
A SUBMISSION TO CAESAR COMPETITION FOR
AUTHENTICATED ENCRYPTION

CBA Mode (v1)

Designers:
Hossein HOSSEINI
Shahram KHAZAEI

Submitter:
Shahram KHAZAEI

shahram.khazaei@sharif.ir

March 15, 2014

CBA Mode (v1)
A Submission to CAESAR Competition for Authenticated Encryption

Hossein Hosseini1 and Shahram Khazaei2

Sharif University of Technology
1School of Electrical Engineering

2Department of Mathematical Sciences

Abstract. This paper presents the Code-Book Authentication mode (CBA), a
submission to the CAESAR competition for authenticated encryption. CBA is a
blockcipher mode of encryption that provides confidentiality and authenticity for
plaintexts and authenticity for associated data. The proposed mode improves the
OCB mode in the sense that, on average, it requires up to one less blockcipher
call to encrypt and authenticate the input message. The improvement is achieved
by merging the last two blocks into one block and also using the fact that most
applications need relatively small or moderate amount of data to be encrypted,
per key. The trade off is that the last block in the encryption algorithm loses
its parallelizability and the decryption algorithm has to wait one block before
processing the received block. The CBA mode possesses other attractive features
of the OCB; it is one pass, uses one-key for encryption and authentication and
employs a fixed-length arbitrary nonce.
Keywords: Authenticated Encryption, Blockcipher Mode, CBA, OCB.

1 Introduction

Authenticated encryption (AE) is a shared-key encryption scheme which provides con-
fidentiality and authenticity simultaneously. A straightforward approach for construct-
ing an authenticated-encryption scheme is to combine an encryption scheme and a mes-
sage authentication code (MAC), appropriately. However, composition methods are
slow, require at least two keys, and in practice are more likely to be misused. There-
fore, designing a mode of operation for blockciphers has become a popular approach
to achieve AE. In recent years, several modes have been proposed, such as CCM [9],
GCM [6], EAX [1], IAPM [3], OCB [8,7,4] and CCFB [5].

This submission presents a new blockcipher-based mode of operation, called Code-
Book Authentication (CBA). CBA inherits many features from the OCB, which in turn
was a refinement of the IAPM. It is one-pass, uses a single key for both the encryption
and authentication processes, and employs a fixed-length arbitrary nonce.

However, CBA improves the OCB mode in the sense that, on average, it requires
up to one less blockcipher call to encrypt and authenticate the input message. The im-
provement is achieved by merging the last two blocks into one block and also using the
fact that most applications need relatively small or moderate amount of data to be en-
crypted, per key. The trade off is that the last block in the encryption algorithm loses its
parallelizability and the decryption algorithm has to wait one block before processing
the received block.

2 Notation

A string is a finite sequence of symbols over alphabet {0, 1}. Let {0, 1}∗ denote the set
of all strings and A,B ∈ {0, 1}∗. Let i be a non-negative integer. Let {0, 1}i denote
the set of all strings of length i. The following notations and operations are used in the
description of the CBA mode:

– AB: concatenation of the two strings A and B.
– 0i: string of i 0s.
– |A|: bit-length of A.

– padi(A) =

{
A10i−|A|−1 if |A| < i

A if |A| = i
.

– pad(A) = pad128(A)
– MSBi(A): first i bits of A, where i ≤ |A|.
– LSBi(A): last i bits of A, where i ≤ |A|.
– A⊕B: bitwise exclusive-or of two equal-length strings A and B.
– dxe: smallest integer not less than x.
– A � i: a string with the same bit-length as A, which is a left shift of A by i bits,

where i ≤ |A| and the first i bits are discarded.
– [i]8: the 8-bit string that encodes i as a binary number, where i ∈ {0, . . . , 255].

3 Specification

3.1 Parameters
The CBA mode uses a blockcipher E (whose inverse is denoted by D), with n-bit
blocksize and k-bit key, along with a ν-bit nonce.

Parameter space: CBA is parametrized with a tag-length τ and usage-capacity b, where
0 ≤ τ ≤ n and b ≤ n/2 − 16. By usage-capacity b we mean that CBA can be used to
encrypt and authenticate at most 2b message blocks, including associated data, per key.
There is no secret message number; i.e., the secret message number is empty.

• From here on, we fix n = 128 and ν = 96.
• All over the paper, we let ` = min(n− 2b− 32, τ).

Recommended parameter sets Our recommended parameters are as follows:

E k τ b

(1) AES 128 32 16
(2) AES 128 32 32
(3) AES 128 64 16
(4) AES 128 64 32
(5) AES 128 64 48
(6) AES 128 96 16
(7) AES 128 96 32
(8) AES 128 96 48
(9) AES 192 64 32
(10) AES 256 96 48

The Scheme The CBA mode consists of the algorithm ENC for the encryption and
authentication process and the algorithm DEC for the decryption and verification pro-
cess. These algorithms use H for authenticating the associated data, and F and F∗ for
updating the offset values.

The encryption process takes a key K ∈ {0, 1}k, a public message number (nonce)
N ∈ {0, 1}ν , a message M ∈ {0, 1}∗ and an associated data A ∈ {0, 1}∗. The output
is the ciphertext C ∈ {0, 1}∗, with the same size as the plaintext, plus τ extra bits to
authenticate C. The decryption process takes a key, a ciphertext, and a nonce, and it
returns either a plaintext or a special symbol ⊥, indicating that the decrypted plaintext
is invalid.

The algorithm H takes a key K ∈ {0, 1}k and the associated data A to compute
the tag value TA = H(K,A). The value TA will be used in the process of message
encryption and authentication.

Figures 1-5 illustrate the functionality of the CBA encryption algorithm. In the fig-
ures, we show the offset values by ∆i’s and ∆∗ for clarity. The decryption algorithm is
straightforward.

CBA Definition In the following, we provide the details of the CBA ENC and DEC
algorithms and the three subroutines H, F and F∗.

[assumes: K ∈ {0, 1}k, A ∈ {0, 1}∗, ` = min(n− 2b− 32, τ)]
function H(K,A)

A1 · · ·Aa ← A where |Ai| = n for 1 ≤ i ≤ a− 1, |Aa| ≤ n
S ← 0n

L← EK([τ]8[b]80
n−16)

∆← L
for i = 1 to a− 1 do

∆← F(∆)
S ← S ⊕ EK(Ai ⊕∆)

if |Aa| < n then
∆← F∗(∆)

else
∆← F(∆)

S ← S ⊕ EK(pad(Aa)⊕∆)
TA ← MSBτ (S)
return TA

[assumes: ∆ ∈ {0, 1}128]
function F(∆)

(A,B)← ∆ where |A| = |B| = 64
(A,B)← (B, (A� 1)⊕MSB1(A) · 02102610241081⊕B)

function F∗(∆)
(A,B)← ∆ where |A| = |B| = 64
(A,B)← (B,A⊕ (A� 1)⊕MSB1(A) · 02102610241081⊕B)

The details of the encryption and decryption algorithms are given below.

[assumes: E : {0, 1}k × {0, 1}n → {0, 1}n is a blockcipher,
0 ≤ τ ≤ n, b ≤ n/2− 16 and ` = min(n− 2b− 32, τ),
K ∈ {0, 1}k,N ∈ {0, 1}ν , A,M ∈ {0, 1}∗.]

function ENC(K,N,A,M)
TA ← H(K,A)
R← EK([τ]8[b]80

n−ν−16N)
L← EK([τ]8[b]80

n−16)
∆← 1MSBn−`(R)0

`−21
if |M | ≤ ` then

C0 ←M ⊕ LSB|M |(R)
T ← TA ⊕ padτ (C0)
∆← F∗(∆)
C1 ← MSBτ

(
EK(0n−τT ⊕∆)

)
return C0C1

else
M0M

′ ←M where |M0| = `
C0 ←M0 ⊕ LSB`(R)
T ← TA ⊕ 0τ−`C0

M1 · · ·Mm ←M ′ where |Mi| = n for 1 ≤ i ≤ m− 1, 1 ≤ |Mm| ≤ n
S ← 0n

for i = 1 to m− 2 do
S ← S ⊕Mi

∆← F(∆)
Ci ← EK(Mi ⊕∆)⊕∆

S ← S ⊕Mm−1
∆← F(∆)
Temp← EK(Mm−1 ⊕∆)
if |Mm| ≤ n− τ then

Cm−1 ← MSB|Mm|+τ (Temp)⊕MmT
∆← F∗(L)⊕∆
Cm ← S ⊕ EK(pad(Cm−1)⊕∆)
return C0C1 · · ·Cm

else
Cm−1 ← Temp⊕∆
S ← S ⊕ pad(Mm)
∆← F(∆)
Cm ←Mm ⊕MSB|Mm|

(
EK(0n−τT ⊕∆)

)
∆← F∗(∆)
Cm+1 ← MSBτ

(
EK(S ⊕ 0n−τT ⊕∆)

)
return C0C1 · · ·CmCm+1

[assumes: E : {0, 1}k × {0, 1}n → {0, 1}n is a blockcipher with inverse D,
0 ≤ τ ≤ n, b ≤ n/2− 16 and ` = min(n− 2b− 32, τ)
K ∈ {0, 1}k,N ∈ {0, 1}ν , A,C ∈ {0, 1}∗.]

function DEC(K,N,A,C)
TA ← H(K,A)
R← EK([τ]8[b]80

n−ν−16N)
∆← 1MSBn−`(R)0

`−21
if |C| ≤ `+ τ then

C0C1 ← C where |C1| = τ
M ← C0 ⊕ LSB|C0|(R)
T ← TA ⊕ padτ (C0)
∆← F∗(∆)
if C1 = MSBτ

(
EK(0n−τT ⊕∆)

)
then

return M
else

return ⊥
else

C0C
′ ← C where |C0| = `

M0 ← C0 ⊕ LSB`(R)
T ← TA ⊕ 0τ−`C0

C1 · · ·CmC ′′ ← C ′ where |Ci| = n for 1 ≤ i ≤ m, n < |C ′′| ≤ 2n
S ← 0n

for i = 1 to m do
∆← F(∆)
Mi ← DK(Ci ⊕∆)⊕∆
S ← S ⊕Mi

if |C ′′| > n+ τ then
C ′′1C

′′
2 ← C ′′ where |C ′′2 | = n

∆← F∗(L)⊕ F(∆)
M ′′1 ← C ′′2 ⊕ S ⊕ EK(pad(C ′′1)⊕∆)
∆← F∗(L)⊕∆
Temp← EK(M ′′1 ⊕∆)
M ′′2 T

′ ← MSB|C′′
1 |(Temp)⊕ C ′′1 where |T ′| = τ

if T = T ′ then
return M0M1 · · ·MmM

′′
1M

′′
2

else
return ⊥

else
C ′′1C

′′
2 ← C ′′ where |C ′′2 | = τ

∆← F(∆)
M ′′ ← C ′′1 ⊕MSB|C′′

1 |
(
EK(0n−τT ⊕∆)

)
S ← S ⊕ pad(M ′′)
∆← F∗(∆)
if C ′′2 = MSBτ

(
EK(S ⊕ 0n−τT ⊕∆)

)
then

return M0M1 · · ·MmM
′′

else
return ⊥

𝐴1

𝐸𝐾 …

⨁ ∆1

𝐴𝑎−1

𝐸𝐾

⨁ ∆𝑎−1

pad 𝐴𝑎

𝐸𝐾

⨁ ∆∗

𝑇𝐴

first 𝜏 bits

⨁ ⨁ …

𝐸𝐾

 𝜏 8 𝑏 80𝑛−16

𝐿

Fig. 1: CBA Encryption–associated data processing. Case |Aa| < n. In the figure,
we have ∆i = F(∆i−1) where ∆0 = L, and ∆∗ = F∗(∆a−1).

𝐴1

𝐸𝐾 …

⨁ ∆1

𝐴𝑎−1

𝐸𝐾

⨁ ∆𝑎−1

𝐴𝑎

𝐸𝐾

⨁ ∆𝑎

𝑇𝐴

first 𝜏 bits

⨁ ⨁ …

𝐸𝐾

 𝜏 8 𝑏 80𝑛−16

𝐿

Fig. 2: CBA Encryption–associated data processing. Case |Aa| = n. In the figure,
we have ∆i = F(∆i−1) where ∆0 = L.

𝑀

𝐶0

𝐸𝐾

 𝜏 8 𝑏 80𝑛−𝜈−16𝑁

𝑅

⨁ 𝑅

𝑇𝐴⨁pad𝜏 𝐶0

𝐶1

𝐸𝐾

first 𝜏 bits

⨁ Δ∗

last 𝑀 bits

Fig. 3: CBA Encryption—message processing. Case |M | ≤ `. In the figure, we have
∆∗ = F∗(∆0) where ∆0 = 1MSBn−`(R)0

`−21.

𝑆𝑚−1

𝑀1

𝐶1

𝐸𝐾 𝐸𝐾

𝑅

…

𝑀𝑚−1

𝐶𝑚−1

𝐸𝐾

first 𝑀𝑚 + 𝜏 bits

⨁

𝑀𝑚𝑇

⨁

⨁ Δ1

Δ1

𝑀𝑚−2

𝐶𝑚−2

𝐸𝐾

⨁

Δ𝑚−2

Δ𝑚−2

⨁ Δ𝑚−1

pad 𝐶𝑚−1

𝐶𝑚

𝐸𝐾

⨁

⨁ Δ∗
 𝜏 8 𝑏 80𝑛−𝜈−16𝑁

𝑀0

𝐶0

⨁ 𝑅 last 𝑙 bits

0𝜏−𝑙𝐶0

𝑇

⨁ 𝑇𝐴

⨁

𝐸𝐾

 𝜏 8 𝑏 80𝑛−16

𝐿

Fig. 4: CBA Encryption—message processing. Case |Mm| ≤ n − τ . In the figure, we have ∆i = F(∆i−1) where ∆0 =
1MSBn−`(R)0

`−21, and ∆∗ = F∗(L)⊕∆m−1 and Sm−1 =M1 ⊕ · · · ⊕Mm−1.

𝑆𝑚⨁0𝑛−𝜏𝑇

𝐶𝑚+1

𝐸𝐾

first 𝜏 bits

⨁ Δ∗

𝑀1

𝐶1

𝐸𝐾 𝐸𝐾

𝑅

…

0𝑛−𝜏𝑇

𝐶𝑚

𝐸𝐾

first 𝑀𝑚 bits

⨁

𝑀𝑚

⨁

⨁ Δ1

Δ1

𝑀𝑚−1

𝐶𝑚−1

𝐸𝐾

⨁

⨁ Δ𝑚−1

Δ𝑚−1

⨁ Δ𝑚
 𝜏 8 𝑏 80𝑛−𝜈−16𝑁

𝑀0

𝐶0

⨁ 𝑅 last 𝑙 bits

0𝜏−𝑙𝐶0

𝑇

⨁ 𝑇𝐴

Fig. 5: CBA Encryption—message processing. Case |Mm| > n − τ . In the figure, we have ∆i = F(∆i−1) where ∆0 =
1MSBn−`(R)0

`−21, and ∆∗ = F∗(∆m) and S =M1 ⊕ · · · ⊕Mm−1 ⊕ pad(Mm).

4 Security goals and analysis

CBA has been designed to support the strongest notions of security for both confiden-
tiality and authenticity. This can be formalized using the standard indistinguishability
games for confidentiality and unforgeability games for authenticity. However, the secu-
rity of the CBA mode is not yet proved and is a work on progress.

The following requirements should be satisfied in order to use CBA securely:

1. Each key should be randomly generated.
2. Each key and nonce pair should not be used to encrypt more than one message.
3. If the decryption algorithm returns ⊥, the decrypted plaintext and the wrong au-

thentication tag should not be given as output.
4. For each key, the CBA should not be used to encrypt more than a total of 2b message

blocks including associated data.
5. The CBA message capacity parameter is required to satisfy b ≤ n/2− 16.

If the above requirements are satisfied, we have the following claims:

Claim 1. Claim 2. Confidentiality of CBA degrades as per q2 × 2n−`, where q is the
total number of blocks that the adversary acquires.

Claim 2. Authenticity of CBA degrades as per q2 × 2n−`, where q is the total num-
ber of blocks that the adversary acquires.

The consequences of above claims is that the security guarantees of CBA reasonably
holds as long as q is smaller than 2b. However, security vanishes when q becomes as
large as let say 216+b. Thus the user should never use a key to generate an amount of
ciphertext that exceeds 2b blocks.

5 Features

CBA inherits most of the desirable properties of OCB. However, it refines OCB in the
sence that, on average, it requires up to one less blockcipher call for both encryption
and decryption. Thus, CBA performs better specifically for short length messages. We
specify the CBA features in the following:

– CBA protects the confidentiality ofM and the authenticity ofA,N , andM . It does

this using, on average, d |A|
n
e+ d |M |

n
e+ 1 +

τ − `
n

blockcipher calls.
– For a given message, the CBA returns a ciphertext of minimal length.
– CBA requires a single blockcipher key for both encryption and authentication.
– It achieves AE using only a single pass over the message M .
– The nonce need not be random or secret.
– CBA is on-line: one does not need to know the length of theM orA to proceed with

encryption, nor need one know the length of A or C to proceed with decryption.
However, the decryption algorithm has to wait one block before processing the
received block.

– If the associated data is fixed during a session, then it can be pre-processed so that
there is effectively no per-message cost to providing the authenticity of associated
data.

– OCB is parallelizable: the bulk of its blockcipher calls can be performed simulta-
neously, except for the last block of the decryption process.

Recommended parameters: Since we are using ASE, as the underlying blockcipher, we
have three parameters to take into account.

– key-length. AES supports 128, 192 and 256-bit keys. Our parameter sets consider
all key-lenghts with an emphasize on the 128-bit key, because it is believed to be
enough for many applications. However, other key-lengths maybe chosen if higher
levels of security are required.

– tag-length. We consider different tag lengths of 32, 64 and 96, which are appropri-
ate for different applications.

– usage-capacity. To increase the efficiency, we suggest different settings for the
maximum number of allowed message and associated data blocks. We consider
three caregories, low, moderate and high amount of data, corresponding to at most
216, 232 and 248 blocks of data.

In comparison with AES-GCM, we expect that the CBA is at least two times faster
than the AES-GCM. Moreover, CBA is more flexible in terms of the parameters’ selec-
tion.

6 Design rationale

CBA is designed such that it requires up to one less blockcipher call, compared to the
OCB mode, when the nonce is random. The improvement is achieved by two contri-
bution to the OCB. The first is that if the maximum number of message blocks is to
be lower then 2b, then ` bits of R can be used to encrypt ` bits of the message in a
stream cipher fashion, and yet preserve the security. Recall that R is an encryption of
a nonce-dependent block. This means that the message length, needed to be encrypted,
is decreased by ` bits. Note that this decrease does not necessarily result in one less
blockcipher call. In fact, on average, we need `/n less blockcipher calls. This improve-
ment is particularly important for very short-length messages, which is the case in many
applications.

The second improvement is originated from the fact that OCB truncates more than
n bits in the encryption process when |Mm|+ τ ≤ n. Thus, in this case, it is possible to
make an improvement by merging the last two blocks and, therefore, omit one block-
cipher call. Assuming that the length of the last message block is a uniform variable
between 1 and n, we need, on average, (n− τ)/n less blockcipher calls.

Let g denote the gain of the CBA mode with respect to the OCB, i.e., the average
number of blockcipher call reductions. We have:

g =
n− τ
n

+
`

n
= 1− τ − `

n
.

Since 0 ≤ ` ≤ τ , we have:

1− τ

n
≤ g ≤ 1 .

This shows that CBA saves a number of blockcipher calls between 1 − τ/n and
1. To evaluate the improvement of the CBA with respect to the OCB, in the case of
random nonce, the CBA gain for the recommended parameter sets of the Section 3 is
provided in the following:

parameter set 1 2 3 4 5 6 7 8 9 10
gain g 1 1 1 3/4 1/2 3/4 1/2 1/4 3/4 1/4

Moreover, we suggest a simpler offset generation, compared to the OCB. The idea
of the stretch-then-shift hash, propose in [4] is also applicable to the CBA for further
reduction of, on average, 0.98 blockcipher calls in case that the nonce is counter. But
for CBA, we seek for solutions, which are efficient for various applications and plat-
forms, without increasing in the internal state or going for the table look-up. There
are many approaches for updating the offset strings to guarantee the maximum pe-
riod for them [2]. However, we mention that since the message size is at most 248

bytes, it is of no use for the offsets to have the maximum period of 2128. Therefore,
we suggest an updating function which provides the period of 264. The function is
(A,B) ← (B, 2 · A ⊕ B), where A and B are 64-bit strings and the multiplication is
done in GF(264). We found that this function performs reasonably well on 32, 64 or
128-bit processors.

The last point is to prevent the algorithm from misusing with different lengths of
tag or usage capacity. For this, we pad the tag-length and usage capacity to the 96-bit
nonce, so that their integrity will be protected along with nonce.

The designers have not hidden any weaknesses in this cipher. CBA is a refinement
over OCB, which has received years of in-depth analysis in the cryptography society
and enjoys provable security.

7 Intellectual property

The authors have largely been influenced by the OCB mode, which in turn was a re-
finement of the IAPM mode. There are US patents 7046802, 7200227, 7949129, and
8321675 on OCB. In addition, there are patents 6963976, 6973187, 7093126, and
8107620 on IAPM.

The authors are not aware of any other patents related to the CBA mode. If any of
this information changes, the submitters will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.

8 Consent

The submitter hereby consents to all decisions of the CAESAR selection committee re-
garding the selection or non-selection of this submission as a second-round candidate,

a third-round candidate, a finalist, a member of the final portfolio, or any other desig-
nation provided by the committee. The submitter understands that the committee will
not comment on the algorithms, except that for each selected algorithm the committee
will simply cite the previously published analyses that led to the selection of the algo-
rithm. The submitter understands that the selection of some algorithms is not a negative
comment regarding other algorithms, and that an excellent algorithm might fail to be
selected simply because not enough analysis was available at the time of the committee
decision. The submitter acknowledges that the committee decisions reflect the collec-
tive expert judgments of the committee members and are not subject to appeal. The
submitter understands that if he disagrees with published analyses then he is expected
to promptly and publicly respond to those analyses, not to wait for subsequent commit-
tee decisions. The submitter understands that this statement is required as a condition
of consideration of this submission by the CAESAR selection committee.

References

1. M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of Operation. In B. K. Roy and
W. Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 389–407.
Springer, 2004.

2. D. Chakraborty and P. Sarkar. A General Construction of Tweakable Block Ciphers and
Different Modes of Operations. IEEE Transactions on Information Theory, 54(5):1991–2006,
2008.

3. C. S. Jutla. Encryption Modes with Almost Free Message Integrity. In B. Pfitzmann, editor,
EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 529–544. Springer,
2001.

4. T. Krovetz and P. Rogaway. The Software Performance of Authenticated-Encryption Modes.
In A. Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 306–327.
Springer, 2011.

5. S. Lucks. Two-Pass Authenticated Encryption Faster Than Generic Composition. In
H. Gilbert and H. Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer Sci-
ence, pages 284–298. Springer, 2005.

6. D. A. McGrew and J. Viega. The Security and Performance of the Galois/Counter Mode
(GCM) of Operation. In A. Canteaut and K. Viswanathan, editors, INDOCRYPT, volume
3348 of Lecture Notes in Computer Science, pages 343–355. Springer, 2004.

7. P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
OCB and PMAC. In P. J. Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer
Science, pages 16–31. Springer, 2004.

8. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of operation for
efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM Conference
on Computer and Communications Security, pages 196–205. ACM, 2001.

9. D. Whiting, R. Housley, and N. Ferguson. AES encryption & authentication using CTR mode
& CBC-MAC. In IEEE P802.11 doc 02/001r2, May 2002.

	CBA Mode (v1)A Submission to CAESAR Competition for Authenticated Encryption

