Artemia v 1.1

Designers: Javad Alizadeh1, Mohammad Reza Aref1 and Nasour Bagheri2
1Information Systems and Security Lab. (ISSL), Electrical Eng. Department, Sharif University of Technology, Iran, alizadja@gmail.com, Aref@sharif.edu
2Electrical Engineering Department, Shahid Rajaee Teacher Training University, Iran, NBagheri@srttu.edu

Submitter: Javad Alizadeh

2014.03.31
Abstract

This document specifies a family of the dedicated authenticated encryption Artemia. It is an online nonce-based authenticated encryption scheme which supports the associated data. Artemia uses the permutation based mode JHAE that is provably secure in the ideal permutation model. Artemia permutations, \(Artemia : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n} \), have the two variants in which \(n = 256 \) and \(n = 128 \) and are secure against the differential and linear cryptanalysis.
Contents

1 Specification 2
 1.1 Parameters .. 2
 1.2 Constants .. 2
 1.3 Conversions .. 2
 1.4 Specification of JHAE 3
 1.4.1 Encryption and Authentication 3
 1.4.2 Decryption and Verification 4
 1.5 Specification of the Permutation Artemia 5
 1.5.1 Artemia−512 ... 5
 1.5.2 Artemia−256 ... 10
 1.6 The Authenticated Encryption Artemia 13
 1.6.1 Artemia-256 ... 13
 1.6.2 Artemia-128 ... 14

2 Security Goals 15

3 Security Analysis 16
 3.1 Security Analysis of JHAE 16
 3.2 Security Analysis of the Permutation Artemia 16
 3.2.1 Artemia − 512 ... 17
 3.2.2 Artemia − 256 ... 18

4 Features 19

5 Design Rationale 20
 5.1 JHAE .. 20
 5.2 The Permutation Artemia 20

6 Intellectual Property 22

7 Consent 23

A The Number of Active SBoxes 25

B Name 28
Chapter 1

Specification

This chapter defines the family of the dedicated authenticated encryption, namely Artemia. It has the two variants with the different security levels and resource’s requirements. Artemia-256 uses a 512-bit permutation and Artemia-128 uses a 256-bit permutation in the JHAЕ mode.

1.1 Parameters

Artemia has the three parameters of the key, nonce, and tag and uses an integer n to denote the length of the parameters. The parameters and their length for Artemia-256 and Artemia-128 are summarized in Table 1.1.

1.2 Constants

The permutations Artemia – 512 and Artemia – 256 use the six constants of \(C_0 \) to \(C_5 \). These constants are represented in Table 1.2 and Table 1.2.

1.3 Conversions

In order To convert a string to another string of different lengths, one uses the little endian conversions.

<table>
<thead>
<tr>
<th>Table 1.1: The parameters of Artemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>The permutation length (2n)</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Artemia-256</td>
</tr>
<tr>
<td>Artemia-128</td>
</tr>
</tbody>
</table>
1.4 Specification of JHAE

JHAE was introduced in [1]. In this section, we describe the JHAE mode, depicted in Fig 1.1. JHAE is a developed mode from the JH hash function mode and iterates a fixed permutation \(\pi: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n} \). It is a nonce-based, single-pass, and an online dedicated AE mode that supports the AD.

1.4.1 Encryption and Authentication

JHAE accepts an \(n \)-bit key \(K \), an \(n \)-bit nonce \(N \), a message \(M \) and an optional AD \((A) \), then it produces the ciphertext \(C \) and authentication tag \(T \). The pseudo code of the JHAE’s encryption-authentication is depicted in Table 1.4.

We assume that the input message after padding, is a multiple of the block size \(n \). The last block of the original message is concatenated by the padding data which is as follows:

1. Eight bits are used to represent the length of the nonce \((N) \) in Artemia-256 and nine bits are used to represent the length of the nonce in Artemia-512.
2. 24 bits are used to represent the length of the associated data \((A) \), e.g., it would be \(0^{24} \) if there is no AD.
3. 64 bits are used to represent the length of the message \((M) \).
4. A bit ‘1’ followed by a sequence of ‘0’ is appended such that the padded message is a multiple of the block size n. If there is the AD in the procedure, it is padded by a bit ‘1’ followed by a sequence of ‘0’ such that the padded AD would be a multiple of the block size n. The padded AD is processed in a way which is similar to the process of the message block with an exception that ciphertext blocks (c_i), are not produced for the AD blocks.

1.4.2 Decryption and Verification

JHAE decryption-verification procedure, depicted in Table 1.5, accepts an n-bit key K, an n-bit nonce N, a ciphertext C, a tag T, an optional AD (A), and it decrypts the ciphertext to get the message M and tag T'. If $T' = T$, it outputs M else it outputs \bot.

Figure 1.1: The JHAE mode of operation (the encryption and authentication), where $pad(A) = m_1 \| m_2 \| \ldots \| m_l$ and $pad(M) = m_{l+1} \| m_{l+2} \| \ldots \| m_P$
Table 1.4: The pseudo code of the encryption and authentication by JHAE

<table>
<thead>
<tr>
<th>Algorithm 1: JHAE - $E^\pi(K,N,M,A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Key K of n bits, Nonce N of n bits, Associated data A where $pad(A) = m_1|m_2|\ldots|m_l$ and Message M where $pad(M) = m_{t+1}|m_{t+2}|\ldots|m_p$</td>
</tr>
<tr>
<td>Output: Ciphertext C, Tag T</td>
</tr>
<tr>
<td>$IV = 0; m_0 = N$</td>
</tr>
<tr>
<td>$x_0 = IV \oplus m_0; x_0 = K$</td>
</tr>
<tr>
<td>$pad(A)|pad(M) = m_1|m_2|\ldots|m_p$</td>
</tr>
<tr>
<td>for $i = 0$ to $p-1$ do:</td>
</tr>
<tr>
<td>$y_i = \pi(x_i | x_i)$;</td>
</tr>
<tr>
<td>$x_{i+1} = y_i \oplus m_{i+1}$;</td>
</tr>
<tr>
<td>$x_{i+1} = y_i \oplus m_{i}$</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>$y_p | y_p = \pi(x_p | x_p)$;</td>
</tr>
<tr>
<td>$x_{p+1} = y_p \oplus m_p$</td>
</tr>
<tr>
<td>$C = x_{p+1} | x_{p+2} |\ldots|x_p$</td>
</tr>
<tr>
<td>$T = x_{p+1} \oplus K$</td>
</tr>
<tr>
<td>Return (C,T)</td>
</tr>
</tbody>
</table>

1.5 Specification of the Permutation Artemia

In this section, we describe the permutations of Artemia – 512 and Artemia – 256.

1.5.1 Artemia – 512

Artemia – 512 is a 512-bit permutation (Artemia – 512 : $\{0,1\}^{512} \rightarrow \{0,1\}^{512}$) which includes the six rounds of Artemia round – 512 : $\{0,1\}^{512} \rightarrow \{0,1\}^{512}$.

Now, we explain the round function Artemia round – 512.

Specification of Artemia round – 512

Artemia round – 512 is depicted in Fig 1.2. More precisely, at the beginning of the each round, the 512-bit input state is XORed by a round dependent constant value of the same length. The constant is introduced in Section 1.2. Next, the updated state is divided into four words of the 128-bit length. These 128-bit words are combined by a 4×4 recursive layer ($D1$), and other four words of the 128-bit length are produced. Then, each 128-bit value is passed an SBox layer ($S1$), which is 16 parallel 8×8-bit similar SBoxes and each SBox is applied to a byte of the internal state. Next, each 128-bit word is divided into four words of the 32-bit length and these 32-bit words are combined by a 4×4 recursive layer ($D2$), then other four words of the 32-bit length are produced. In this stage, there are four parallel recursive layers which one processes four words of the 32-bit length. Then, each 32-bit value is passed an SBox layer ($S2$), which
Algorithm 2. JHAE - \(D^\pi(K, N, C, T, A) \)

Input: Key \(K \) of \(n \) bits,Nonce \(N \) of \(n \) bits, Associated Data \(A \) where \(\text{pad}(A) = m_1 \| m_2 \| \ldots \| m_l \), ciphertext \(C = c_1 \| c_2 \| \ldots \| c_p \) and Tag \(T \)

Output: Message \(M \) or \(\perp \)

\[
IV = 0; m_0 = N \\
x_0' = IV \oplus m_0; x_0 = K \\
x_{l+1}' \| x_{l+2}' \| \ldots \| x_{l+p}' = c_1 \| c_2 \| \ldots \| c_p \\
\text{for} \ i = 0 \ \text{to} \ l - 1 \ \text{do:} \\
\quad y_i' \| y_i = \pi(x_i' \| x_i); \\
\quad x_{i+1}' = y_i' \oplus m_{i+1}; \\
\quad x_{i+1} = y_i \oplus m_i \\
\text{end for} \\
\text{for} \ i = l \ \text{to} \ p - 1 \ \text{do:} \\
\quad y_i' \| y_i = \pi(x_i' \| x_i); \\
\quad m_{i+1} = y_i' \oplus x_{i+1}; \\
\quad x_{i+1} = y_i \oplus m_i \\
\text{end for} \\
\quad y_p' \| y_p = \pi(x_p' \| x_p); \\
\quad x_{p+1} = y_p \oplus m_p \\
M = m_{l+1} \| m_{l+2} \| \ldots \| m_p \\
T' = x_{p+1} \oplus K \\
\text{if} \ T' = T \\
\quad \text{Return} \ M \\
\text{else} \\
\quad \text{Return} \ \perp
\]
Table 1.6: The pseudo Code of Arctic ROUND−512

<table>
<thead>
<tr>
<th>Arctic ROUND−512 (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: X // a stream of 512-bit length</td>
</tr>
<tr>
<td>Output: Y // a stream of 512-bit length</td>
</tr>
<tr>
<td>C // a round constant of 512-bit</td>
</tr>
<tr>
<td>X ⊕ C = W₁</td>
</tr>
<tr>
<td>W₁</td>
</tr>
<tr>
<td>for i = 0 to 3 do:</td>
</tr>
<tr>
<td>W₁ = S₁(W₁);</td>
</tr>
<tr>
<td>W₁ = W₁,3</td>
</tr>
<tr>
<td>W₁ = W₁,3</td>
</tr>
<tr>
<td>W₁,0 = D₂(W₁,3</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>for i = 0 to 3 do:</td>
</tr>
<tr>
<td>for j = 0 to 3 do:</td>
</tr>
<tr>
<td>W₁,3 = S₂(W₁,3);</td>
</tr>
<tr>
<td>W₁,3 = W₁,3</td>
</tr>
<tr>
<td>W₁,3 = W₁,3</td>
</tr>
<tr>
<td>W₁,0 = D₃(W₁,3</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>for i = 0 to 3 do:</td>
</tr>
<tr>
<td>for j = 0 to 3 do:</td>
</tr>
<tr>
<td>W₁,3,k = S₃(W₁,3);</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>end for</td>
</tr>
<tr>
<td>Y = W₁,3,3</td>
</tr>
<tr>
<td>Return Y.</td>
</tr>
</tbody>
</table>

is four parallel 8 × 8-bit similar SBoxes and each SBox is applied to a byte of the internal state. Given the 16 words of the 32-bit length, each 32-bit word is divided into four bytes, the bytes are combined by a 4 × 4 recursive layer (D3), and other four bytes are produced. In this stage, there are 16 parallel recursive layers which one process four bytes of the internal state. Finally, each byte passes an SBox (S3). In the following, we explain the transformations D1, S1, D2, S2, D3 and S3. S1, S2 and S3 form the confusion layers of Arctic ROUND−512, and D1, D2, and D3 form its diffusion layers.

The pseudo code of Arctic ROUND−512 is represented in Table 1.6.

Transformations S1, S2 and S3

All the SBoxes used in the round function are the same and they are identical to the SBox of AES. The lookup table of the SBox is represented in Table 1.7. For example if X = b2 (a byte in the hexadecimal notation) is given as the
Figure 1.2: Artemia_{round} − 512
was studied comprehensively in [4], and works as follows:

\[
\begin{align*}
D\text{1} & = X_0 \oplus X_2 \oplus X_4 \oplus L(X_1 \oplus X_3) \\
Y_0 & = X_0 \oplus X_2 \oplus X_4 \oplus L(X_1 \oplus X_3) \\
Y_1 & = X_1 \oplus X_3 \oplus Y_0 \oplus L(X_2 \oplus Y_0) \\
Y_2 & = X_2 \oplus Y_0 \oplus Y_1 \oplus L(X_3 \oplus Y_1) \\
Y_3 & = X_3 \oplus Y_1 \oplus Y_2 \oplus L(Y_0 \oplus Y_2)
\end{align*}
\]

(1.1)

where \(L\) is a linear function. If \(L(X), X \oplus L(X), X \oplus L^2(X), \text{ and } X \oplus L^7(X)\) are invertible, the diffusion layer will be perfect [4] and provides the branch number 5. In addition, if \(L\) is an efficient linear function, the diffusion layer would be efficient. In D1, we use \(L(X) = (X \ll 1) \oplus (X \gg 3)\) that satisfies the given conditions, i.e., \(L(X), X \oplus L(X), X \oplus L^2(X), \text{ and } X \oplus L^7(X)\) are invertible. Hence, the diffusion layer \(D1\) is perfect and efficient and its branch number is five.

Transformation D2

Similar to D1, D2 is also a recursive diffusion layer given four words of the 32-bit length produces other four words of 32-bit length. Its structure is identical.
to D_1 with an exception that it works with the 32-bit words. In the case of D_2, we have $L(X) = (X \ll 1) \oplus (X \gg 3)$. Since $L(X), X \oplus L(X), X \oplus L^3(X)$, and $X \oplus L^7(X)$ are invertible, D_2 is a perfect diffusion layer and its branch number is five.

Transformation D3

Similar to D_1 and D_2, D_3 is also a recursive diffusion layer given four bytes produces other four bytes. Its structure is identical to D_1 and D_2 with the two exceptions that it works with bytes and uses $L(X) = (X \oplus X \ll 1) \ll 1$. Since $L(X), X \oplus L(X), X \oplus L^3(X)$, and $X \oplus L^7(X)$ are invertible, D_3 is a perfect diffusion layer and its branch number is five.

1.5.2 Artemia – 256

Artemia – 256 is a 256-bit permutation ($Artemia: \{0, 1\}^{256} \rightarrow \{0, 1\}^{256}$) which includes the six rounds of $Artemia_{round} – 256 : \{0, 1\}^{256} \rightarrow \{0, 1\}^{256}$. In the rest of this section we describe the round function $Artemia_{round} – 256$.

Specification of Artemia_{round} – 256

$Artemia_{round} – 256$ is depicted in Fig 1.3. More precisely, at the beginning of the each round, the 256-bit input state is XORed by a round dependent constant value of the same length. The constant is introduced in Section 1.2.

Next, the updated state is divided into four words of the 64-bit length. These 64-bit words are combined by a 4×4 recursive layer (D_1), and other four words of the 64-bit length are produced. Then, each 64-bit value is passed an SBox layer (S_1), which is 8 parallel 8×8-bit similar SBoxes and each SBox is applied to a byte of the internal state. Next, each 64-bit word is divided into four words of the 16-bit length and these 16-bit words are combined by a 4×4 recursive layer (D_2), then other four words of 16-bit length are produced. In this stage, there are four parallel recursive layers which one process four words of the 16-bit length. Then, each 16-bit value is passed an SBox layer (S_2), which is two parallel 8×8-bit similar SBoxes and each SBox is applied to a byte of the internal state. Given 16 words of the 16-bit length, each 16-bit word is divided into two bytes, the bytes are combined by a 2×2 recursive layer (D_3), and other two bytes are produced. In this stage, there are 16 parallel recursive layers which one processes two bytes of the internal state. Finally, each byte passes an SBox (S_3). In the following we explain the transformations D_1, S_1, D_2, S_2, D_3 and S_3. S_1, S_2 and S_3 form the confusion layers of $Artemia_{round} – 256$, and D_1, D_2 and D_3 form its diffusion layers.

The pseudo code of $Artemia_{round} – 256$ is represented in Table 1.8.

Transformations S_1, S_2 and S_3

Similar to Artemia – 512, any SBox used in the round function of Artemia – 256 is identical to the SBox of AES. The lookup table of the SBox is represented in
Figure 1.3: Artemia$_{round} - 256$
Table 1.8: The pseudo Code of Artemia\textsubscript{round} – 256

<table>
<thead>
<tr>
<th>Artemia\textsubscript{round} – 256(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: (X) // a stream of 256-bit length</td>
</tr>
<tr>
<td>Output: (Y) // a stream of 256-bit length</td>
</tr>
<tr>
<td>(C) // a round constant of 256-bit length</td>
</tr>
</tbody>
</table>

\[
X \oplus C = W_1^0 || W_2^0 || W_1^1 || W_0^1; \quad \text{//} W_i^0 \in \{0, 1\}^{64}; \quad 0 \leq i \leq 3.
\]

\[
W_2^2 || W_2^2 || W_2^2 = D1(W_2^3 || W_2^1 || W_1^1);
\]

for \(i = 0 \) to 3 do:

\[
W_3^3 = S1(W_i^3);
\]

\[
W_i^3 = W_{i,1}^3 || W_{i,2}^3 || W_{i,1}^3 || W_{i,0}^3; \quad \text{//} W_{i,j}^3 \in \{0, 1\}^{16}; \quad 0 \leq j \leq 3.
\]

\[
W_i^4 = W_{i,3}^4 || W_{i,2}^4 || W_{i,1}^4 || W_{i,0}^4 = D2(W_{i,3}^3 || W_{i,2}^3 || W_{i,1}^3 || W_{i,0}^3);
\]

end for

for \(i = 0 \) to 3 do:

for \(j = 0 \) to 3 do:

\[
W_{i,j}^5 = S2(W_{i,j}^4);
\]

\[
W_{i,j}^5 = W_{i,j,1}^5 || W_{i,j,0}^5; \quad \text{//} W_{i,j,k}^5 \in \{0, 1\}^{8}; \quad 0 \leq k \leq 1.
\]

\[
W_{i,j}^6 = W_{i,j,1}^6 || W_{i,j,0}^6 = D3(W_{i,j,1}^5 || W_{i,j,0}^5);
\]

end for

end for

for \(i = 0 \) to 3 do:

for \(j = 0 \) to 3 do:

for \(k = 0 \) to 1 do:

\[
W_{i,j,k}^7 = S3(W_{i,j,k}^6);
\]

end for

end for

end for

\(Y = W_{3,3,1}^7 || W_{3,3,0}^7 || ... || W_{0,0,0}^7;\)

Return \(Y\).
Transformation D1

D_1 is a recursive diffusion layer given four words of the 64-bit length of X_0, X_1, X_2 and X_3, and it produces other four words of the 64-bit length, Y_0, Y_1, Y_2 and Y_3 as shown in Equation 1.1. As we discussed about the recursive layers of Artemia − 512, if $L(X)$, $X \oplus L(X)$, $X \oplus L^3(X)$ and $X \oplus L^7(X)$ are invertible, the diffusion layer would be perfect [4] and provides the branch number five. In D_1, $L(X) = (X \ll 1) \oplus (X \gg 15)$ satisfying the given conditions is used. Hence, the diffusion layer D_1 is perfect and its branch number is five.

Transformation D2

Similar to D_1, D_2 is also a recursive diffusion layer given four words of the 16-bit length produces other four words of the 16-bit length. Its structure is identical to D_1 with two exceptions that it works with 16-bit words and uses a different L. In the case of D_2, we have $L(X) = (X \ll 1) \oplus (X \gg 1)$. Since $L(X)$, $X \oplus L(X)$, $X \oplus L^3(X)$, and $X \oplus L^7(X)$ are invertible, D_2 is a perfect diffusion layer and its branch number is five.

Transformation D3

Similar to D_1 and D_2, D_3 is also a recursive diffusion layer. However, it is a 2×2 recursive diffusion layer. It also is introduced in [4] and works as follows:

\[
\begin{align*}
Y_0 &= X_0 \oplus L(X_1) \\
Y_1 &= X_1 \oplus L(Y_0)
\end{align*}
\]

(1.2)

where L is a linear function. It is shown that if $L(X)$ and $X \oplus L(X)$ are invertible, the diffusion layer is perfect [4]. We use $L(X) = (X \ll 1) \oplus (X \gg 3)$ (satisfying the conditions) in D_3. Hence, D_3 is a perfect diffusion layer and has the branch number three.

1.6 The Authenticated Encryption Artemia

We define Artemia-256 and Artemia-128 as the two variants of the family of the dedicated authenticated encryption which is named Artemia, as follows.

1.6.1 Artemia-256

Artemia-256 uses the permutation Artemia − 512 in the JHAE mode. Its key, nonce, AD blocks and message blocks have the length of 256-bit, and it produces the ciphertext blocks and a tag of the 256-bit length.
1.6.2 Artemia-128

Artemia-128 uses the permutation Artemia – 256 in the JHAE mode. Its key, nonce, AD blocks and message blocks have the length of 128-bit, and it produces the ciphertext blocks and a tag of the 128-bit length.
Chapter 2

Security Goals

In this section, we clarify the security goals of Artemia. The padding process of Artemia uses the secret message length (64 bits) and the associated data length (24 bits) which determines the upper bound of the length of each field, i.e., \(2^{64}-1\) and \(2^{24}-1\) respectively. It uses a nonce value as the public message, which is upper bounded by 256 bits for \(Artemia - 512\) and 128 bits for \(Artemia - 256\).

The only restriction on the nonce value is that reuse of the padded-nonce value under a same key is not allowed. It is unnecessary that the nonce values have equal length (shorter values of the nonce value will be extended to maximum length by appending 0-bit to the left). Hence, the scheme does not provide any integrity or confidentiality if the legitimate user uses a same set (nonce, key) to encrypt two different sets of (plaintext, associated data). In addition, during the decryption, the scheme returns \(m\) if the received tag is correct and \(\perp\) otherwise. Based on these assumptions, the security goals of Artemia are depicted in Table 2.1.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Artemia-256 bits of security</th>
<th>Artemia-128 bits of security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality of the secret key</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>Confidentiality of the plaintext</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>Integrity of the plaintext</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>Integrity of the associated data</td>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>Integrity of the nonce</td>
<td>128</td>
<td>64</td>
</tr>
</tbody>
</table>
Chapter 3

Security Analysis

This chapter describes the security of Artemia in the two subsections: security analysis of JHAE and security analysis of the permutation Artemia.

3.1 Security Analysis of JHAE

In [1] it is shown that JHAE achieves the privacy (indistinguishability under chosen plaintext attack or IND-CPA) and integrity (integrity of ciphertext or INT-CTXT) up to $O(2^{n/2})$ queries, where the length of the used permutation is $2n$. One can summarize the security of JHAE in the two theorems as follows:

Theorem 1. JHAE based on an ideal permutation $\pi : \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is (t_A,σ,ϵ)-indistinguishable from an ideal AE based on a random function RO and an ideal permutation π' with the same domain and range, for any t_A, then

$$\epsilon \leq \frac{\sigma(\sigma - 1)}{2^{2n-1}} + \frac{\sigma^2}{2^{2n}} + \frac{\sigma^2}{2^n},$$

where σ is the total number of blocks in queries to $JHAE - E, \pi$, and π^{-1}, by A.

Proof. [1].

Theorem 2. For any adversary A that makes σ block queries to $JHAE - E, \pi$, or π^{-1} in total, JHAE based on an ideal permutation $\pi : \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is (t_A,σ,ϵ)-unforgeable, then

$$\epsilon \leq \frac{3\sigma^2}{2^n} + \frac{3q}{2^n}.$$

Proof. [1].

3.2 Security Analysis of the Permutation Artemia

In this section, we investigate the security of Artemia against the differential and linear cryptanalysis. We show that any 2-round differential or linear characteristic has a minimum of 45 and 35 active SBoxes in Artemia – 512 and Artemia – 256 respectively. The numbers are a trivial lower bound for the
Table 3.1: The minimum number of active SBoxes and the differential and linear characteristic for Artemia

<table>
<thead>
<tr>
<th>Artemia</th>
<th># Rounds</th>
<th>Minimum active SBoxes</th>
<th>Maximum probability of a differential characteristic</th>
<th>Maximum bias of a linear characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemia − 512</td>
<td>2</td>
<td>45</td>
<td>2^{-270}</td>
<td>2^{-180}</td>
</tr>
<tr>
<td>Artemia − 512</td>
<td>4</td>
<td>90</td>
<td>2^{-540}</td>
<td>2^{-360}</td>
</tr>
<tr>
<td>Artemia − 256</td>
<td>2</td>
<td>35</td>
<td>2^{-210}</td>
<td>2^{-140}</td>
</tr>
<tr>
<td>Artemia − 256</td>
<td>4</td>
<td>70</td>
<td>2^{-420}</td>
<td>2^{-280}</td>
</tr>
</tbody>
</table>

minimum number of active SBoxes. The lower bound can be improved with respect to the diffusion layers of Artemia and the linear function that are used in the layers. On the other hand, the differential and linear characteristic of the SBox used in Artemia are 2^{-6} and 2^{-4} respectively. Hence, the probability of any 2-round differential characteristic for Artemia − 512 and Artemia − 256 are upper bounded by 2^{-270} and 2^{-210} respectively. Similarly, for any 2-round linear characteristic for Artemia − 512 and Artemia − 256, the biases are upper bounded by 2^{-180} and 2^{-140} respectively. By following a similar approach, any 4-round differential characteristic for Artemia − 512 and Artemia − 256 has a probability upper bounded by 2^{-540} and 2^{-420} respectively. And, any 4-round linear characteristic for Artemia − 512 and Artemia − 256 has a bias upper bounded by 2^{-360} and 2^{-280} respectively. These results are summarized in Table 3.2.

In the rest of this section, we show the correctness of our claims on the number of active SBoxes for Artemia − 512 and Artemia − 256.

3.2.1 Artemia − 512

The Minimum Number of Active SBoxes in Two Rounds

In Fig 1.2 assume that a D3 recursive layer has been active. An active D3 guarantees at least five active SBoxes in S2 and S3. On the other hand, any active SBox in S2 comes from an active D2 which also guarantees five active SBoxes in S1 and S2. Hence, each active 128-bit word at the input of D1 in the $i − th$ round guarantees at least nine active SBoxes in the $i − th$ round and each active 128-bit word at the output of D1 in $i − th$ round guarantees at least nine active SBoxes in the $(i − 1) − th$ round. Since the branch number of D1 is five, there are at least five active words in the input/output of any active D1. Hence, the minimum number of active SBoxes for two rounds of Artemia − 512 is 45 (see also Fig. A.1 where the bold line is related to the lower bound). We summarize the minimum number of active SBoxes for two rounds of Artemia − 512 in Table 3.2.
Table 3.2: The minimum number of active SBoxes for two rounds of *Artemia* − 512.

<table>
<thead>
<tr>
<th># active words in the start of the round</th>
<th># Minimum active SBoxes in the end of the round</th>
<th># Minimum active SBoxes in the start of the next round</th>
<th># Minimum active SBoxes in the end of the next round</th>
<th># Minimum active SBoxes in two rounds of Artemia − 512</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>4</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>3</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>2</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>1</td>
<td>36</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 3.3: The minimum number of active SBoxes for two rounds of *Artemia* − 256.

<table>
<thead>
<tr>
<th># active words in the start of the round</th>
<th># Minimum active SBoxes in the end of the round</th>
<th># Minimum active SBoxes in the start of the next round</th>
<th># Minimum active SBoxes in the end of the next round</th>
<th># Minimum active SBoxes in two rounds of Artemia − 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>4</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>3</td>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>28</td>
<td>35</td>
</tr>
</tbody>
</table>

3.2.2 *Artemia* − 256

The Minimum Number of Active SBoxes in Two Rounds

In Fig 1.3 assume that a \(D_3 \) recursive layer has been active. An active \(D_3 \) guarantees at least three active SBoxes in \(S_2 \) and \(S_3 \). On the other hand, any active SBox in \(S_2 \) comes from an active \(D_2 \) which also guarantees five active SBoxes in \(S_1 \) and \(S_2 \). Hence, each active 64-bit word at the input of \(D_1 \) in the \(i \)–th round guarantees at least nine active SBoxes in the \(i \)–th round and each active 64-bit word at the output of \(D_1 \) in \(i \)–th round guarantees at least seven active SBoxes in the \((i-1) \)–th round. Since the branch number of \(D_1 \) is five, there are at least five active words in the input/output of any active \(D_1 \). Hence, the minimum number of active SBoxes for two rounds of *Artemia* − 256 is 35 (see also Fig. A.2 where the bold line is related to the lower bound).

We summarize the minimum number of active SBoxes for two rounds of *Artemia* − 256 in Table 3.3.
Chapter 4

Features

Artemia has provable security up to $O(2^{n/2})$ queries in the ideal permutation model where $2n$ is the length of the permutation. It is online, single-pass and supports the optional associated data. The Artemia security relies on the usage of nonces. However, it does not allow the reuse of a nonce under the same key. Artemia does not require the inverse of the permutation in the decryption function, this provides the resource efficiency.

The permutation Artemia has an efficient and a simple structure and is resistant to the differential and linear cryptanalysis. In order to design the permutation, we use the MDS recursive layers [2–4] that can be easily implemented in both software and hardware.

Compression to AES-GCM

AES-GCM is a block cipher based design while Artemia is a dedicated design. AES-GCM is a two-pass AE but Artemia is a single-pass one. Artemia does not contain key schedule and it does not use field multiplication. Artemia uses MDS recursive layers that can be easily implemented in both software and hardware. Hence we expect that Artemia provides a good performance in software and hardware.

Artemia-512 provides 128-bit integrity of the plaintext, associated data and nonce which is greater than the bounds provided by AES-GCM. The main disadvantage of Artemia is that it is serial.
Chapter 5

Design Rationale

Artemia has two main components: the JHAE mode and the permutation Artemia. In order to design each component, we use the publicly known elements to avoid any hidden weaknesses inside those components. In addition, the designers state that they have not hidden any weaknesses in this scheme. In the following, we give the rationale of the designing each component.

5.1 JHAE

JH [5] is a finalist of the SHA-3 competition and JHAE is a dedicated authenticated encryption mode based on the JH mode. JHAE is a sponge-like mode that uses a permutation and does not need any key schedule. On the other hand, in [1], it has been shown that JHAE is provably secure up to $O(2^{n/2})$. The important researches on JH hash mode have done in the duration of SHA-3 competition and show that there is not any significant vulnerability in the JH hash mode.

5.2 The Permutation Artemia

The permutation Artemia has the two main layers: the confusion and diffusion layer. In the confusion layer, the AES SBox having the appropriate characteristics is used. The diffusion layers are developed from the recently introduced recursive diffusion layers [2-4], that are simple and efficient. In [4], it is shown that these diffusion layers are perfect and provide the maximum branch number.

One can summarize the design rational of Artemia as follows:

- Security;
- Simplicity;
- Using the known transformations as its components;
• Avoiding a Key Schedule.
Chapter 6

Intellectual Property

Artemia itself is not covered by any patent and it is freely-available. On the other hand, as a building block, it uses the JH hash mode which is not covered by any patent as far as the designers of Artemia know but if there is any patent for JH then it would be applicable to the mode which is used in Artemia. If any of this information changes, the submitter will promptly (and within at most one month) announce these changes on the crypto-competitions mailing list.
Chapter 7

Consent

The submitter hereby consents to all decisions of the CAESAR selection committee regarding the selection or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist, a member of the final portfolio, or any other designation provided by the committee. The submitter understands that the committee will not comment on the algorithms, except that for each selected algorithm the committee will simply cite the previously published analyses that led to the selection of the algorithm. The submitter understands that the selection of some algorithms is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not enough analysis was available at the time of the committee decision. The submitter acknowledges that the committee decisions reflect the collective expert judgments of the committee members and are not subject to appeal. The submitter understands that if he disagrees with published analyses then he is expected to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions. The submitter understands that this statement is required as a condition of consideration of this submission by the CAESAR selection committee.
Bibliography

Appendix A

The Number of Active SBoxes
Figure A.1: The minimum number of SBoxes in Artemia – 512. S_1, S_2, and S_3 are the minimum number of SBoxes in S_1, S_2, and S_3 respectively.
Figure A.2: The minimum number of active SBoxes in *Artemia* – 256. S_1, S_2, and S_3 are the minimum number of SBoxes in S_1, S_2, and S_3 respectively.
Appendix B

Name

We named it *Artemia* because of:

\[\textit{Critical condition of Artemia Urmiana and possibility of extinction}^{1}\]
