
AES-CPFB v1

Designers: Miguel Montes and Daniel Penazzi

Submitters: Miguel Montes and Daniel Penazzi
mmontes@iua.edu.ar

March 15, 2014

Contents

1 Specification 1
1.1 Parameters . 1
1.2 Recommended Parameters Sets 1
1.3 Authenticated Encryption . 1
1.4 Notation . 2
1.5 Treatment of the public message number 2
1.6 Treatment of the Associated Data 3
1.7 Encryption of the plaintext . 3
1.8 Decryption of the ciphertext . 4
1.9 Computation of the tag . 4

2 Security Goals 6

3 Security Analysis 7
3.1 Privacy . 7
3.2 Unforgeability . 7

4 Features 11

5 Design Rationale 13

6 Intellectual Property 15

7 Consent 16

1

Abstract

We describe here a cipher mode of operation that provides both privacy and
authenticity. AES-CPFB uses a combination of Plaintext Feedback and Counter
modes. It uses AES as a black box, and depends on the assumption that the
output of AES is indistinguishable from random. In particular, its security
regarding privacy is equivalent to that of Counter mode. It requires the use
of a nonce, that is, a public message number that is not repeated through the
lifetime of the key. There is no need for the nonce to be random. The length of
the ciphertext, excluding the length of the tag, is the same as the length of the
plaintext.

Chapter 1

Specification

1.1 Parameters

AES-CPFB has three parameters: key length, nonce length, and tag length.
Parameter space: Each parameter is an integer number of bytes1. The key
length is 16 bytes (128 bits) or 32 bytes (256 bits). The nonce length is between
8 bytes and 15 bytes. The tag length is between 1 byte and 16 bytes, but
we discourage any tag length below 8 bytes, although we understand that for
certain applications 4 bytes may be enough.

1.2 Recommended Parameters Sets

Primary recommended parameter sets: 16 bytes (128 bits) key, 12 bytes (96
bits) nonce, 16 bytes (128 bits) tag.

1.3 Authenticated Encryption

The inputs to authenticated encryption are a plaintext P , associated data A, a
public message number N , which must be a nonce, and a key K.

The maximum length of A is 232 − 1 bytes. The maximum length of the
plaintext depends on the nonce length, with a hard limit of 264 − 1 bytes. For
nonces of 96 bits or less the maximum length of the plaintext is 264 − 1 bytes.
For 104, 112 and 120 bits nonces, the maximum length is 3×234×2125−|N |−12,
where |N | is the length in bits of the public message number.

There is no secret message number.
The output of authenticated encryption is a ciphertext (C, T) obtained by

concatenating an unauthenticated ciphertext C and a tag T of length τ (at most
16 bytes, as specified above in 1.1). The length of C is equal to the length of

1Although we sometimes use lengths in bits, it must be understood that those values are
multiples of 8.

1

P . The total length of the ciphertext is thus the number of bytes in P plus the
tag length τ .

We now provide the details.

1.4 Notation

⊕ denotes the bitwise exclusive or (XOR).
MSBm(X) is the bit string consisting of the m most significant bits of the

bit string X.
|| denotes concatenation.
EK(X) denotes the forward cipher function of a 128 bit block cipher algo-

rithm under the key K applied to the data block X. In particular, it is assumed
that the block cipher algorithm is AES.
|X| denotes the length in bits of the bit string X.
{0}n denotes a bit string of zeros of length n.
All quantities representing counters and lengths are considered as non neg-

ative integers with the least significant bit on the right (big-endian).

1.5 Treatment of the public message number

The public message number (nonce) will be used together with the key K to
create a sequence of keys κ0, κ1, . . . , κk, where |κi| = |K|. The nonce length
must be an integer number of bytes between 8 and 15. That is, the minimum
nonce length is 64 bits, and the maximum is 120 bits. The nonce is used to
produce a 128 bits nonce, padding to 15 bytes with zeros, and adding a byte
with a value unique for each nonce length. There are 8 possible nonce lengths,
so only the 3 least significant bits of the last byte are used to this end. The
padded bits are used as a counter, so the number of keys that can be generated
from a pair (K,N) is 2128−3−|N |, although the algorithm never uses more than
232 keys.

The key κ0 is the encryption of a string of zeros under the key K using AES2

in CBC mode, using the extended nonce as IV. The encryption function is used
once, for generating 128 bit keys, or twice, for 256 bit keys. The padded bits
are then used as a counter to generate the keys κ1, . . . , κk. κ1 can be obtained
incrementing the 128 bit nonce by 8 (so the three bits indicating the nonce
length are untouched). Note that each κi itself is a nonce, i.e., if N does not
repeat within the lifetime of a key, neither does any κi. The only difference is
that some adversary could have control over N , but not over κi.

Let l be the 3 bit tag identifying the nonce length. Then

C0 = N ||i||l
C1 = EK({0}128 ⊕ C0) = EK(N ||i||l)
C2 = EK({0}128 ⊕ C1) = EK(EK(N ||i||l))

2AES-128 or AES-256, depending on |K|

2

So, for 128 bit keys
κi = EK(N ||i||l)

and for 256 bit keys

κi = EK(N ||i||l)||EK(EK((||i||l))

Table 1.1 shows the allowed nonce lengths, the tag identifying each length,
and the maximum plaintext length associated with that length.

Nonce length Tag Counter length Max P length
(bits) (bits) (bytes)

64 0 61 264 − 1
72 1 53 264 − 1
80 2 45 264 − 1
88 3 37 264 − 1
96 4 29 264 − 1
104 5 21 3× 255 − 12
112 6 13 3× 247 − 12
120 7 5 3× 239 − 12

Table 1.1: Nonce lengths

1.6 Treatment of the Associated Data

The associated data is padded with as many zeros as needed to bring its length
to the next multiple of 96 bits. If the original length is a multiple of 96 bits,
no padding is needed. Then it is partitioned in blocks Ai, i = 1, . . . ,m of 96
bits, and each 96 block is concatenated with a 32 bit counter. A partial tag
is calculated using the exclusive-or on the results of encrypting these 128 bit
blocks with AES-128 under the key κ0.

X0 = {0}128

Xi = Xi−1 ⊕ Eκ0
(Ai||i) i = 1, . . . ,m

Xm will be used later to obtain the tag.

1.7 Encryption of the plaintext

The plaintext is padded with as many zeros as needed to bring its length to the
next multiple of 96 bits. Then it is partitioned in blocks Pi, i = 1, . . . , n of 96
bits. If the original length is a multiple of 96 bits, no padding is needed. Each

3

block is concatenated with a 32 bit counter, xored with κ0, and encrypted with
a key κj , generating a key stream.

P0 = {0}96

Ii = Pi−1||((i− 1) mod 232) i = 1, . . . , n+ 1

Oi = Eκj (Ii ⊕ κ0) i = 1, . . . , n+ 1 j = bi/232c+ 1

Ci = Pi ⊕MSB96(Oi) i = 1, . . . , n− 1

C∗n = P ∗n ⊕MSBu(On)

For the last block, which may be a partial block of u bits, only the u most
significant bits of the corresponding output block are used for the exclusive-or.
A partial tag is calculated using the exclusive-or on the output blocks.

Y0 = {0}128

Yi = Yi−1 ⊕Oi+1 i = 1 . . . n

= Yi−1 ⊕ Eκj ((Pi||(i mod 232))⊕ κ0)

1.8 Decryption of the ciphertext

Decryption is as follows:

P0 = {0}96

Ii = Pi−1||((i− 1) mod 232) i = 1, . . . , n+ 1

Oi = Eκj (Ii ⊕ κ0) i = 1, . . . , n+ 1 j = bi/232c+ 1

Pi = Ci ⊕MSB96(Oi) i = 1, . . . , n− 1

P ∗n = C∗n ⊕MSBu(On)

For the last block, which may be a partial block of u bits, only the u most
significant bits of the corresponding output block are used for the exclusive-or.
A partial tag is calculated using the exclusive-or on the output blocks.

Y0 = {0}128

Yi = Yi−1 ⊕Oi+1 i = 1 . . . n

= Yi−1 ⊕ Eκj ((Pi||(i mod 232))⊕ κ0)

1.9 Computation of the tag

The length mlen of P is encoded as a 64 bit big-endian unsigned integer, and
is concatenated with the length adlen of A, encoded as a 32 bit big-endian

4

unsigned integer, and 32 zero bits. This 128 bit block is then encrypted under
κ0.

L = Eκ0
(mlen||adlen||{0}32)

Then, the 128 bit tag T is calculated as

T128 = Eκ0(Xm ⊕ Yn ⊕ L)

Smaller tags can be obtained by taking the desired most significant bits of
T .

Tτ = MSBτ (T128)

1.10 Verification of authenticity

On receiving (N,A,C, T), the receiver computes Tτ as described in 1.9 and
checks Tτ = T .

5

Chapter 2

Security Goals

aes128cpfbv1 aes256cpfbv1

goal bits of security bits of security
confidentiality for the plaintext 128 256
integrity for the plaintext 128 128
integrity for the associated data 128 128
integrity for the public message number 128 128

If the tag is truncated to τ bits, the numbers 128 above in the last three
rows change to τ .

That is, we expect that any attack on the confidentiality of the plaintext will
need 2128 effort and if the length of the tag T is τ , a forgery of the plaintext,
associated data or public message number cannot be made with probability
greater than 2−τ (i.e., an expected 2τ attempts need to be made before a forgery
is accepted as valid). However, in accordance to the CAESAR call, we do not
distinguish between messages one of which is a truncation of the other by a
number of bits less than 8.

There is no secret message number. The public message number is a nonce.
It is safe to use the same key with nonces of different lengths. The cipher does
not promise any integrity or confidentiality if the legitimate key holder uses the
same nonce to encrypt two different (plaintext, associated data) pairs under the
same key.

The reuse of the nonce affects only the messages involved, and does not
compromise the security of K.

6

Chapter 3

Security Analysis

3.1 Privacy

The security of AES-CPFB is based on an assumed property of AES, namely
that B 7→MSB96AESK(B) is a 128-bit to 96-bit pseudorandom function.

It is widely assumed that AES outputs for distinct inputs are indistinguish-
able from random (if the number of inputs does not approach 264).

Hence, truncation of the output of AES should also be indistinguishable
from random.

Then, confidentiality holds, since it is basically counter mode, except that
the input also takes into account the previous plaintext, but the 32 bit counter
guarantees that the input behaves as such, and all blocks feeded to the cipher
are different. In addition, no more than 232 blocks are processed under the same
temporal key κi, way below the birthday bound.

More formally, since the various MSB96(AESκi(Pi||i)) are indistinguishable
from random, then the ciphertexts blocks Ci are random 96 bit blocks, so AES-
CPFB is indistinguishable from random.

3.2 Unforgeability

The proof in similar in spirit to the one in [4]. We will prove the following:

Theorem 3.2.1. If a forgery of AES-CPFB by a nonce respecting adversary
can be made with probability better than 2−τ + ε then there exists an adversary
that with access only to an encryption oracle can distinguish AES from a random
block oracle (see definition below) with probability better than 1/2 + ε/2

Proof. Let Adv be an adversary that can create a forgery of AES-CPFB with
probability p with p > 2−τ + ε. Here τ is the length of the tag, and Adv can
request encryption/authentications by asking queries (N j , Aj , P j) with different
N j ’s after which Adv can request a decryption/verification query (N,A,C, T)
that was never an answer and wins if is accepted as valid.

7

Let Adv∗ be an adversary that tries to distinguish AES from a (keyed)
random block oracle, using only the encryption oracle.

The model of attack of Adv∗ is the following: Adv∗ will be provided with
a family of oracles ON,j where N is any string of bytes of the number of bytes
allowed and j an integer. Each ON,j is a permutation on the 128 bit strings
(hence O−1N,j exists but it will not be provided to Adv∗).

There will be two possible families provided to Adv∗ (and which one is given
will be determined randomly). One will be the family in which ON,j = AESκj
and the other will be the “randomblock oracle” family (modeled below).

Adv∗ tasks is to be able to distinguish with probability significantly better
than 1/2 between the two families.

We will model “randomblock oracle” in the following way:
For each (N, j) start with DomainN,j , ImageN,j and PairsN,j empty. On

input (N, j,B) for a call to ON,j , the oracle checks to see whether B is in
DomainN,j . If not, it outputs a (uniformly) random 128-bit value C, with the
only restriction that it must not be in ImageN,j . Then it adds B to DomainN,j ,
C to ImageN,j and (B,C) to PairsN,j . On the other hand if B ∈ DomainN,j
then it searches for (B,C) in PairsN,j and outputs C.

Adv∗ uses the following strategy: Adv∗ takes all queries that Adv does in
order to construct a forgery and runs AES-CPFB , except that it replaces all
calls to AES by calls to the oracle, giving the result to Adv.

When Adv outputs a possible forgery F , Adv∗ checks to see whether F is
effectively a forgery. If it is, Adv∗ guesses O = AES. If not, Adv∗ guesses
O = randomblock

We have 4 possibilities:

1. O = AES and F is a forgery. By the hypothesis on Adv this happens with
probability p/2. (the 1/2 because the oracle is chosen at random between
AES and randomblock). In this case Adv∗ guesses correctly.

2. O = AES and F is not a forgery. This happens with probability (1− p)/2
and in this case Adv∗ guesses incorrectly.

3. O = randomblock and F is a forgery. Let’s call p∗ the probability that F
is a forgery given that O = randomblock. Then the situation in this item
has probability p∗/2. In this case Adv∗ guesses incorrectly.

4. O = randomblock and F is not a forgery. This happens with probability
(1− p∗)/2 and Adv∗ guesses correctly.

So, the probability that Adv∗ guesses correctly is (p + 1 − p∗)/2. We will
see below that p∗ ≤ 2−τ , hence the probability that Adv∗ guesses correctly is
(p+ 1− p∗)/2 < 1/2(1 + 2−τ + ε− 2−τ) = 1/2 + ε/2

So, let’s compute p∗. We are then in the case in which the oracle is ran-
domblock and the forgery succeeds.

We have the following possibilities

8

1. N 6= Nr for all r.

In this case when computing L = Eκ0
(mlen||adlen||{0}32) the call to Eκ0

will be replaced by a call to ON,0.

Since N was never used before this query, and in this query the calls to
ON,0 are all of 128 bits blocks whose 32 rightmost bits are not all zero, then
mlen||adlen||{0}32 will not be in DomainN,0. Hence the oracle will return
an (almost) uniformly random value (almost because it must be different
from the return values of the previous calls). However, since ON,0 has
been used at most 232 times, this is far below the birthday bound, so in
fact it will be indistinguishable from a random value.

Hence the value Xm⊕ Yn⊕L will be a uniformly random value, indepen-
dently of what the values of Xm and Yn are.

Since the tag will be computed as T128 = ON,0(Xm ⊕ Yn ⊕ L) then the
correct tag will be the truncation of the encryption of a uniformly random
value, so the probability that it is exactly T is 2−τ .

There is one small problem though. This will be encrypted again calling
ON,0, which has been used before. The 32 rightmost bits of Xm ⊕ Yn ⊕L
will be a random string, but once L is returned, they will be some concrete
32 bit string i. If the associated data is long enough to have reached i,
then a call to ON,0(Ai||i) would have already been made. Thus if the
96 leftmost (random) bits of Xm ⊕ Yn ⊕ L equal Ai, then the return call
will not be random, but it will be the return call that was made when
ON,0(Ai||i) was called. However Adv never sees that return call, since
Adv∗ does not reveal the computations involving A, so as far as Adv is
concerned this is the first time the call was made, so the probability that
the output will match the tag that Adv provided is 2−128.

2. N is some Nr (wlog we may assume r = 1).

Since the output of the last encryption will either be randomly different
from T 1

128 or exactly equal to it, if Adv provides any tag different from
(the truncation of) T 1

128, then the probability of forgery is 2−τ or zero. So
we can assume that T = MSBτ (T 1

128).

We have several sub-cases:

(a) The length of C is different from the length of the corresponding
ciphertext C1 or the length of A is different from the length of the
corresponding A1.

The only calls to the oracle ON,0 either in the decryption query or
on the encryption query under N1 that have been made before the
computation of L involve blocks with their rightmost 32 bits dif-
ferent from the zero string, except for the call made when comput-
ing L1 (the L that was calculated during the N1 query), that is
ON,0(mlen1||adlen1||{0}32).

9

However mlen||adlen||{0}32 6= mlen1||adlen1||{0}32. This implies
that mlen||adlen||{0}32 6∈ DomainN,0 so as in the previous case the
return value will be indistinguishable from random and the probabil-
ity of collision would be 2−τ .

(b) adlen = adlen1 and mlen = mlen1 but there is an index i with
Ai 6= A1

i .

In that case (Ai||i) ⊕ κ0 6= (A1
i ||i) ⊕ κ0, so we’ll have that (Ai||i) ⊕

κ0 6∈ DomainN,0 thus the return call would be uniformly random
(except that it must be different from the previous call). If this is
the only difference of (A,C) with respect to (A1, C1) then the input
to the computation of T128 will be different than the input from the
computation of T 1

128, thus T128 6= T 1
128 with probability 1.

Thus, if τ = 128 and Adv provides T = T 1
128 as tag the probability

of forgery is 0.

If τ < 128, the probability of forgery is

P (MSBτ (T128 ⊕ T j128) = 0) = |{w 6=0:MSBτ (w)=0}|
|{w 6=0}| = 2128−τ−1

2128−1 < 2−τ .

If there are changes to other blocks, then the input to the compu-
tation of T128 will be a uniformly random string, hence since the
encryption is a permutation T128 will equal T 1

128 with probability
2−128. The probability of forgery is:

p = P (T128 = T 1
128) · P

(
MSBτ (T128) = MSBτ (T 1

128)|T128 = T 1
128

)
+

+P (T128 6= T 1
128) · P

(
MSBτ (T128) = MSBτ (T 1

128)|T128 6= T 1
128

)
= 2−128 · 1 + (1− 2−128) · 2128−τ − 1

2128 − 1

= 2−128 + 2−128 · (2128−τ − 1)

= 2−τ

(c) The lengths are the same and A = A1 but C 6= C1.

Hence there exists an i such that Ci 6= C1
i (and let’s consider the first

one). Then Pi will be different from P ji , since Pi ⊕ P 1
i = Ci ⊕ C1

i .
Let j = bi/232c + 1. Then Pi will contribute to the checksum used
to compute the input to the computation of T128 through the term
ON,j((Pi||i)⊕ κ0). Since Pi 6= P ji then (Pi||i)⊕ κ0 6= (P 1

i ||i)⊕ κ0, so
we’ll have that (Pi||i) ⊕ κ0 6∈ DomainN,j thus the return value will
be (almost) uniformly random and the analysis proceeds as in the
previous case.

10

Chapter 4

Features

The cipher has many advantages. It is basically AES in counter mode, with a
change to counter mode that allows a fast authentication, so it is conceptually
very simple and easy to analyze.

Since the encryption itself is AES it benefits from all the known speed ups
of AES, including the Intel instructions and the hardware implementations.

It is a mode of operation, so it can use a black box implementation of AES.
It is highly parallelizable for encryption. Moreover, the order in which the

plaintext can be processed is completely arbitrary (as long as the position of the
block in the message is known), i.e., the cipher has a random access property.
These properties do not hold for decryption.

It can be used online, because there is no need to know the length of the
associated data or the length of the plaintext.

The cipher has an incremental property: if one block of plaintext is modified
(with the same nonce), then the corresponding ciphertext block needs to be
modified in the same bits, the next ciphertext block needs to be recomputed,
all other ciphertext blocks are left undisturbed, and the tag needs an extra AES
computation and some bit changes.

The cipher can process P or parts of P without seeing A, A or parts of A
without seeing P , or any combination.

This cipher is fast enough: although it uses one 128 bit AES operation on
each 96 bit block, the average overload over CTR mode is 50%. On an Ivy
Bridge machine (Intel Core i7-3770K 3.5 GHz) it encrypts long messages (32
kbytes) at 1.47 cycles per byte (using AESNI), while with 1500 byte messages
it runs slightly below 2 cycles per byte. These numbers are for encryption only,
the processing of the additional data is better. The decrypting process is slower,
due to the inabilty to parallelize, taking about 7.5 cycles per byte for messages
of 1500 bytes or longer.

The only arithmetic operation used is the 32 bit modular addition, thus
making it easy to implement in both 32 bit and 64 bit architectures.

Any attack to the privacy or authenticity of a message under one nonce does
not affect the privacy or authenticity of ciphers encrypted with other nonces.

11

Only the AES block encryption is needed (not the decryption), this saves
both hardware gates and software code.

AES-CPFB shares the above property with AES-GCM, but an advantage
over AES-GCM is that no Galois field operations are needed, again saving code
in software and gates in hardware, and it can take advantage of the adaptability
of AES to different environments, from the latest Intel chips to 32 bit systems
and byte oriented environments. It also makes re-keying simpler than in AES-
GCM in any environment where the AESNI instructions are not available.

Another advantage over AES-GCM is its message size. Up to 264 − 1 bytes
can be encrypted with a single (key, nonce) pair. Furthermore, there are never
more than 232 AES operations done with the same key, very far below the
birthday bound.

Also, another advantage over AES-GCM is that a tag of length τ is expected
to have full τ bits of security.

12

Chapter 5

Design Rationale

The designers have not hidden any weaknesses in this cipher.
There were several goals in the design of AES-CPFB . The principal one

was to use AES as a black box, that is we wanted AES-CPFB to be a mode
of operation. Moreover, we wanted to base the security only on the security
of AES, and not in other primitives, such as operations on the Galois Field
GF (2128).

Secondly, we wanted its speed to be competitive with AES-GCM.
It also should be capable of online processing: it should not need to know

the length of AD or P before processing, and also should be able to process
both independently.

We decided to combine a counter with an encryption of the plaintext. We
found that idea applied in RPC [1], but it came at the cost of increasing the
size of the ciphertext. So we thought of using the encryption used by RPC as
the key stream of a stream cipher. We found out that a similar design exists in
CCFB+H [2], but with severe restrictions on the size of the tag.

In our design, we opted for using the plaintext as feedback. As this mode
does not propagate the IV, and we wanted all the encryption to depend on the
public message number, we decided to make the key dependent on the nonce.
This allow us to use a small counter, but to encrypt large messages by way of
re-keying. We wanted to ensure that all the auxiliary keys dependent on one
nonce to be different between them, and different for any key used with another
nonce and the same key. This is easily achieved using a counter.

This design combines the privacy properties of Counter mode [3] with the
dependence of the message of PFB. The concatenation of a block of message
with a counter provides protection against chosen plaintext attacks (which is
one of the problems of PFB).

AES-CPFB pays the price of using a smaller block size, but the use of 96
bits for the message and 32 for the counter appears to be a good compromise.
The security of the cipher is not affected: it is still AES with a 128 bit block.
The loss of speed on the cipher is compensated by the simplicity of the tag
calculation: only an exclusive-or of the key stream blocks is needed, plus some

13

constant overload.
The use of temporary keys that are nonce-dependent guarantees that there

are no repeated key stream blocks during the lifetime of each key. Furthermore,
the procedure ensures that no temporary keys are repeated during the lifetime
of the master keys, provided that there is no nonce repetition.

The procedure to generate the temporary keys is secure under the assump-
tion that AES is indistinguishable from random.

An attacker never “sees” any block encrypted with κ0, except the final tag.
We decide to apply an exclusive-or of κ0 with the plaintext before encrypting

with any other κi to prevent a pre-computation collision attack.
The attacker chooses 264 different keys k, and computes bk = AESk(0).

Then the encryption of 264 different messages are captured and assume the
first plaintext block P j1 of these are known. Let Cj1 be the first blocks of these

ciphertexts. Then the attacker knows Sj1 = P ji ⊕ C
j
1 which is the truncation of

Eκ1
(0).
Then the attacker searches for a collision between some MSB96(bk) and

some Sj1.
If there is one, then k = κ1 with probability 2−32, and the attacker could

decrypt the rest of the corresponding ciphertext.
The xor with κ0, which cannot be derived from κ1, prevents this attack.
We used ambiguous padding, but the length of AD and P is encoded in a

special block which is encrypted.
We decided to use as tag the XOR of the keystream but this has some

security problems part of which are solved by the xor of the encryption of the
lengths and the rest is solved by doing one more encryption of the result.

14

Chapter 6

Intellectual Property

There are no known patents, patent applications, planned patent applications,
or other intellectual-property constraints relevant to the use of the cipher.

If any of this information changes, the submitter will promptly (and within
at most one month) announce these changes on the crypto-competitions mailing
list.

15

Chapter 7

Consent

The submitters hereby consents to all decisions of the CAESAR selection com-
mittee regarding the selection or non-selection of this submission as a second-
round candidate, a third-round candidate, a finalist, a member of the final
portfolio, or any other designation provided by the committee. The submitters
understands that the committee will not comment on the algorithms, except
that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitters
understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the
committee decision. The submitters acknowledge that the committee decisions
reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitters understand that if they disagree with pub-
lished analyses then they are expected to promptly and publicly respond to
those analyses, not to wait for subsequent committee decisions. The submitters
understand that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.

16

Bibliography

[1] Jonathan Katz, Moti Yung “Unforgeable Encryption and Chosen Ci-
phertext Secure Modes of Operation”, Fast Software Encryption Lec-
ture Notes in Computer Science Volume 1978, 2001, pp 284-299

[2] Stefan Lucks, “Two-Pass Authenticated Encryption Faster Than
Generic Composition, Fast Software Encryption Lecture Notes in
Computer Science Volume 3557, 2005, pp 284-298

[3] Morris Dworking, NIST Special Publication 800-38A Recommenda-
tion for Block Cipher Modes of Operation, 2001 Edition

[4] Moses Liskov and Ronald L. Rivest and David Wagner, “Tweakable
Block Ciphers”, Advance in Cryptology, CRYPTO’02, Lecture Notes
in Computer Science Volume vol 2442, 2002, pp 31-46

17

