

 1

++AE v1.++AE v1.++AE v1.++AE v1.00001111
Author: Francisco Recacha Email contact at: frecacha@gmail.com

MarchApril, 615th 2014

AbstractAbstractAbstractAbstract:::: ++AE (read “plusplusae”) is an original proposal of an authenticated encryption
mode designed for submission to CAESAR competition. ++AE is a lightweight AE mode

with an almost negligible overhead when compared with only-encryption EBC mode since,
basically, only four sums are added per each plaintext block plus and only one additional

block cipher call is needed per each message. Moreover, ++AE supports authentication of
optional plain associated data, parallelized block cipher computation, allows to avoid

padding overheads by means of a bit stealing method, and can resist accidental nonce
repetitions, can be used with any block cipher algorithm with arbitrary block and key sizes

and with supports more than generous limits either on both message size and session
length.

1.1.1.1. IntroductionIntroductionIntroductionIntroduction

++AE is a new authenticated encryption mode design partially based on a couple of previous
modes designed by the same author, namely IOBC and IOC. The core principles inherited from its

parent modes are the “encrypt with chained redundancy” paradigm and, just from IOC, the
combined use of x-or and modular sums in the redundancy chaining path.

The main contributions achieved by ++AE mode, in comparison with IOBC and IOC, are that (a)

the cipher computations can be now parallelized, the design includes also (b) optional
authentication of plain associated data, (c) optional method for avoiding data padding

transmission, (d) optional scalable method for reducing the number of authentication bits
accompanying the cryptogram and (e) a deeper and stronger security analysis substantiating

the better quality of the proposed mode.

Moreover, ++AE computational and operational overhead is kept minimal, being possibly the
best one in its class. Firstly, the added computational overhead in comparison with the only-
encrypt ECB mode are just four block sums per message block (just two for associated data

blocks) and an additional call to the block cipher algorithm to generate a last cryptogram block
used as authentication tag (or Modification Detection Code, MDC). Secondly, the keying material

required by ++AE is reduced just to the encryption key, the one already required by the
underlying cipher algorithm, and a nonce public sequence number associated to each message.

To conclude with this introduction just to mention that, as Conway’s Game of Life shows,

complex universes emerge even (if not always) from minimal sets of very simple rules. In ++AE
case, is basically a combination the xor binary sums with the modular additions what raises,

supported by a good block cipher, the required complexity to obtain a very sound AE mode.

2.2.2.2. ++AE Specification++AE Specification++AE Specification++AE Specification

2.1 Native ++AE operation

Figure 1Figure 1 illustrates the encryption and decryption native/ baseline procedures for

++AE mode. This native specification can be upgraded by a number of optional features for
authentication of plain associated data, padding elimination and partial reduction of

 2

authentication bits. Implementations for these optional features are specified later in this same
document.

Figure Figure Figure Figure 1111: ++AE : ++AE : ++AE : ++AE nativenativenativenative encryption and decryption proceduresencryption and decryption proceduresencryption and decryption proceduresencryption and decryption procedures

A formal specification for the baseline encryption procedure:

Ii = Pi ⊕ Oi-1;

Oi = Ii + Ii-1 + Oi-1; (1)
Xi = Oi ⊕ Ii-1;

Ci = Ek(Xi);

for i = 1, …, (N+1) and where

a) Pi is a block of b bits of the plain message and Ci its corresponding cipher-text block;
b) b is the operating block size in bits of the used block cipher algorithm, Ek();

c) N≤2b/2 is the length, in b-bit blocks, of the plain message (see below for padding
issuehandling);

d) aIVO =0 is a secret and random b-bit value changed for each message;

e) bIVI =0 is a secret and random b-bit value changed for each message and different from IVa ;

f) PN+1=ICV (Integrity Check Vector) is a secret random b-bit value changed for each message;

g) CN+1=MDC (Modification Detection Code) is the cryptogram authentication b-bit tag;
h) Ek(X) is the result of the block encryption of a n bit vector X, using the session key k;

i) ⊕ is the x-or binary sum operator applied bit by bit to the two input b-bit vectors;

j) + is the regular arithmetic addition modulo 2b;

On its turn, the formal specification for the baseline decryption procedure1:

Ti = Dk(Zi);
Qi = Ti ⊕ Yi-1; (2)

Yi = Qj – (Yi-1+Qi-1);

Ri = Yi ⊕ Qi-1;

for i = 1, …, (N’+1) and where

a) - is the regular arithmetic subtraction modulo 2b.
b) N’ ≤2b/2 is the number of received cryptogram blocks (i.e. Z1, Z2, …, ZN’ and ZN’+1 = MDC’);

c) R1, R2, …, RN’ and RN’+1 are the N’ decoded plaintext blocks and the associated ICV’ value;

1 Observe that the block enciphering and decipher calls can be done in parallel if implemented over a platform with

concurrent processing capabilities.

Ek Ek Ek

P1 P2 PN

C1 C2 CN

O1

I1

O2

I2

ON

IN

+ + +

PN+1 =ICV

+

CN+1=MDC

Ek

ON+1

IN+1

X1 X2 XN XN+1

IV ‘
a

IVb

Dk Dk Dk

R1 R2 RN’

Z1 Z2 ZN

Y1

Q1

Y2

Q2

YN

QN

- - -

ICV’=ICV?

-

MDC’

Dk

YN+1

QN+1

T1 T2 TN TN+1
IVb

IV ‘
a

(a) Encryption (b) Decryption and Verification

…

…

…

…

+ + + +

+ + + +

+

 3

d) Q0 = IVa and Y0 = IVb as per the encryption procedure;
e) Dk(), the inverse operator of Ek() (i.e. Dk(Ek(X)) = X);

f) the decoded plain message is accepted as authentic only if ICV’ = RN’+1= ICV;

It is immediate that the decoding operation for any authentic cryptogram is just the inverse of
the encoding one (i.e. Ri = Pi for i=1 … N and ICV’ = ICV, with N’=N).

Further to the notation already introduced, the following complementary notation is used in this
document:

• X|Y is the concatenation of the bit strings X and Y;
• |X| is the length, in bits, of the bit string X;
• X*n is the bit string composed concatenating n instances of the bit string X;

• X»n is the right-hand shift of n positions in the bit string X (filling it with ‘0’s on the left);
• X«n is the left-hand shift of n positions in the bit string X (filling it with ‘0’s on the right);

• [X]n is the right-most n bit sub-string (i.e. lest-significant-bits, or simply “lsb”) in X;
• n[X] is the left-most n bit sub-string (i.e. Most-Significant-Bits, or simply “MSB”) in X;

•
• [X]»n is the b bit string resulting from the clock-wise rotation of n bit positions in X.

To conclude ++AE native specification, the mode assumes that the plaintext string has a length

multiple of the working block size and no adding is required. Nevertheless, in case the user
application delivers a plaintext string that requires its bit tail to be padded, then an optional

padding mechanism is available for ++AE according to the specification given in section 2.3.

2.2 Optional authentication of plain associated data

In case that associated data is to be authenticated, then the procedure illustrated in figure 2 is

used both by the sender and the receiver to process them.

Figure Figure Figure Figure 2222: : : : optional optional optional optional authentication of plain associated dataauthentication of plain associated dataauthentication of plain associated dataauthentication of plain associated data

The authentication of the optional associated data consists of computing the following iterative

authentication tag over the AD blocks and before the rest of the message is processed2:

Gi = Ek(ADi) ⊕ (Ek(ADi) + Gi-1); for i = 1, …, M (4)

for i = 1, …, M, and where

• M, such that (M+N)≤2b/2, is the block length of the associated data AD;

2 Observe that the associated data blocks can be encrypted in parallel if implemented over a platform with concurrent

processing capabilities.

IVa

Ek Ek

AD1 ADM|{0}
b-q…

+ +

G1
IV’a=GM

IVa

Ek Ek

AD1
…

+ +

G1 IV’a=GM

ADM

 4

• AD1, AD2, …, ADM are the b bit blocks in which AD is brokeneak down;
• The last block ADM is filled, if required, with 0s on its (b-q) lsb positions till completing the

block size; i.e. ADM = [AD]q | 0*(b-q) (being 0<q≤b the number of residual bits from AD for
the last block) and then xor-ed with the bits of IVaICV clockwise rotated q positions (even

if q=0). That is:
ADM = ([AD]q | {0}*(b-q)) ⊕ [IVaICV] » q

 ;

• G0 = IVa (one of the initializing vectors “stolen” from the encryption procedure);
• GM constitutes an authentication tag that replaces the stolen initializing vector: IV’a = GM;

 5

2.3 Optional padding with bits stealing from ICV

To maintain the cryptogram bit size as in the original message, the next method is proposed as

optional padding mechanism alternative to the native configuration specified above (i.e.
alternative to have the plaintext formatted by the user application in block-size multiple length).

The idea consists of filling the last plaintext block, PN, with (b-w) ‘MSB 0’ bits and then xor-ed
with the bits of ICV clockwise rotated w positions, taken from the ICV and discarding w bits in

the authentication tag MDC , where (w<b is the number of bits in the plaintext tail to be
completedpadded till the block size). That is:

PN = [P]w | (b-w)[ICV]; PN = ([P]w | {0}*(b-w)) ⊕ [ICV] » w
PN+1 = [ICV]»wICV (as per the native configuration); (5)
CN+1 = [MDC](b-w); (i.e. C = C1 | C2 | … | CN | (MDC = [MDC](b-w))).

Observe that the last step in the native decryption and verification procedure shall be

substituted now with the following two-step one (see Figure 3Figure 3):

• the blocks R1, …, RN’ are decoded normally as per the native decryption procedure

(Note:;
• w’ = |MDC’| is the number of the tail received bits in the last cryptogram block);

• the last message block is corrected by RN = RN ⊕ [ICV] » w and

• if [RN
’

](b-w
’

) ≠ {0}*(b-w’)
(b-w

’
)[ICV] then the cryptogram is rejected as nont accepted as

authentic;, else

• now, now the encryption procedure is applied to the ICV (clock-wise) rotated w’

positions is encrypted chaining withvalue using the last inner vectors obtained at the last

decryption step to compute an and an authentication tag MDC” is obtained;

• finally the decoded message is rejected as non accepted as authentic only if [MDC”] (b-w’)
≠= MDC’.

Dk

RN’

ZN

YN

QN

-

ICV

+
[MDC’]w= [MDC”]w

?

Ek

YN+1

QN+1

TN TN+1

…

…

[RN’]b-w= b-w[ICV]

?

MDC”

…

…

[MDC’]w

R2

Z2

R1

Z1AD’2AD’1
… AD’M’

AD’2AD’1
… AD’M’

T

T

OK KO

+ +

Dk

RN’

ZN

YN

QN

-

[ICV]»w’

+
[MDC’]w= [MDC”]w

?

Ek

YN+1

QN+1

TN TN+1

…

…

[RN’]b-w=0..0

?

MDC”

…

…

[MDC’]w

R2

Z2

R1

Z1AD’1 … AD’M’

AD’1
… AD’M’

T

T

OK KO

+ +

 6

Figure Figure Figure Figure 3333: : : : DDDDecryption and ecryption and ecryption and ecryption and verificationverificationverificationverification procedure with padding based on procedure with padding based on procedure with padding based on procedure with padding based on ICVICVICVICV bit stealingbit stealingbit stealingbit stealing

2.4 Optional reduction of authentication tag bits

The particular decryption and verification procedure specified above for padding with ICV bits
stealing can also be directly extended for reducing authentication tags for which only the h≤b

lsb bits are transmitted. Since the authentication strength will be roughly reduced by a 2 factor
per each saved bit, this specification recommends not reducing tag size below 64 bits.

Moreover, if this optional authentication tag reduction is used in combination with ICV bit

stealing padding then, for those messages that (b-w) ≥ h (with w the number of “tail” plaintext
bits in the last block PN), no tag bits will have to be appended since the b bits of the CN block will

contain more authentication bits than required (i.e. b-w). If combination with ICV bits stealing is
used, h can shall be viewed as an “equivalent” tag size since the bits of MDC actually
accompanying the cryptogram will get further reduced.

The equivalent tag size can be selected either by the implementer (e.g. hard-wired within the

implementation) or parameterized by the user indicating to the encryption and decryption
procedures the specific size to be used. For the latter case, the handshake protocol between the

sender and receiver applications to set this parameter is kept outside this specification scope.

2.5 Operational requirements for session management

A “security session” is defined as the chain of plain messages that are encoded using a same
ciphering session key k and numbered each one of them with a different public message number

S, where 0 ≤ S ≤ 2b/2-1. This message number S is used for each message as an input nonce to
generate its integrity check vector and, in some cases, its initializing vectors. S counter can be

coded by the user with any bit word size from b/2 to b, although ++AE shall handle it internally
as a b bit integer (appending 0s at the leftmost positions if necessary). ++AE specification

considers S as a public counter shared by both communication ends. It can be managed as a
sequential counter, as a random value, … the only important requirement is that it does not
repeat a same value during a given session lifespan.

Although ++AE can be used in a stateless configuration where no internal status information is

kept to be reused between calls, the best efficiency and resilience against accidental S repetitions
is achieved in its stateful configuration where the last inner vectors ON+1 and IN+1 are saved to be

reused as initializing vectors IVa and IVb for the following message (furthermore, in this stateful
implementation the implementer has the possibility to save the internal status related to the

session key in order to save block cipher rekeying overhead for the subsequent calls). Although
not required, it is optional to the user to use random and secret S values as a complementary

protection in front of accidental repetitions of S.

Note that a signaling protocol will be required between the sender and receiver applications to
set the key k as well as to manage the session along its lifecycle, including S counter

resynchronization when required. This signaling protocol is kept outside the scope of this
specification. In any case, if ++AE is used in its stateful configuration the encryption and
decryption procedures shall be notified when a new security session is initiated and every time

the internal status shall be restarted (see below for fresh generation of the initializing vectors).
It shall be remarked that for those use cases where no session resynchronization is used ++AE

is completely safe against message counter repetitions.

A session can encompass up to 2b/2 messages in order: (a) a sameany value of the message
counter, S, is never repeated during in that session and (b) as complementary measure to avoid

certain theoretic situations where the inner vectors Ii and Oi could become periodic in the

 7

absence of any plaintext input different to ‘0’ (see annexed security analysis for further details).
Moreover, the length of each message, N, shall not be greater than 2b/2 blocks to avoid the

mentioned periodicity in the inner vectors. To sum up, one could say that in practical scenarios
the message / session limits are more than generous.

In any case, it will be up to the session management protocol to use more restrictive criteria for

session limits bellowshorter than the 2b/2 messages threshold. In most practical scenarios this
will be the case since a security session will be usually linked to a parallel concept at application

or key management level (e.g. file size, duration of a the connection-oriented communication
protocol, key life timing-out, etc). This means that a session will be terminated usually far more
earlierbelow than the 2b/2 threshold is reached. In any case, it is paramount the session counter

is shall not repeated for two messages in a given session since it could enable an attacker
exchanges them (that’s not actually true if the stateful configuration is used since it would be

required also that “fresh” IVs are generated for both cryptograms).

2.6 Initializing Vectors Management

2.6.1 Stateless IVs Management

In the ++AE stateless operation, for every message to be processed couple of “fresh” initializing

vectors shall be computed as follows (see Figure 4Figure 4.a):

IVa = Ek(S); IVb = Ek(IVa); (6)

2.6.2 Stateful IVs Management

The following optional procedure for stateful management of the initializing vectors allows

saving for each message the couple of cipher algorithm calls required for fresh IVs generation
and gaining protection against message counter repetition. After generating a couple of fresh IVs

for the first session message as per procedure (6) above, for subsequent messages the last inner
vectors ON+1 and IN+1 will be reused (see Figure 4Figure 4.b):

IVa = ON+1; IVb = IN+1 (and saved to be used for the next session message3); (7)

Alternatively to method (7), IVa and IVb can be reset with “fresh” values for any particular

message using the method specified in (6). This reset shall be done at the beginning of each
security session but it can be also forced at any point by the session management protocol. In
this latter case, this IVs reset may help for instance for resynchronization in case of message

losses during a data-loss tolerant communication. In such session resynchronization it shall be
guaranteed by the user that the new S value does not repeat any value used in another previous

session resynchronization. If no session resynchronization is used then ++AE is completely safe
against S nonce repetition (but in case of synchrony loss, a new session shall be initiated).

Observe that although stateful operation introduces some burden in the implementation to save

the status information between procedure calls for a particular session, there are significant
advantages that are worth of this burden:

• In comparison with stateless operation, it saves 2 calls of the cipher algorithm per message;
• In some implementations, it can enable also to save the key preset to process each message;

• It is inherently (partially) resilient to accidental repetitions of the session counter S by poor
session management implementations. Moreover, In the case of stateless operation such

repetition, if known by an attacker, would allow to exchange the cryptograms without being

3 Note that depending on particular implementations, the session key configured for the block cipher algorithm may

be also kept also for the next message to avoid key preset procedure and the associated computing overhead.

 8

detected.if session resynchronization is used then this resilience is only partial but if not
used then ++AE is totally safe against S repetitions4.

2.7 Integrity Check Vector Management

For each message, the random and secret ICV vector, appended of the plaintext bit string as an

additional block, is computed as (see Figure 4Figure 4.c):

ICV = (IVa ⊕ S) + (IVb ⊕ (N + M)); (8)

Where N and M are the block lengths of the plaintext and the associated data, respectively.

Figure Figure Figure Figure 4444: : : : Generation of IOC Generation of IOC Generation of IOC Generation of IOC InitializingInitializingInitializingInitializing VVVVectorsectorsectorsectors and Integrity Check Vectorand Integrity Check Vectorand Integrity Check Vectorand Integrity Check Vector

2.8 ++AE Parameters

 An ++AE configuration is set by the following parameters:

• Block cipher algorithm (Ek(), Dk()) and its associated block size, b. ++AE can use any block
cipher algorithm as far as it performs as a good pseudorandom permutation5;

• Key length |k|. ++AE supports block ciphers algorithms with selectable key size as, for
instance, AES;

• Authentication tag length, h. ++AE supports tag sizes b/2 ≤ h ≤ b (see section 2.4);

4 In fact, in such case S is not needed as an input parameter by the encryption and decryption procedures.
5 Moreover, although potential applications and associated requirements have not been assessed, ++AE could be also

applicable for some uses with public key algorithms.

IV’a

Ek

Ek

(a) (b)

IV’b

IVa

IVb

ON+1

IN+1

(c)

IVa IVb

S N+M

+

ICV

S

Ek

+

PN+1 =ICV

CN+1=MDC

XN+1

+

IV’a

Ek

Ek

(a) (b)

IV’b

IVa

IVb

ON+1

IN+1

(c)

IVa IVb

S N+M

+

ICV

S

Ek

+

PN+1 =ICV

CN+1=MDC

XN+1

+

 9

• Stateful / stateless operation modes (see sections 2.5 and 2.6);

• Padding mode: no padding (handled by user) or ICV bits stealing padding (see section 2.3).

2.9 Recommended Parameters Set for CAESAR

 Any combination of the supported parameters are covered by the scope of ++AE

specification.

 Nonetheless, for CAESAR assessment purposes the “recommended” parameter set for
++AE reference software implementation is as it follows:

• Block cipher algorithm: AES (16 byte / 128 bit block size);

• Key length |k|: 16 byte / 128 bits;

• Authentication tag length, h: 16 byte / 128 bits;;

• Stateful operational mode;

• Padding mode: ICV bits stealing padding.

2.8 Note on the underlying block cipher algorithm

++AE can be used with any block cipher algorithm and it can operate with any block sizes and
key sizes. Moreover, although potential applications and associated requirements have not been

assessed, ++AE could be also applicable for some uses with public key algorithms.

3.3.3.3. Security goals and security strength assessmentSecurity goals and security strength assessmentSecurity goals and security strength assessmentSecurity goals and security strength assessment

++AE design pursues, and achieves, the following security goals for all the recommended

parameter sets (as well as for any other supported operational configuration):
• Confidentiality strength offered to any block of the plaintext data, Pi, is equivalent, or better,

to the one offered by the underlying cipher algorithm, Ek() when applied in ECB mode just
once to Pi and all the other plaintext blocks processed with the same key being secret and

random disregarding the actual values they may have. More precisely:

o Any plaintext block value being ciphered twice will produce random cryptogram blocks

which values would collide just with a (uniform) random probability of 2-b;
o The previous property is achieved even when chosen plaintext is forced by an attacker

for the rest of plaintext blocks;
o ++AE scheme does not leak any information about the value of any of the Pi blocks;

o ++AE scheme does not leak any information to collect a (X, Ek(X)) dictionary.

o On other words: disregarding the amount of ciphered data an attacker observes and
disregarding the amount of plaintext known, or even forced, ++AE does not leak any single

bit of information neither about any unknown plaintext content of the plaintext (except for
its length) nor the key.

• Integrity strength both for associated data and plaintext is such that whatever resources
could be spent to forge cheat ++AE integrity, and assuming an ideal block cipher, the

success probability of such attack will not be higher than 2-(b-1.25), or 2-(h-1.25) if only h bits
(with 64≤h≤b) of the authentication tag are appended to the cryptogram.

The above characterization goals applyies to implementations in ++AE native form or with any

of its optional features provided, as usual, that the cipher algorithm performs as a perfect
pseudorandom permutation. It also includes and considering chosen plaintext attacks. See

annexed document for detailed ++AE security analysis as required per CAESAR call.
The security strength in bits (understood either as the log2 of either the attack cost or the

probability the attack has to success) corresponding to the above security goals are:

 10

• plaintext confidentiality: 128 bits if the plaintext is absolutely random and unknown to the
attacker, or H(P) bits (i.e. the plaintext entropy) if the attacker knows partially it.

• plaintext and associated data integrity: 126.75 bits (the log2 of the success probability);

• integrity for the public message number: 126.75 bits (understood as the log2 of the success

probability of an authentic cryptogram is accepted in a non authentic message sequence
position).

++AE only uses a public message number S, as a nonce to generate the initializing vectors, IVa
and IVb, and the integrity check vector, ICV. Two forms of implementation modes are supported:

stateless and stateful. In the stateless one, ‘fresh’ vectors IVa, IVb and ICV are computed for each
message while in the stateful one the initializing vectors IVa and IVb are taken from the final

computation status of the previous message. Note that while for the stateless operation the
repetition of the message counter for two messages in a same session would be fatal if known by

an attacker, in the stateful one the chaining of internal variables from one message as the
initializing vectors of the following one provides some partial mitigation against this type of
accidental nonce repetitions by wrong implementations. This partial protection becomes

complete if session resynchronization is forbidden (in such case, a new security session shall be
initiated instead).

If the message counter was accidentally repeated in a given security session for two different

messages employing fresh initial vectors, then an exchange of the cryptogram subsequences
initiated at these two messages would be unnoticed by ++AE integrity mechanism. Moreover,

confidentiality would be maintained except for an eventual matching of the heading plaintext
blocks in both messages. That risk shall be mitigated by means of careful implementation and

using stateful configuration but can be completely avoided if stateful configuration without
intermediate fresh IV renewals is adopted.

++AE issues regarding possible variations in attack resources, such as software side channels,

hardware side channels, large numbers of active keys, relationships among keys, large numbers
of legitimate messages encrypted, …, if any, should be the same ones than for the used block
cipher. In particular, implementers shall take into account that those issues for ++AE stateful

operation are similar to the case of stateful implementation of the cipher algorithm where the
session key preset is kept between calls (i.e. internal status to be protected from external

access).

4.4.4.4. ++AE Features Summary++AE Features Summary++AE Features Summary++AE Features Summary and Comparison with GCMand Comparison with GCMand Comparison with GCMand Comparison with GCM

++AE is an AEAD mode that can exhibit high security and efficiency in a really wide spectrum of
applications and, thus, it is not easy to identify a short list of AE features interesting for all of
them. In any case, It it is worth to point out the following ++AE mode differential features in

comparison with other well established AEAD modes:

1. ++AE is one of the most lightweight AE modes ever proposed, especially in its stateful form:
in comparison with ECB mode it just adds four b-bit sums per message block, one cipher

algorithm call for each message and two more for session start;
2. It allows parallelizatione of all the cipher algorithm calls to achieve high processing speeds.

3. The optional padding mechanism based on ICV bit stealing eludes padding overheads;

 11

4. In comparison with ECB mode, the only additional keying material that is required to be
managed by the user is a public message counter S, that is used as a nonce to generate the

integrity check vector and, in some cases, the initializing vectors;
5. In its stateful form, ++AE shows partial resilience against accidental repetitions of the

message counter S. Moreover, if no session resynchronization is used then AE++ exhibits
complete resilience against S nonce repetition.

6. ++AE allows authentication tags that in native mode have the same size as the working
block but it is also supported an optional mode to reduce the number of tag bits is also

supported.
7. Almost no practical limitations on the amount of data that can be processed either in a same

security session or a same message: A a session can cover up to 2b/2 messages with a

maximum size of 2b/2 blocks per message.
8. Although AES is the obvious block cipher of choice, ++AE is applicable with any block cipher

algorithm disregarding its block and key sizes;
9. ++AE supports, in principle, scalable cryptanalysis at least in the following forms:

o Simplified block cipher algorithm (e.g. limited number of rounds in AES);
o Reduced working block size: ++AE behavior can be studied with minimal block sizes

(e.g. b=16);
9. Although neither potential applications nor specific requirements have been assessed,

++AE could be used also with public key cipher algorithms.
10. To the knowledge of the author, the only ++AE performance features where it performs

below some other well established AEAD modes is are:
o about data preprocessing: ++AE does not support neither encryption nor decryption

preprocessing. Although it can have some significance on the maximum throughput
exhibited by an under-loaded platform, under high load conditions the maximum
supported throughput by an AE++ platform can be significantly higher due to its

lightweight feature;
o no advanced verification: integrity verification in AE++ takes place just after the last

cryptogram block is decrypted. Nevertheless this is a more theoretic drawback than a
practical one since in broadband applications where it could be critical is compensated

by the parallelization of the block decryptions and the ultra-lightweight chained tag
computation, and the additional computations done for fake cryptograms will have the

same statistical significance the latter have.

 Other potential ++AE features not fully assessed for version 1.1 are:
1. Associated data authentication can be, in principle, performed before, later or even at the

middle of plaintext blocks processing. While ++AE specification v1.1 covers associated data
(AD) process only before plaintext data, it is to be explored AD process options after

plaintext encryption, or even selectable by the user at any point, in order to online
authenticated encryption support. This option would be assessed in case ++AE remains
active in CAESAE competition after the 1st round.

1. Although neither potential applications nor specific requirements have been assessed, ++AE
could be used also with public key cipher algorithms.

2.

 From the above list, the main advantages of ++AE in front of GCM mode are:

a) ++AE computations are considerably lighter than GCM: roughly speaking, while GCM

requires one GF multiplication and three sums per each message block, ++AE requires just
four sums (i.e. the GF multiplication is substituted equivalently by just a sum !);

b) Nonce misuse robustness: ++AE in its stateful configuration is safe against nonce
repetitions if session resynchronization is not permitted;

 12

c) Maximum session and message lengths are considerably higher in ++AE than in GCM (e.g.
for 128 bits, a ++AE message can be 2·8·264 bytes; i.e. 295 Exabytes);

d) ++AE can be used with different cipher algorithms and block sizes;

e) Other relevant features where ++AE performs equivalently, or similarly, to GCM are:

i. parallelizable block encryption / decryption ;
ii. authentication of associated data supported;

iii. no padding overhead;
iv. scalable tag size.

10. .

5.5.5.5. Design Design Design Design RRRRationaleationaleationaleationale

This section is included just to formally comply with CAESAR requirements since the author has

tried to justify ++AE design details in those places of this document where they are specified or,
in some cases due to the required extend, in the accompanying security analysis.

The author has not hidden any weaknesses in ++AE design and, to the knowledge of the author,

if implemented following the specifications contained in this document, no ++AE design detail
would allow hiding any weakness.

6.6.6.6. ++AE ++AE ++AE ++AE Intellectual Intellectual Intellectual Intellectual PPPPropertyropertyropertyroperty IssuesIssuesIssuesIssues

Intellectual property rights on AE++ scheme, its sub-schemes and some variations are
protected by patent application ref. ES P201430169. In any case, the author grants free use

rights, at least, for any implementation not being part of (a) a data communications equipment
with a market price over 2.017 USD or (b) a commercial Operating System with more than

15.485.863 instances sold. If any of this information changes, the author will promptly (and
within at most one month) announce these changes on the crypto-competitions mailing list.

7.7.7.7. Consent StatementConsent StatementConsent StatementConsent Statement for CAESAR Selection Committeefor CAESAR Selection Committeefor CAESAR Selection Committeefor CAESAR Selection Committee

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the
selection or non-selection of this submission as a second-round candidate, a third-round

candidate, a finalist, a member of the final portfolio, or any other designation provided by the
committee. The submitter understands that the committee will not comment on the algorithms,

except that for each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands that the selection

of some algorithms is not a negative comment regarding other algorithms, and that an excellent
algorithm might fail to be selected simply because not enough analysis was available at the time

of the committee decision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to appeal. The
submitter understands that if they disagree with published analyses then they are expected to

promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter understands that this statement is required as a condition of

consideration of this submission by the CAESAR selection committee.

8.8.8.8. V1.1 Changes RecordV1.1 Changes RecordV1.1 Changes RecordV1.1 Changes Record

The main differences of ++AE v1.1 specifications compared with v1.0 are the following ones:

• Better alignment with some of the informational items required by CAESAR call:

 13

o ++AE mode configuration parameters are explicitly listed;
o A recommended parameter set for ++AE reference evaluation is defined;

o Security goals section revised, including the specification of nonce misuse resistance for
specific use cases;

o +AE features section improved with explicit comparison with GCM mode;

• Fixed padding weaknesses identified in v1.0, both in associated data and plaintext data.

• ++AE v1.1 is accompanied by a reference software implementation published separately.

No further revisions on ++AE are expected till subsequent rounds of CAESAR competition
(assuming ++AE survives the first round :)6.

6 Complementary information on ++AE is available at http://inputoutputblockchaining.blogspot.com

