

2 In practice one would either restrict nonces to byte strings of 1–15 bytes, or else demand that nonces have a
fixed length, say exactly 12-bytes. Under RFC 5116, a conforming AE scheme should use a 12-byte nonce.

5

101 algorithm EN A
K (M)

102 if |N |≥128 then return Invalid
103 M1 · · ·Mm M∗←M where each
104 |Mi|=128 and |M∗|<128
105 Checksum← 0128; C ← ε
106 Nonce← 0127−|N | 1 N
107 Top←Nonce ∧ 1122 06

108 Bottom←Nonce ∧ 0122 16

109 Ktop←EK(Top)
110 Stretch←Ktop ∥

(
Ktop⊕ (Ktop≪8)

)

111 ∆← (Stretch≪Bottom)[1..128]
112 for i← 1 to m do
113 ∆← ∆⊕ L[ntz(i)]
114 C

∥← EK(Mi ⊕∆) ⊕ ∆
115 Checksum← Checksum⊕Mi

116 if M∗ ̸= ε then
117 ∆← ∆⊕ L∗
118 Pad← EK(∆)
119 C

∥←M∗ ⊕ Pad[1 .. |M∗|]
120 Checksum← Checksum⊕M∗ 10∗

121 ∆← ∆⊕ L$

122 Final← EK(Checksum⊕∆)
123 Auth← HashK(A)
124 Tag← Final⊕Auth
125 T ← Tag[1 ..τ]
126 return C ∥ T

201 algorithm Setup(K)
202 L∗ ← EK(0128)
203 L$ ← double(L∗)
204 L[0]← double(L$)
205 for i←1, 2, · · · do L[i]←double(L[i−1])
206 return

211 algorithm double(X)
212 return (X≪1)⊕ (msb(X) · 135)

301 algorithm DN A
K (C)

302 if |N |≥128 or |C|<τ then return Invalid
303 C1 · · · Cm C∗ T ← C where each
304 |Ci|=128 and |C∗|<128 and |T |=τ
305 Checksum← 0128; M ← ε
306 Nonce← 0127−|N | 1 N
307 Top←Nonce ∧ 1122 06

308 Bottom←Nonce ∧ 0122 16

309 Ktop←EK(Top)
310 Stretch←Ktop ∥

(
Ktop⊕ (Ktop≪8)

)

311 ∆← (Stretch≪Bottom)[1..128]
312 for i← 1 to m do
313 ∆← ∆⊕ L[ntz(i)]
314 M

∥←DK(Ci ⊕∆) ⊕ ∆
315 Checksum← Checksum⊕Mi

316 if C∗ ̸= ε then
317 ∆← ∆⊕ L∗
318 Pad← EK(∆)
319 M

∥←M∗ ← C∗ ⊕ Pad[1 .. |C∗|])
320 Checksum← Checksum⊕M∗ 10∗

321 ∆← ∆⊕ L$

322 Final← EK(Checksum⊕∆)
323 Auth← HashK(A)
324 Tag← Final⊕Auth
325 T ′ ← Tag[1 ..τ]
326 if T =T ′ then return M
327 else return Invalid

401 algorithm HashK(A)
402 A1 · · ·Am A∗←A where each
403 |Ai|=128 and |A∗|< 128
404 Sum← 0128

405 ∆← 0128

406 for i← 1 to m do
407 ∆← ∆⊕ L[ntz(i)]
408 Sum← Sum⊕ EK(Ai ⊕∆)
409 if A∗ ̸= ε then
410 ∆← ∆⊕ L∗
411 Sum← Sum⊕ EK(A∗ 10∗ ⊕∆)
412 return Sum

Figure 4: Definition of OCB3[E,τ]. Here E : K× {0, 1}128 → {0, 1}n is a blockcipher and τ ∈ [0 .. 128] is

the tag length. Algorithms E and D are called with arguments K ∈ K, N ∈ {0, 1}≤127, and M,C ∈ {0, 1}∗.

any ciphertext. Concretely, Checksum = M1 ⊕M2 ⊕Mm−1 ⊕Mm10∗ for a short final block, and
Checksum = M1 ⊕M2 ⊕Mm−1 ⊕Mm for a full final block. The fact that you can get the same
Checksum for distinct final blocks is addressed by using different offsets in these two cases.

Incrementing offsets. In OCB1, each noninitial offset is computed from the prior one by xoring
some key-derived value; the ith offset is constructed by∆ ←∆⊕L[ntz(i)]. In OCB2, each noninitial
offset is computed from the prior one by multiplying it, again in GF(2128), by a constant:∆ ←
(∆≪1)⊕(msb(∆)·135), an operation that has been called doubling. Not having to go to memory or

6

Checksum

C1 C3

M1 MM2 M3

C2 C

E

C1

E

C3

M1 M4M2 M3

E

C2

E

C4

EK K K K K

Checksum

Auth

Auth

*

*

T

T

τ

τ

A1 A2 A3

Auth

10*A *A1 A2

Auth

∆

∆ ∆ ∆ ∆

∆ ∆ ∆

∆

∆ ∆ ∆

∆ ∆ ∆

∆

∆ ∆ ∆ ∆ ∆ ∆

∆

E EE E EK K K K K

E EEK K K E EEK K K

∆← Inc1(∆)

∆← Init(N)

∆← Inc2(∆) ∆← Inc3(∆) ∆← Inc4(∆) ∆← Inc$(∆)

∆← Inc1(∆)

∆← Init(N)

∆← Inc2(∆) ∆← Inc3(∆) ∆← Inc (∆) ∆← Inc$(∆)

∆← Inc1(∆)

∆← Init

∆← Inc2(∆) ∆← Inc3(∆) ∆← Inc1(∆)

∆← Init

∆← Inc2(∆)

*

∆← Inc (∆)
*

0*

Pad Final

Tag

Final

Tag

Figure 5: Illustration of OCB3[E,τ]. Again E : K × {0, 1}128 → {0, 1}n and τ ∈ [0 .. 128]. Top:
Message M has a full final block (|M4| = n) (Checksum = M1 ⊕M2 ⊕M3 ⊕M4). Middle: Message M has
a short final block, 1 ≤ |M∗| < n (Checksum = M1 ⊕M2 ⊕M3 ⊕M∗10∗). Bottom: An AD of three full
blocks (left) or two full blocks and one short one (right). Throughout: Offsets (the ∆-values) are updated
and used top-to-bottom, then left-to-right. Offset initialization and update functions (Init, Inci, Inc$, Inc∗)
return n-bit strings. Each flavor of increment is an xor with some precomputed, K-dependent value.

7

attend to the index i, doubling was thought to be faster than the first method. In our experiments,
it is not. While doubling can be coded in five Intel x86-64 assembly instructions, it still runs more
slowly. In some settings, doubling loses big: it is expensive on 32-bit machines, and some compilers
do poorly at turning C/C++ code for doubling into machine code that exploits the available
instructions. On Intel x86, the 128-bit SSE registers lack the ability to be efficiently shifted one
position to the left. Finally, the doubling operation is not endian neutral: if we must create a
bit pattern in memory to match the sequence generated by doubling (and AES implementations
generally do expect their inputs to live in memory) we will effectively favor big-endian architectures.
We can trade this bias for a little-endian one by redefining double() to include a byteswap. But
one is still favoring one endian convention over the other, and not just at key-setup time. See
Appendix B for some of the alternatives to repeated doubling that we considered.

Further design issues. Unlike OCB1 and OCB2, each 128-bit block of plaintext is now processed in
the same way whether or not it is the final 128 bits. This change facilitates implementing a clean
incremental API, since one is able to output each 128-bit chunk of ciphertext after receiving the
corresponding chunk of plaintext, even if it is not yet known if the plaintext is complete.

All AD blocks can now be processed concurrently; in OCB2, the penultimate block’s output
was needed to compute the final block’s input, potentially creating pipeline stalls or inefficient use
of a blockcipher’s multi-block ECB interface. Also, each 128-bit block of AD is treated the same
way if it is or isn’t the message’s end, simplifying the incremental provisioning of AD.

We expect the vast majority of processors running OCB3 will be little-endian; still, the mode’s
definition does nothing to favor this convention. The issue arises each time “register oriented” and
“memory oriented” values interact. These are the same on big-endian machines, but are opposite on
little-endian ones. One could, therefore, favor little-endian machines by building into the algorithm
byte swaps that mimic those that would occur naturally each time memory and register oriented
data interact. We experimentally adapted our implementation to do this but found that it made
very little performance difference. This is due, first, to good byte reversal facilities on most modern
processors (eg, pshufb can reverse 16 bytes on our x86 in a single cycle). It is further due to the
fact that OCB3’s table-based approach for incrementing offsets allows for the table to be endian-
adjusted at key setup, removing most endian-dependency on subsequent encryption or decryption
calls. Since it makes little difference to performance, and big-endian specifications are conceptually
easier, OCB3 does not make any gestures toward little-endian orientation.

A low-level choice where OCB and GCM part ways is in the representation of field points. In
GCM the polynomial a127x127+ · · · a1x+a0 corresponds to string a0 . . . a127 rather than a127 . . . a0.
McGrew and Viega call this the little-endian representation, but, in fact, this choice has nothing
to do with endianness. The usual convention on machines of all kinds is that the msb is the left-
most bit of any register. Because of this, GCM’s “reflected-bit” convention can result in extra
work to be performed even on Intel chips having instructions specifically intended for accelerating
GCM [12, 13]. Among the advantages of following the msb-first convention is that a left shift by
one can be implemented by adding a register to itself, an operation often faster than a logical shift.

Security of OCB3. First we provide our definitions. Let Π = (K, E ,D) be an AE scheme. Given
an adversary (algorithm) A, we let Advpriv

Π (A) = Pr[K
$←K : AEK(·,·,·) ⇒ 1] − Pr[A$(·,·,·) ⇒ 1]

where queries of $(N,A,M) return a uniformly random string of length |EN,A
K (M)|. We demand

that A never asks two queries with the same first component (the N -value), that it never ask a
query outside of N ×A×M, and that it never repeats a query. Next we define authenticity. For
that, let Advauth

Π (A) = Pr[K
$←K : AEK(·,·,·) forges] where we say that the adversary forges if

it outputs a value (N,A,C) ∈ N ×A× C such that DN,A
K (C) ̸= Invalid yet there was no prior

8

query (N,A,M ′) that returned C. We demand that A never asks two queries with the same first
component (the N -value), never asks a query outside of N ×A×M, and never repeats a query.

When E : K× {0, 1}n→ {0, 1}n is a blockcipher define Adv±prp
E (A) = Pr[AEK(·), E−1

K (·) ⇒ 1] −
Pr[Aπ(·), π−1(·) ⇒ 1] where K is chosen uniform from K and π(·) is a uniform permutation on
{0, 1}n. Define Advprp

E (A) = Pr[AEK(·) ⇒ 1] − Pr[Aπ(·) ⇒ 1] by removing the decryption oracle.
The ideal blockcipher of blocksize n is the blockcipher Bloc[n] : K × {0, 1}n → {0, 1}n where each
key K names a distinct permutation.

The security of OCB3 is given by the following theorem. We give the result in its information-
theoretic form. Passing to the complexity-theoretic setting, where the idealized blockcipher Bloc[n]
is replaced by a conventional blockcipher secure as a strong-PRP, is standard.

Theorem 1 Fix n = 128, τ ∈ [0 .. n], and let Π = OCB3[E,τ] where E = Bloc[n] is the ideal
blockcipher on n bits. If A asks encryption queries that entail σ total blockcipher calls, then
Advpriv

Π (A) ≤ 6σ2/2n. Alternatively, if A asks encryption queries then makes a forgery attempt
that together entail σ total blockcipher calls, then Advauth

Π (A) ≤ 6σ2/2n + (2n−τ)/(2n − 1) . !

When we speak of the number of blockcipher calls entailed we are adding up the (rounded-up)
blocklength for all the different strings output by the adversary and adding in q + 2 (q =number
of queries), to upper-bound blockcipher calls for computing L∗ and the initial ∆ values. Main
elements of the proof are described in Section 4.

3 Experimental Results

Scope and codebase. We empirically study the software performance of OCB3, and compare this
with state-of-the-art implementations of GCM, which delivers the fastest previously reported AE
times. Both modes are further compared against CTR, the fastest privacy-only mode, which makes
a good baseline for answering how much extra one pays for authentication. Finally, we consider
CCM, the first NIST-approved AE scheme, and also OCB1 and OCB2, which are benchmarked to
show how the evolution of OCB has affected performance.

Intensively optimized implementations of CTR and GCM are publicly available for the x86.
Käsper and Schwabe hold the speed record for 64-bit code with no AES-NI, reporting peak rates
of 7.6 and 10.7 CPU cycles per byte (cpb) for CTR and GCM [22]. With AES-NI, developmental
versions of OpenSSL achieve 1.3 cpb for CTR [32] and 3.3 cpb for GCM.3 These various results
use different x86 chips and timing mechanisms. Here we use the Käsper-Schwabe AES, CTR, and
GCM, the OpenSSL CTR, CCM, and GCM, augment the collection with new code for OCB, and
compare performance on a single x86 and use a common timing mechanism, giving the fairest
comparison to date.

The only non-proprietary, architecture-specific non-x86 implementations for AES and GCM that
we could find are those in OpenSSL. Although these implementations are hand-tuned assembly, they
are designed to be timing-attack resistant, and are therefore somewhat slow. This does not make
comparisons with them irrelevant. OCB is timing-attack resistant too (assuming the underlying
blockcipher is), making the playing field level. We adopt the OpenSSL implementations for non-
x86 comparisons and emphasize that timing-resistant implementations are being compared, not
versions written for ultimate speed.

3 Andy Polyakov, personal communication, August 27, 2010. The fastest published AES-NI time for GCM is
3.5 cpb on 8KB messages, from Gueron and Kounavis [13].

9

The OCB1 and OCB2 implementations are modifications of our OCB3 implementation, and
therefore are similarly optimized. These implementations are in C, calling out to AES. No doubt
further performance improvements can be obtained by rewriting the OCB code in assembly.

Hardware and software environments. We selected five representative instruction-set ar-
chitectures: (1) 32-bit x86, (2) 64-bit x86, (3) 32-bit ARM, (4) 64-bit PowerPC, and (5) 64-bit
SPARC. Collectively, these architectures dominate the workstation, server, and portable comput-
ing marketplace. The x86 processor used for both 32- and 64-bit tests is an Intel Core i5-650
“Clarkdale” supporting the AES-NI instructions. The ARM is a Cortex-A8. The PowerPC is
a 970fx. The SPARC is an UltraSPARC IIIcu. Each runs Debian Linux 6.0 with kernel 2.6.35 and
GCC 4.5.1. Compilation is done with -O3 optimization, -mcpu or -march set according to the host
processor, and -m64 to force 64-bit compilation when needed.

Testing methodology. The number of CPU cycles needed to encrypt a message is divided by
the length of the message to arrive at the cost per byte to encrypt messages of that length. This is
done for every message length from 1 to 1024 bytes, as well as 1500 and 4096 bytes. So as not to have
performance results overly influenced by the memory subsystem of a host computer, we arrange
for all code and data to be in level-1 cache before timing begins. Two timing strategies are used:
C clock and x86 time-stamp counter. In the clock version, the ANSI C clock() function is called
before and after repeatedly encrypting the same message, on sequential nonces, for a little more
than one second. The clock difference determines how many CPU cycles were spent on average per
processed byte. This method is highly portable, but it is time-consuming when collecting an entire
dataset. On x86 machines there is a “time-stamp counter” (TSC) that increments once per CPU
cycle. To capture the average cost of encryption—including the more expensive OCB3 encryptions
that happen once every 64 calls—the TSC is used to time encryption of the same message 64 times
on successive counter-based nonces. The TSC method is not portable, working only on x86, but is
fast. Both methods have their potential drawbacks. The clock method depends on the hardware
having a high-resolution timer and the OS doing a good job of returning the time used only by
the targeted process. The TSC read instruction might be executed out of order, in some cases it
has high latency, and it continues counting when other processes run.4 In the end, we found that
both timing methods give similar results. For example, in the eighteen x86 test runs done for this
paper, the Internet Performance Index values computed by the two methods varied by no more
than 0.05 cpb 10 times, no more than 0.10 cpb 15 times, and no more than 0.20 cpb all 18 times.

Results. Summary findings are presented in Figures 2, 3, and 6. On all architectures and message
lengths, OCB3 is significantly faster than GCM and CCM. Except on very short messages, it
is nearly as fast as CTR. On x86, GCM’s most competitive platform, OCB3’s authentication
overhead (its cost beyond CTR encryption) is 4–16%, with or without AES-NI, on both an Internet
Performance Index (IPI)5 and 4KB message length basis. In all our tests, CCM never has IPI or
4KB rates better than GCM, coming close only when small registers make GCM’s multiplications
expensive, or AES-NI instructions speed CCM’s block encipherments. Results are similar on other

4 To lessen these problems we read the TSC once before and after encrypting the same message 65 times, then
read the TSC once before and after encrypting the same message once more. Subtracting the second timing from the
first gives us the cost for encrypting the message 64 times, and mitigates the out-of-order and latency problems. To
avoid including context-switches, we run experiments multiple times and keep only the median timing.

5 The IPI is a weighted average of timings for messages of 44 bytes (5%), 552 bytes (15%), 576 bytes (20%), and
1500 bytes (60%) [31]. It is based on Internet backbone studies from 1998. We do not suggest that the IPI reflects a
contemporary, real-world distribution of message lengths, only that it is useful to have some metric that attends to
shorter messages and those that are not a multiple of 16 bytes. Any metric of this sort will be somewhat arbitrary
in its definition.

10

x86-64 AES-NI

Mode T4K TIPI Size Init

CCM 4.17 4.57 512 265
GCM 3.73 4.53 656 337
OCB1 1.48 2.08 544 251
OCB2 1.80 2.41 448 185
OCB3 1.48 1.87 624 253
CTR 1.27 1.37 244 115

x86-32 AES-NI

Mode T4K TIPI Size Init

CCM 4.18 4.70 512 274
GCM 3.88 4.79 656 365
OCB1 1.60 2.22 544 276
OCB2 1.79 2.42 448 197
OCB3 1.59 2.04 624 270
CTR 1.39 1.52 244 130

x86-64 Käsper-Schwabe

Mode T4K TIPI Size Init

GCM 22.4 26.7 1456 3780
GCM-8K 10.9 15.2 9648 2560
OCB1 8.28 13.4 3008 3390
OCB2 8.55 13.6 2912 3350
OCB3 8.05 9.24 3088 3480
CTR 7.74 8.98 1424 1180

ARM Cortex-A8

Mode T4K TIPI Size Init

CCM 51.3 53.7 512 1390
GCM 50.8 53.9 656 1180
OCB1 29.3 31.5 672 1920
OCB2 28.5 31.8 576 1810
OCB3 28.9 30.9 784 1890
CTR 25.4 25.9 244 236

PowerPC 970

Mode T4K TIPI Size Init

CCM 75.7 77.8 512 1510
GCM 53.5 56.2 656 1030
OCB1 38.2 41.0 672 2180
OCB2 38.1 41.1 576 2110
OCB3 37.5 39.6 784 2240
CTR 37.5 37.8 244 309

UltraSPARC III

Mode T4K TIPI Size Init

CCM 49.4 51.7 512 1280
GCM 39.3 41.5 656 904
OCB1 25.5 27.7 672 1720
OCB2 24.8 27.0 576 1700
OCB3 25.0 26.5 784 1730
CTR 24.1 24.4 244 213

Figure 6: Empirical performance of AE modes. For each architecture we give time to encrypt 4KB
messages (in CPU cycles per byte), time to encrypt a weighted basket of message lengths (IPI, also in cpb),
size of the implementation’s context (in bytes), and time to initialize key-dependent values (in CPU cycles).
Next we graph the same data, subtracting the CTR time and dropping the curves for OCB1 and OCB2,
which may be visually close to that of OCB3. The CCM and GCM curves are visually hard to distinguish
in the x86-64 AES NI, x86-32 AES NI, and ARM Cortex-A8 graphs.

11

architectures. The overhead of OCB3 does not exceed 12% that of GCM or CCM on PowerPC or
SPARC, or 18% on ARM, when looking at either IPI or 4KB message encryption rates.

To see why OCB3 does so well, consider that there are four phases in OCB3 encryption: initial
offset generation, encryption of full blocks, encryption of a partial final block (if there is one), and
tag generation. On all but the shortest messages, full-block processing dominates overall cost per
byte. Here OCB3, and OCB1, are particularly efficient. An unrolled implementation of, say, four
blocks per iteration, will have, as overhead on top of the four blockcipher calls and the reads and
writes associated to them: 16 xor operations (each on 16-byte words), 1 ntz computation, and
1 table lookup of a 16-byte value. On x86, summing the latencies of these 18 operations—which
ignores the potential for instruction-level parallelism (ILP)—the operations require 23 cycles, or
0.36 cpb. In reality, on 64-bit x64 using AES-NI, we see CTR taking 1.27 cpb on 4KB messages
while OCB3 uses 1.48, an overhead of 0.21 cpb, the savings coming from the ILP.

Short messages are optimized for too. When there is little or no full-block processing, it is
the other three phases of encryption that determine performance. One gets a sense of the cost of
these—initial offset generation, encryption of a partial final block, and tag generation—by looking
at the cost to encrypt a single byte. On x86, OpenSSL’s AES-NI based CTR implementation does
this in 86 cycles, while CCM, GCM, and OCB3 use 257, 354, and 249 cycles, respectively. CCM
remains competitive with OCB3 only for very short strings. On 64-bit x86 without AES-NI, using
Käsper-Schwabe’s bit-sliced AES that processes eight blocks at once, OCB3’s performance lead is
much greater, as its two blockcipher calls can be computed concurrently, unlike CCM and GCM.
In this scenario, single-byte encryption rates for CCM, GCM, OCB3, CTR are 2600, 2230, 1080,
1010 cycles. On the other three architectures we see the following single-byte encryption times for
(CCM, GCM, OCB3; CTR): ARM (1770, 1950, 1190; 460), PowerPC (2520, 1860, 1450; 309), and
SPARC (1730, 1520, 1770; 467).

With hardware support making AES very cheap, authentication overhead becomes more promi-
nent. AES-NI instructions enable AES-128 throughput of around 20 cycles per block. VIA’s xcrypt
assembly instruction is capable of 10 cycles per block on long ECB sequences [38]. Speeds like these
can make authentication overhead more expensive than encryption. With the Käsper-Schwabe code
(no AES-NI), for example, on an IPI basis, OCB3 overhead is only 3% of encryption cost, but un-
der AES-NI it rises to 27%. Likewise, GCM overhead rises from 41% to 70%. One might think
CCM would do well using AES-NI since its overhead is mostly blockcipher calls, but its use of
(serial) CBC for authentication reduces AES throughput to around 60 cycles per block, causing
authentication overhead of about 70%.6

A processor with AES-NI provides a nearly ideal environment for OCB3: there are sixteen
16-byte registers available for caching recently used values, performing xor operations, and these
registers also provide the interface for AES calls. The assembly produced by GCC for the full-
block processing loop was able to keep all values in registers except for AES round keys, resulting
in exceptional performance. When not using AES-NI on x86, overhead increases slightly due to
function-call overhead and the use of a memory-based interface for AES. On 64-bit x86 using
Käsper-Schwabe’s AES implementation, OCB3 costs 0.36 cpb more than CTR. We see similar
results on PowerPC and SPARC. OCB3 has higher overhead on ARM due to its small register set,
but still has an overhead 1/7th that of GCM.

6 Intel released their Sandy Bridge microarchitecture January 2011, too late for a thorough update of this paper.
Sandy Bridge increases both AES throughput and latency. Under Sandy Bridge, OCB and CTR will be substantially
faster (likely under 1.0 cpb on long messages) because their work is dominated by parallel AES invocations. GCM
will be just a little faster because most of its time is spent in authentication, which does not benefit from Sandy
Bridge. CCM will be slower because longer latencies negatively affect CBC authentication.

12

As expected, OCB1 and OCB3 long-message performance is the same due to having identical
full-block processing. OCB2 is slower on long messages on all tested platforms but SPARC (com-
puting ntz is slow on SPARC). With a counter-based nonce, OCB3 computes its initial encryption
offset using a few bitwise shifts of a cached value rather than generating it with a blockcipher as
both OCB1 and OCB2 do. This results in significantly improved average performance for encryp-
tion of short messages. The overall effect is that on an IPI basis on, say, 64-bit x86 using AES-NI,
OCB3’s authentication overhead is only 65% of that for OCB1 and only 40% of that for OCB2.
When the provided nonce is not a counter, OCB3 performance is, in most of our test environments,
indistinguishable from that of OCB1.

4 Proof of Security for OCB3

We describe three elements in the proof of OCB3’s security: (1) the new xor-universal hash function
it employs; (2) the definition and proof for a simple TBC (tweakable blockcipher) based general-
ization of OCB3; and (3) the proof that the particular TBC used by OCB3 is good.

4.1 Stretch-then-Shift Universal Hash

A new hash function H underlies the mapping of the low-order bits of the nonce to a 128-bit string
(lines 108, 110, and 111 of Figure 4). While an off-the-shelf hash would have worked alright, we
were able to do better for this step. We start with the needed definitions.

Definition. Let K be a finite set and let H : K × X → {0, 1}n be a function. We say that H
is strongly xor-universal if for all distinct x, x′ ∈ X we have that HK(x) ⊕ HK(x′) is uniformly
distributed in {0, 1}n and, also, HK(x) is uniformly distributed in {0, 1}n for all x ∈ X . The first
requirement is the usual definition for H being xor-universal; the second we call universal-1.

The technique. We aim to construct strongly xor-universal hash-functions H : K×X → {0, 1}n
where K = {0, 1}128, X = [0 .. domSize − 1], and n = 128. We want domSize to be at least
some modest-size number, say domSize ≥ 64, and intend that computing HK(x) be almost as
fast as doing a table lookup. Fast computation of H should not require any large table, nor the
preprocessing of K. Our desire for extreme speed in the absence of preprocessing and big tables
rules out methods based on GF(2128) multiplication, the obvious first attempt.

The method we propose is to stretch the key K into a longer string stretch(K), and then extract
its bits x+1 to x+128. Symbolically, HK(x) = (stretch(K))[x+1 .. x+128] where S[a .. b] denotes
bits a through b of S, indexing beginning with 1. Equivalently, HK(x) = (stretch(K)≪x)[1 .. 128].
We call this a stretch-then-shift hash.

How to stretch K? It seems natural to have stretch(K) begin with K, so let’s assume that
stretch(K) = K ∥ s(K) for some function s. It’s easy to see that s(K) =K and s(K)≪c won’t
work, but s(K) = K⊕(K≪c), for some constant c, looks plausible for accommodating modest-sized
domain. We now demonstrate that, for well-chosen c, this function does the job.

Analysis. To review, we are considering the hash functionsHc
K(x) = (Stretch≪x)[1 .. 128] where

Stretch = stretch(K) = K ∥ (K ⊕ (K≪c)) and c ∈ [0 .. 127]. We’d like to know the maximal value
of domSize for which HK(x) is xor-universal on the domain X = [0 .. domSize(c)−1]. This can be
calculated by a computer program, as we now explain. Fix c and consider the 256 × 128 entry

matrix A =

(
I
J

)
where I is the 128 × 128 identity matrix and J is the 128 × 128-bit matrix for

which Jij = 1 i ffj = i or j = i + c. Let Ai denote the 128 × 128 submatrix of A that includes

13

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

domSize(c) 3 15 7 3 124 7 3 85 120 3 118 63 3 31 63 3 7 31 3 7

Figure 7: Stretch-then-shift hash. Largest X =[0 .. domSize(c)−1] s.t. Hc
K(x)=(Stretch(K)≪x)[1 .. 128]

is strongly xor-universal when c∈ [1 .. 16], K∈{0, 1}128, x∈X , and Stretch(K)=K ∥ (K ⊕ (K≪c)).

only A’s rows i to i + 127. Then Hc
K(x) = Ax+1K, the product in GF(2) of the matrix Ai+1

and the column vector K. Let Bi,j = Ai + Aj be the indicated 128 × 128 matrix, the matrix
sum over GF(2). We would like to ensure that, for arbitrary 0 ≤ i < j < domSize(c) and a
uniform K ∈ {0, 1}128 that the 128-bit string Hc

K(i) + Hc
K(j) is uniform—which is to say that

Ai+1K + Aj+1K = (Ai+1 + Aj+1)K = Bi+1,j+1K is uniform. This will be true if and only if Bi,j

is invertible in GF(2) for all 1 ≤ i < j ≤ domSize(c). Thus domSize(c) can be computed as the
largest number domSize(j) such that Bi,j is full rank, over GF(2), for all 1 ≤ i < j ≤ domSize(j).
Recalling the universal-1 property we also demand that Ai have full rank for all 1 ≤ i ≤ domSize(c).
Now for any c, the number of matrices Ai,j to consider is at most 213, and finding the rank in GF(2)
of that many 128× 128 matrices is a feasible calculation.

Our results are tabulated in Figure 7. The most interesting cases are H5 and H8, which are
strongly xor-universal on X = [0 .. 123] and X = [0 .. 84], respectively. We offer no explanation for
why these functions do well and various other Hc do not. As both H5 and H8 work on [0 .. 63] we
select the latter map for use in OCB3 and single out the following result:

Lemma 1 Let H : {0, 1}128 × [0 .. 63] → {0, 1}128 be defined by HK(x) = (Stretch≪x)[1 .. 128]
where Stretch = K ∥ (K ⊕ (K≪8)). Then H is strongly xor-universal. !

Efficiency. On 64-bit computers, assumingK ∥ (K⊕(K≪8)) is precomputed and in memory, the
value of HK(x) can be computed by three memory loads and two multiprecision shifts, requiring
fewer than ten cycles on most architectures. If only K is in memory then the first 64 bits of
K ⊕ (K≪8) can be computed with three additional assembly instructions. In the absence of a
preprocessed table or special hardware-support, a method based on GF(2128) multiplies would not
fare nearly as well.

Computing successiveHc
K values requires a single extended-precision shift, making stretch-then-

shift a reasonable approach for incrementing offsets. Unfortunately, it is not endian-neutral.

4.2 The TBC-Based Generalization of OCB3

Following the insight of Liskov, Rivest, and Wagner [28], OCB3 can be understood as an instan-
tiation of an AE scheme that depends on a tweakable blockcipher (TBC). This is a deterministic
algorithm Ẽ having signature Ẽ : K×T ×{0, 1}n→{0, 1}n where K and T are sets and n ≥ 1 is a
number—the key space, tweak space, and blocklength, respectively. We require ẼT

K(·) = Ẽ(K,T, ·)
be a permutation for all K ∈ K and T ∈ T . Write D̃ = Ẽ−1 for the map from K × T × {0, 1}n
to {0, 1}n defined by D̃T

K(Y) = D̃(K,T, Y) being the unique X such that ẼT
K(X) = Y . The ideal

TBC for a tweak set T and blocksize n is the blockcipher Bloc[T , n] : K× T × {0, 1}n→ {0, 1}n
where the keys name distinct permutations for each tweak T . For T = T ± ∪ T +, T ± ∩ T + = ∅,
let Advprp[T ±]

Ẽ
(A) = Pr[K

$←K : AẼK(·,·), D̃K(·,·) ⇒ 1] − Pr[Aπ(·,·), π−1(·,·) ⇒ 1] where π is chosen

uniformly from Bloc[T , n] and adversary A is only allowed to ask decryption queries (T, Y) with

T ∈ T ±. Write Adv±prp
Ẽ

(A) for Advprp[T]

Ẽ
(A) and Advprp

Ẽ
(A) for Advprp[∅]

Ẽ
(A). Our definition

14

101 algorithm EN,A
K (M)

102 if N ̸∈N then return Invalid
103 M1 · · ·Mm M∗←M where each
104 |Mi|=n and |M∗|<n
105 Checksum← 0n, C∗ ← ε
106 for i← 1 to m do
107 Ci ← Ẽ N i

K (Mi)
108 Checksum← Checksum⊕Mi

109 if M∗ = ε then Final← Ẽ N m $
K (Checksum)

111 else Pad← Ẽ N m ∗
K (0n)

111 C∗ ←M∗ ⊕ Pad[1 .. |M∗|]
112 Checksum← Checksum⊕M∗ 10∗

113 Final← Ẽ N m ∗ $
K (Checksum)

114 Auth← HashK(A)
115 Tag← Final⊕Auth
116 T ← Tag[1 ..τ]
117 return C1 · · · Cm C∗ ∥ T

301 algorithm HashK(A)
302 Sum← 0n

303 A1 · · ·Am A∗←A for |Ai|=n, |A∗|< n
304 for i← 1 to m do
305 Sum← Sum⊕ Ẽ i

K(Ai)
306 if A∗ ̸= ε then
307 Sum← Sum⊕ Ẽm ∗

K (A∗ 10∗)
308 return Sum

201 algorithm DN,A
K (C)

202 if N ̸∈N or |C| < τ then return Invalid
203 C1 · · ·CmC∗ T←C where each
204 |Ci|=n, |C∗|<n, and |T |=τ
205 Checksum← 0n, M∗ ← ε
206 for i← 1 to m do
207 Mi ← D̃N i

K (Ci)
208 Checksum← Checksum⊕Mi

209 if C∗ = ε then Final← Ẽ N m $
K (Checksum)

211 else Pad← Ẽ N m ∗
K (0n)

211 M∗ ← C∗ ⊕ Pad[1 .. |C∗|]
212 Checksum← Checksum⊕M∗ 10∗

213 Final← Ẽ N m ∗ $
K (Checksum)

214 Auth← HashK(A)
215 Tag← Final⊕Auth
216 T ′ ← Tag[1 ..τ]
217 if T = T ′ then return M1 · · ·Mm M∗
218 else return Invalid

Figure 8: Definition of ΘCB3[Ẽ,τ]. Here Ẽ : N × T × {0, 1}n → {0, 1}n is a tweakable blockcipher
and τ ∈ [0 .. n] is the tag length. We have that OCB3[E,τ] = ΘCB3[Ẽ,τ] for an appropriately chosen Ẽ.

unifies PRP and strong-PRP security, allowing forward queries for all tweaks and backwards queries
for those in T ±. A conventional blockcipher can be regarded as a TBC with a singleton tweak space.

The ΘCB3 scheme. Fix an arbitrary set of nonces N ; for concreteness, say N = {0, 1}<128.
Define from this set the corresponding tweak space T by way of

T = N×N1 ∪ N ×N0×{∗} ∪ N× N0×{$} ∪ N ×N0×{∗$} ∪ N1 ∪ N0×{∗}

where N1 and N0 are the positive and nonnegative integers, respectively. Tweaks, it can be seen,
are of six mutually exclusive “types.” Tweaks of the first type are in the set T ± = N×N1. Omit-
ting parenthesis and commas when writing tweaks, TBC calls will look like Ẽ N i

K (X), Ẽ N i ∗
K (X),

Ẽ N i $
K (X), Ẽ N i ∗ $

K (X), Ẽ i
K(X), or Ẽ i ∗

K (X). Now given such a TBC Ẽ : K× T × {0, 1}n → {0, 1}n
and given a tag length τ ∈ [0 .. n], we construct the AE scheme Π = ΘCB3[Ẽ,τ] = (K, E ,D) as
defined in Figure 8. The scheme’s nonce space is N , the message space is M = {0, 1}∗, the AD
space is A = {0, 1}∗, and the ciphertext space is C = {0, 1}≥τ . The scheme is illustrated in Figure 9.

We now describe the security of ΘCB3 when using an ideal TBC. The proof is given in
Appendix A.1.

Lemma 2 Let Π = ΘCB3[Ẽ,τ] where Ẽ = Bloc[T , n] : K × T × {0, 1}n → {0, 1}n is ideal. Let A
be an adversary. Then Advpriv

Π (A) = 0 and Advauth
Π (A) ≤ (2n−τ)/(2n − 1). !

15

Checksum

E
N 1

C1

E
N 3

C3

M1 MM2 M3

E
N 2

C2

E
N 3 *

C

E
N3*$

K K K K K

0*

E
N 1

C1

E
N 3

C3

M1 M4M2 M3

E
N 2

C2

E
N 4

C4

E
N 4 $

K K K K K

Checksum

Auth

Auth

*

*

T

T

τ

τ

E
1

E
3

A1 A2 A3

E
2

K K K

Auth

E
2 *

K

10*A *

E
1

A1 A2

E
2

K K

Auth

~ ~ ~ ~ ~

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

Pad Final

Tag

Final

Tag

0*

Figure 9: Illustration of ΘCB3. The scheme depends on tweakable blockcipher Ẽ : N×T×{0, 1}n→{0, 1}n
and tag length τ ∈ [0 .. n]. The top figure shows the treatment of a message M having a full final block
(|M4|=n) (Checksum=M1⊕M2⊕M3⊕M4) while the middle picture shows the treatment of a message M
having a short final block (1 ≤ |M∗| < n) (Checksum=M1 ⊕M2 ⊕M3 ⊕M∗10∗). The bottom-left picture
shows the processing of a three-block AD; on bottom-right, an AD with two full blocks and a short one.
Algorithm OCB3[E,τ] coincides with ΘCB3[Ẽ,τ] for a particular TBC Ẽ = Tw[E] constructed from E.

16

Ẽ N i
K (X) = EK(X ⊕∆)⊕∆ with ∆ = Initial ⊕ λi L for i ≥ 1

Ẽ N i ∗
K (X) = EK(X ⊕∆) with ∆ = Initial ⊕ λ∗

i L for i ≥ 0

Ẽ N i $
K (X) = EK(X ⊕∆) with ∆ = Initial ⊕ λ$

i L for i ≥ 0

Ẽ N i ∗ $
K (X) = EK(X ⊕∆) with ∆ = Initial ⊕ λ∗$

i L for i ≥ 0

Ẽ i
K(X) = EK(X ⊕∆) with ∆= λi L for i ≥ 1

Ẽ i ∗
K (X) = EK(X ⊕∆) with ∆= λ∗

i L for i ≥ 0

where

Nonce = 0127−|N| 1 N

Top = Nonce ∧ 1122 06

Bottom = Nonce ∧ 0122 16

Ktop = EK(Top)
Stretch = Ktop ∥

(
Ktop⊕ (Ktop≪8)

)

Initial = (Stretch≪Bottom)[1..128]

L = EK(0128)
λi = 4 a(i)
λ∗
i = 4 a(i) + 1

λ$
i = 4 a(i) + 2

λ∗$
i = 4 a(i) + 3

a(0) = 0 //Grey code seq 0, 1, 3, 2, 6, 7, 5, 4, 12, . . .

a(i) = a(i− 1)⊕ 2ntz(i) if i ≥ 1

Figure 10: Definition of Ẽ=Tw[E], the tweakable blockcipher built from E.

4.3 Instantiating the TBC

Continuing to assume that n = 128 and N = {0, 1}<n, map each blockcipher E : K× {0, 1}n→
{0, 1}n to the TBC Ẽ = Tw[E], Ẽ : K× T × {0, 1}n→ {0, 1}n, where T = N ×N1 ∪ N ×N0×
{∗} ∪ N× N0×{$} ∪ N ×N0×{∗$} ∪ N1 ∪ N0×{∗} by the construction of Figure 10. There,
multiplication is in GF(2128) using the irreducible polynomial x128+x7+x7+x2+x+1. We use the
standard facts on the Gray code sequence a : N0 → N0 that it is a permutation and 0 ≤ a(i) ≤ 2i.
It follows that coefficients Λ= {λi, λ∗

j , λ$
j , λ∗$

j : 1 ≤ i ≤ 2120, 0 ≤ j ≤ 2120} are distinct and
nonzero points of GF(2128). The reader can check that OCB3[E,τ] = ΘCB3[Tw[E], τ].

Security of the constructed TBC. We show that Ẽ=Tw[E] is a good TBC if E is a good
blockcipher. In formalizing this, forward queries may be asked throughout T , but backwards queries
must be of the form ẼN i

K .

Lemma 3 Let n=128 and let E=Bloc[n] be the ideal blockcipher on n bits. Let Ẽ=Tw[E], the
tweak space being T , and let T ±=N×N1. Let A be an adversary that asks at most q queries, non

employing an i-value in excess of 2120. Then Advprp[T ±]

Ẽ
(A) ≤ 6q2/2n. !

The proof of the lemma is in Appendix A.2. Combining it with Lemma 2 gives Theorem 1.

Acknowledgments

Phil Rogaway had interesting discussions with Tariq Ahmad (University of Massachusetts) on
hardware aspects of GCM and OCB3.

The authors appreciate the support of NSF CNS 0904380.

References

[1] M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and
analysis of the generic composition paradigm. J. Cryptology, 21(4), pp. 469–491, 2008. Earlier
version in ASIACRYPT 2000.

17

[2] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. FSE 2004, LNCS
vol. 3017, Springer, pp. 389–407, 2004.

[3] D. Bernstein. The Poly1305-AES message-authentication code. FSE 2005, LNCS vol. 3557,
Springer, pp. 32–49, 2005.

[4] D. Bernstein and P. Schwabe. New AES speed records. INDOCRYPT 2008, LNCS vol. 5365,
Springer, pp. 322-336, 2008.

[5] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway. UMAC: fast and secure message
authentication. CRYPTO 1999, LNCS vol. 1666, Springer, pp. 216–233, 1999.

[6] D. Chakraborty and P. Sarkar. A general construction of tweakable block ciphers and different
modes of operations. IEEE Trans. on Information Theory, 54(5), May 2008.

[7] M. Dworkin. Recommendation for block cipher modes of operation: the CCM mode for au-
thentication and confidentiality. NIST Special Publication 800-38C. May 2004.

[8] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D. November 2007.

[9] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. SAC 2002, LNCS
vol. 2595, Springer, pp. 47–61, 2002.

[10] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: fast en-
cryption and authentication in a single cryptographic primitive. FSE 2003, LNCS vol. 2887,
Springer, pp. 330–346, 2003.

[11] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. FSE 2001, LNCS vol. 2355, Springer, pp. 92–108, 2001.

[12] S. Gueron. Intel’s New AES instructions for enhanced performance and security. FSE 2009,
LNCS vol. 5665, Springer, pp. 51–66, 2009.

[13] S. Gueron and M. Kounavis. Intel carry-less multiplication instruction and its usage for com-
puting the GCM mode (revision 2). White paper, available from www.intel.com. May 2010.

[14] S. Halevi. An observation regarding Jutla’s modes of operation. Cryptology ePrint report
2001/015. April 2, 2001.

[15] IEEE Standard 802.11i-2004. Part 11: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Medium Access Control (MAC) Security Enhancements. 2004.

[16] ISO/IEC 19772. Information technology–Security techniques–Authenticated encryption. First
edition, 2009-02-15.

[17] T. Iwata. Authenticated encryption mode for beyond the birthday bound security.
AFRICACRYPT 2008, LNCS vol. 5023, Springer, pp. 125–142, 2008.

[18] T. Iwata. New blockcipher modes of operation with beyond the birthday bound security.
FSE 2006, LNCS 4047, pp. 310–327, 2006.

[19] T. Iwata and K. Yasuda. BTM: a single-key, inverse-cipher-free mode for deterministic au-
thenticated encryption. SAC 2009, LNCS vol. 5667, Springer, pp. 313–330, 2009.

[20] T. Iwata and K. Yasuda. HBS: a single-key mode of operation for deterministic authenticated
encryption. FSE 2009, LNCS vol. 5665, Springer, pp. 394–415, 2009.

[21] C. Jutla, Encryption modes with almost free message integrity. EUROCRYPT 2001, LNCS
vol. 2045, Springer, pp. 529–544, 2001.

[22] E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-GCM. CHES 2009,
LNCS 5757, Springer, pp. 1–17, 2009.

[23] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation.
FSE 2000, LNCS vol. 1978, Springer, 2001.

[24] T. Kohno, J. Viega, and D. Whiting. CWC: a high-performance conventional authenticated
encryption mode. FSE 2004, LNCS vol. 3017, Springer, pp. 408–426, 2004.

[25] T. Krovetz. Message authentication on 64-bit architectures. SAC 2006, LNCS vol. 4356,

18

Springer, pp. 327–341, 2006.
[26] C. Leiserson, H. Prokop, and K. Randall. Using de Bruijn sequences to index a 1 in a computer

word. Unpublished manuscript. July 7, 1998.
[27] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications (Revised Edi-

tion). Cambridge University Press, 1994.
[28] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. CRYPTO 2002, LNCS

vol. 2442, Springer, pp. 31–46, 2002.
[29] S. Lucks. Two-pass authenticated encryption faster than generic composition. FSE 2005,

LNCS vol. 3557, Springer, pp. 284–298, 2005.
[30] D. McGrew. An interface and algorithms for authenticated encryption. IETF RFC 5116.

January 2008.
[31] D. McGrew and J. Viega. The security and performance of the Galois/Counter Mode (GCM) of

operation. INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 343–355, 2004. Also Cryptology
ePrint report 2004/193, with somewhat different performance results.

[32] OpenSSL: The Open Source Toolkit for SSL/TLS. http://www.openssl.org/.
[33] P. Rogaway. Authenticated-encryption with associated-data. CCS 2002, ACM Press, 2002.
[34] P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB

and PMAC. ASIACRYPT 2004, LNCS vol. 3329, Springer, pp. 16–31, 2004.
[35] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient

authenticated encryption. ACM Trans. on Information and System Security, 6(3), pp. 365–
403, 2003. Earlier version, with T. Krovetz, in CCS 2001.

[36] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem.
EUROCRYPT 2006, LNCS vol. 4004, Springer, pp. 373–390, 2006.

[37] B. Tsaban and U. Vishne. Efficient linear feedback shift registers with maximal period. Finite
Fields and Their Applications, 8(2), pp. 256–267, 2002. Also CoRR cs.CR/0304010, 2003.

[38] VIA Technologies. VIA Padlock programming guide. 2005.
[39] D. Whiting, R. Housley, N. Ferguson. AES encryption & authentication using CTR mode &

CBC-MAC. IEEE P802.11 doc 02/001r2, May 2002.
[40] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF RFC 3610.

September 2003.
[41] G. Zeng, W. Han, and K. He. High efficiency feedback shift register: σ-LFSR. Cryptology

ePrint report 2007/114, 2007.

A Postponed Proofs

A.1 Proof of Lemma 2

Consulting Figure 9 may help. Keep in mind that each ẼN j
K , ẼN j $

K , ẼN j ∗
K , ẼN j ∗ $

K , Ẽ j
K and Ẽ j ∗

K
is a random permutation on n bits. These permutations are all independent. To emphasize that
these are random permutations we write π in place of ẼK .

Privacy. During the adversary’s attack it asks queries (N1, A1,M1), . . . , (N q, Aq,M q). Since the
N i-values must be distinct each permutation πN i ··· is used at most once. We are thus applying
independent random permutations to a single point, so all of the outputs are uniformly random
and independent. Now in three of the four cases—πN j $, πN j ∗, and πN j ∗ $—the permutation’s
output is not returned to the adversary, but is, instead, either xored with Authi (then truncated
to τ bits) or xored it with M i

∗ 0
∗ (then truncated to |M i

∗| bits). Either way, the result remains
uniform and independent of all other outputs, as M i+∗, Authi, and τ are independent of the πN i···

19

http://www.openssl.org/

values. We conclude that the result from the adversary’s ith query is a uniformly random string of
length |M i|+τ , independent of all other query responses. This implies that the adversary’s privacy
advantage is zero.

Authenticity. Before we launch into proving authenticity, consider the following simple game,
which we call game G. Suppose that you know that an n-bit string X is not some particular
value X0. All of the 2n−1 other values are equally likely. Then your chance of correctly predicting
the τ -bit prefix of X is at most 2n−τ/(2n − 1). That’s because the best strategy is to guess any
τ -bit string other than the τ -bit prefix of X0. The probability of being right under this strategy is
2n−τ/(2n − 1). We will use this fact in the sequel.

Now suppose that the adversary asks a sequence of queries (N1, A1,M1), . . . , (N q, Aq,M q)
and then makes its forgery attempt (N,A,C). Let M i = M i

1 · · ·M i
mi

or M i = M i
1 · · ·M i

mi
M i

∗
be the message queries, let Ai = Ai

1 · · ·Ai
ai or Ai = Ai

1 · · ·Ai
aiA

i
∗ be the AD queries, and so

on, superscripts being used to indicate the query number. Let (N,A,C) be the forgery attempt,
C = C ∥T , C = C1 · · ·Cc or C = C1 · · ·CcC∗, and so on, absent superscripts indicating that the
quantity in question belongs to the attempted forgery. We distinguish the following cases for the
forgery attempt:

(1) Suppose N /∈ {N1, . . . , N q}. Then the adversary needs to find the correct value of T =
πN ···(Checksum) ⊕ Auth but has seen no image πN ···(). The chance that the adversary can
do this is clearly 2−τ .

(2) Suppose N = N i and one of Ci and C has length divisible by n, but the other does not. We
may ignore queries other than the ith since the responses to such queries are unrelated to the
adversary’s task of producing a valid ciphertext (N,A,C) with N = N i. We may ignore the
values Authi and Auth, even allowing the adversary to know or to select these strings. As
with (1), the adversary needs to find the correct value of T but has seen no image for the
relevant random permutation: it needs to guess an Auth⊕ πN c ∗ $() value but no πN c ∗ $ has
been used; or else it needs to guess an Auth⊕ πN c $() value but no πN c $ has been used. The
chance that the adversary can forge in this case is at most 2−τ .

(3) Suppose N = N i, mi ̸= c, and either Ci and C both have length divisible by n or neither Ci

nor C have length divisible by n. This is like case (2).

(4) Suppose N = N i, Ai ̸= A. We may ignore queries other than the ith since the responses to
such queries are unrelated to the adversary’s task at hand. Having made this simplification—
the adversary asks a single (N i, Ai,M i) query and must then forge using the same nonce
but a different AD—suppose that we provide the adversary with all the πN ··· permutations.
Even then the adversary will have small chance to produce a valid forgery. To forge in this
setting the adversary’s job amounts to guessing the first τ bits of Auth. The only relevant
information it has for doing this is the first τ bits of Authi. Suppose we give the adversary
all of Authi instead. A case analysis is needed. If the adversary selects A but not Ai to have
a multiple of n bits, or it selects Ai but not A to have a multiple of n bits, then its chance
to guess the first τ bits of Auth will be 2−τ . Otherwise, if the adversary selects a ̸= ai then
its chance to guess the first τ bits of Auth will again be 2−τ . Otherwise we are in the setting
where a = ai and both A and Ai are multiples or else non-multiples of n bits. The two cases
are similar; assume the former. Since Ai ̸= A we know that they differ on some particular
block, say Ai

j ̸= Aj . Then even if we give the adversary πk for all k ̸= j, and give it πj(Ai
j)

as well, still the adversary will not be able to do well at guessing πj(Aj), and therefore it will
not be able to do well at guessing Auth = ⊕a

j=1 π
j(Aj). Namely, we are now in the setting of

game G, and the adversary’s chance to succeed is 2n−τ/(2n − 1).

20

(5) Suppose N=N i, A=Ai, m=c, and |M i|= |Ci|= |C| are divisible by n. We may again ignore
the queries other than the ith. For simplicity, imagine that we reveal to the adversary πj

and πj ∗, so Auth and Authi are adversarially known. If the forgery attempt has the form
(N,A,Ci ∥T i) where Ci = C then the adversary’s chance of forging is zero: the adversary is
not allowed to repeat a known (N i, Ai,Ci) verbatim, and changing T from T i will make this
forgery attempt incorrect. We may therefore assume that the forgery attempt is (N,A,Ci ∥T i)
where Ci ̸= C, say Ci

j ̸= Cj for some particular j ∈ [1 ..m]. The changed Cj makes the

corresponding Mj is almost unpredictable; all that is known of it is that it is not M i
j , but

all remaining 2n − 1 possibilities are equally likely. Even if we provide the adversary all
M1, . . . ,Mm except Mj , this means that the Checksum will be any of 2n−1 values, all equally
likely. Even if we make πN m $ public, its output, Final, will be any of 2n − 1 values, all
equally likely. We are again in the setting of game G, and the adversary’s chance to win is
2n−τ/(2n − 1).

(6) Suppose N=N i, A=Ai, m=c, and |M i|= |Ci|= |C| are not divisible by n. We proceed as in
case (5), but must distinguish the following: Ci

j ̸= Cj for some j ∈ [1 ..m], or else Ci
j = Cj for

all j ∈ [1 ..m], but Ci
∗ ̸= C∗. The first of these subcases proceeds as with case (5), so assume

the second. We may this time provide the adversary all πN i and πN i ∗ values, so that the
adversary will in fact know Checksumi and Checksum, which are necessarily distinct. (Here
it is important that we used 10∗-padding for in the contribution of M∗ to the Checksum).
The adversary can be assumed to know all of Finali, but still its chance to predict the image
of Checksum will be at most 2n − 1, and, by game G, its ability to predict the first τ bits of
Final, and thus T is 2n−τ/(2n − 1).

A.2 Proof of Lemma 3

We generalize the adversary’s capabilities in attacking Tw[E]; see Figure 11 for the construc-
tion we’ll call TW. There we write π instead ẼK . The adversary, which we still refer to as A,
may now ask queries we’ll refer to as being of TYPE-1, TYPE-2, TYPE-3a, TYPE-3b. In
other words, the adversary’s queries may take any of the forms (1,W,λ), (2,W,Top,Bottom,λ),
(3a,W,Top,Bottom,λ), or (3b, Z,Top,Bottom,λ). We insist that the adversary not ask a query
with Top = 0 (we stop to distinguish field points and the corresponding strings) and we demand
that any λ ∈ GF(2n) asked in a query is used only for queries of one numeric TYPE (it’s fine to use
the same λ in queries of TYPE-3a and 3b). The adversary may not repeat queries nor ask a query
with a trivially known answer (a TYPE-3b query following the corresponding TYPE-3a query, or
the other way around). Working in GF(2n), we sometimes write xor as addition.

As the adversary asks its queries the mechanism makes what we will call internal queries to
the random-permutation π. For example, the adversary’s TYPE-1 query of (W,λ) results in an
internal type-1 query of X. The internal queries come in two flavors, direct and indirect, as show in
Figure 11. Note that the total number of internal queries resulting from the adversary’s q queries is
at most σ=2q+1. The hash function H that we use to compute Initial is the map defined and and
proven secure in Lemma 1. That said, any strongly xor-universal hash function with the needed
domain and range will do. It is important to understand that all of the abilities present in a “real”
adversary attacking Tw[E] are also represented in the abilities of an adversary attacking TW[E]
we have now described.

We aim to show A will get small advantage in attacking TW. The proof involves a game-playing
argument followed by a case analysis of some collision probabilities. We begin with a game 1 that
perfectly simulates the TW-construction. As the adversary A asks queries the game grows the
permutation π in the usual way, preparing each input for π or π−1 exactly as would TW. The

21

π π

Top

∆ = Initial + λ L

Ktop

L

0
∫ 0

Bottom H Initial

TYPE-1

π

W

X

Y

Z

∆

λ

Bottom

Top

π

W

X

∆ = Initial + λ L

Y

λ

Bottom

Top

π

W

Y

λ

X

∆ = λ L

π

Z

Y

X

W

∆

Bottom

Top

∆ = Initial + λ L

λ

type-1

TYPE-2

type-2

TYPE-3a TYPE-3b

type-3a

type-3b

type-B type-A

Figure 11: The TW construction. The adversary’s queries (TYPE 1, 2, 3a, 3b) result in internal queries
that are either direct (type 1, 2, 3a, 3b) or indirect (type A, B). The proof of Lemma 3 hinges on establishing
the rarity of nontrivial collisions among the inputs or outputs of π.

responses to type-A and B queries are stored and looked up as needed. In game 2 we return, in
response to each internal query π or π−1, a freshly minted uniformly random point of GF(2n).
Note that this results in values returned to the adversary that are, likewise, uniformly random. In
game 3 we perfectly simulate an ideal tweakable blockcipher π̃ (with the right domain and tweak
space). By the “switching lemma” the advantage of A in distinguishing games 2 and 3 is at most
0.5 q(q−1)/2n, so we must only bound the gap between games 1 and 2.

In game 1, consider answering each internal query by uniformly sampling from {0, 1}n and,
hopefully, returning that sample. If we have already used our speculatively generated return value
set a flag bad and re-sample from the co-range (for π-queries) or co-domain (for π−1 queries). The
above bad-setting events occur with probability at most 0.5 σ(σ−1)/2n.

When an internal query clashes with any prior commitment made then, to accurately play
game 1, we must answer the query according to the prior commitment. Assume we do so, and then
set bad. Call these bad-setting events collisions. We can write games 1 and 2 so as to be identical
until bad is set, so we have only to bound the probability of collisions in game 2, the version where
we uniformly sample for responding to internal queries. Note that game 2 maintains the invariant
that values returned to the adversary are independent of the values L and Initial selected internally.
Because of this, we can simplify the temporal aspect of the game and replace it by an alternative
one in which the adversary chooses all TBC queries, and their responses, at the beginning. Then
we make the indirect queries that determine L and Initial, and determine if a collision has occurred.
Excising adaptivity in such a manner has been illustrated in much prior work.

Any potential collision event—eg, the 20th internal query colliding with the 6th—can be sum-
marized by writing something like Coll(3a, 1), interpreted as saying that first there was a type-3a
internal query (W,Top,Bottom,λ), which generated a π-input of X (its value to be determined)
and an adversarially-known response Z, and then the adversary asked a type-1 query of (W ′,λ′),
which gave rise to a π-input of X ′ (value to be determined), and an adversarially-known response
of Y ′. Now we make the underlying type-A and type-B queries and it so happens that X =X ′.
Such an event is unlikely since it implies that W + Initial + λL = W ′ + λ′L, and Initial is uniform
and independent of all other values named in the formula: we select the type-B output Ktop of π
uniformly at random, and H is universal-1, making HKtop(Bottom) uniform, too. The probability
of the event happening, for a given pair of indirect queries, is at most 2−n. The same holds for
each of the 36 possible collision types. To avoid tedious repetition, we provide a few examples. We
continue to use the same convention as in the last example, priming variables for the second query.

Pr[Coll(A,B)] = Pr[Coll(B,A)] = 0 since the adversary is not allowed to query with Top = 0.

Pr[Coll(3a, 3a)] = Pr[W + Initial + λL = W ′ + Initial′ + λ′L]. Queries may not be repeated,
so (W,Top,Bottom,λ) ̸= (W ′,Top′,Bottom,λ′). Suppose Top ̸= Top′. Then Ktop and
Ktop′ are uniform and independent, making Initial and Initial′ uniform and independent

22

32-Bits 64-Bits 128-Bits
Definition of Si(X)

x86 arm ppc sun mips x86 sun x86 ppc

S1 (X≪1)⊕ (msb(X) · 135) 10.9 22.9 13.4 23.7 18.6 4.0 3.7 6.8 5.0
S2 (B, (A≪1)⊕ (msb(A) · 101201010001)⊕B) 7.6 17.0 5.2 13.2 12.6 3.3 2.6 7.1 6.0
S3 (B, (A≪1)⊕ (A≫1)⊕ (B ∧ 148)) 7.7 11.4 4.3 13.3 14.2 4.1 2.7 5.5 7.1
S4 (C, D, B, (A≪1)⊕ (msb(A) · 831)⊕B ⊕D) 3.0 6.2 2.5 4.5 6.6 5.3 5.3 9.4 8.1
S5 (C, D, B, (A≪1)⊕ (A≫1)⊕ (D ∧ 107)) 4.1 4.4 2.1 4.2 5.8 5.7 5.2 5.5 6.0
S6 (C, D, B, (A≪1)⊕ (A≫1)⊕ (D≪15)) 4.0 3.4 2.0 4.2 5.7 5.6 5.3 8.2 8.1

Figure 12: Some maximal-length 128-bit LFSRs and their performance. The input X ∈ {0, 1}128
is partitioned into X = A ∥B (for S2 or S3) or X = A ∥B ∥C ∥D (for S4, S5, or S6). Repeated application
of Si : {0, 1}128 → {0, 1}128 to any X ∈ {0, 1}128 \ {0128} yields all strings in {0, 1}128 \ {0128}. The table
gives the time to compute Si, in CPU cycles, averaged over a large number of runs, when inputs and outputs
are provided to the implementation using registers of 32, 64, and 128 bits.

by the universal-1 property of H, so the probability in question is at most 2−n. Suppose
Top = Top′ but Bottom ̸= Bottom′. Then Ktop = Ktop′ is uniform and, by the xor-
universality of H, variables Initial and Initial′ are uniform and independent of each other
and of every other variables appearing in the formula, making the probability in question at
most 2−n. If Top = Top′ and Bottom = Bottom′ and λ = λ′ then we know that W ̸= W ′

and the probability of collision is 0. Finally, if Top = Top′ and Bottom = Bottom′ and
W = W ′ then we know that λ ̸= λ′ and the probability we are considering collapses to
Pr[λL = λ′L] = Pr[cL = 0] where c = λ − λ′ ̸= 0. Since L was chosen uniformly at random
in the type-A query, only the choice of L = 0 results in a collision, which happens with
probability 2−n.

Pr[Coll(2, 3b)] = Pr[Y = Initial′+λ′L]. This is at most 2−n as, for example, Initial′ is uniform
and independent of Y , Λ′, and L.

Pr[Coll(3b, 2)] = Pr[W + Initial + λL = W ′ + Initial′ + λ′L. Since λ-values must be distinct
between TYPE-2 and TYPE-3b the probability is Pr[cL = W + Initial + W ′ + Initial′] for
some c ̸= 0. Since the RHS side is independent of L and L is uniform, the probability is at
most 2−n.

Continuing in this way one finds that each type of collision occurs with probability at most 2−n,
implying a probability for any collision of at most 0.5σ(σ−1)/2n. Summing with the addends of
0.5σ(σ−1) and 0.5 q(q−1) and recalling that σ ≤ 2q + 1 we conclude that the total adversarial
advantage is at most 4.5q2 + 1.5q ≤ 6q2, completing the proof.

B New Word-Oriented LFSRs

Recall that in OCB2 each 128-bit offset is computed from the prior one by multiplying it, in
GF(2128), by the constant x = 2 = 012610. Concretely, the point X ∈ {0, 1}128 is stepped (or “in-
cremented” or “doubled”) by applying the map S1(X) = (X≪1)⊕(msb(X)·135). The constant 135
(decimal) represents (without the x128 term) the primitive polynomial g(x) = x128+x7+x2+x+1.

Chakraborty and Sarkar suggested [6] that there might be an incrementing function more
efficient than S1; they suspected that one might achieve efficiency gains with a word-oriented
LFSR [37], as exemplified by the blockcipher SNOW [9]. After all, multiplication by x and reduc-
ing mod g(x) is just the “Galois configuration” of a particular 128-bit LFSR [27], and one that has
not been optimized for software performance. Some other 128-bit LFSRs might run faster.

23

To develop this idea, let S be an n × n binary matrix that is invertible over GF(2). Then we
may regard S as the feedback matrix of an LFSR that transforms the row vector X ∈ {0, 1}n into
the row vector X · S, a process we refer to as stepping the string X under S. The t-fold stepping
of X by S is realized by matrix St. If the characteristic polynomial of S is primitive (over GF(2))
then the order of S in the general linear group GL(n,GF(2)) will be 2n− 1 and the map X $→ X ·S
will have two cycles: the length-1 cycle from 0n to itself and the cycle of length 2n − 1 passing
through all remaining n-bit strings [27]. The matrices ⟨S⟩ = {Si : 1 ≤ i ≤ 2n−1 − 1}, along with
the matrix n× n zero matrix, can be regarded as a representation of GF(2n) under the operations
of matrix multiplication and matrix addition, both mod 2.

Based on the paragraph above, the following is a simple way to obtain maximal and fast-to-
compute 128-bit LFSRs. Generate candidate LFSRs by randomly combining a small number of
shifts, ands, xors, using small or random constants. Represent each scheme by its feedback matrix.
For each candidate matrix, check if it has a primitive characteristic polynomial. This is roughly
the same approach taken by Zeng, Han, and He [41] to devise some software-efficient maximal-
period shift registers intended for stream-cipher use. Using it, we generated and tested thousands
of 128-bit stepping functions. Some efficient-to-compute schemes giving rise to maximal LFSRs
are shown in Figure 12. Our experience searching for such maximal LFSRs suggests that they are
rather finicky and sparse.

Implementing the candidate LFSRs on a variety of platforms revealed no clear winner; see
Figure 12. Beyond this, we found that none of the stepping functions were competitive with xoring
in a pre-computed 128-bit value. All of the candidate stepping function introduce endian favoritism.
In the end, then, we decided against using an LFSR stepping function to update offsets, going back
to the OCB1 approach, instead.

24

