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Chapter 1

Introduction

In this note, we propose KIASU, a new authenticated encryption design based on a tweakable block
cipher KIASU-BC that uses the well-studied AES round function as a building block. We plug this
cipher into two different authenticated encryption modes inspired from fully parallel and provably
secure modes OCB3 [24] and COPA [2] respectively.

In short, KIASU is a very fast authenticated encryption scheme in software (much faster than
AES-GCM [28] and about the same speed as OCB3 [24]) that provides full security beyond the birthday
bound (in contrary to AES-GCM [28] or OCB3 [24]) for both privacy and authenticity. Moreover, KIASU
performs extremely well even for small messages (only m + 1 block cipher calls are required for
a m block message and no precomputation is required). Switching to a birthday-bound security
nonce-misuse resistant variant of KIASU is made very simple as a tweakable block cipher is a very
handy primitive to build an authenticated encryption scheme. Finally, KIASU can be lightweight
(using existing AES lightweight implementation, the extra area mainly consisting in some extra bits
of memory for the mode and to store the tweak), it has a very simple description and KIASU-BC is
backward compatible with AES (by just using a tweak equal to zero). Actually, KIASU-BC is the first
attempt to build an ad-hoc tweakable AES.

Organization of the document. In Chapter 2, we provide the specification of our proposal
KIASU, which includes the descriptions of the internal tweakable block cipher KIASU-BC and the
authentication mode we use. In Chapter 3, we precise the security claims for different classical
scenarios, and we perform a security analysis regarding this proposal in Chapter 4. In Chapters 5
and 6, we analyze both software and hardware performances. In Chapters 7 and 8, we detail the
design decisions, and finish with Chapters 9 and 10, where we give notes on intellectual property
and consent.
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Chapter 2

Specification

In this chapter, we present a full specification of our proposal KIASU. We first give the recommended
parameter sets and then proceed with the description of the design. We explain the two authenticated
encryption modes KIASU6= and KIASU=, and then we describe KIASU-BC, a tweaked version of the
AES block cipher. KIASU-BC is basically built by simply reusing the plain AES round function and
by inserting a 64-bit tweak in each of the r = 10 rounds. This can be seen as an extended version
of the key schedule from the AES where the subkeys are XORed with the tweak value before each
AddRoundKey operation.

We first introduce some notations. We denote EK(T, P ) the enciphering of the n-bit plaintext
P with the tweakable block cipher KIASU-BC with k-bit key K and t-bit tweak T (similarly, D
represents the deciphering process). Note that we have n = 128, k = 128 and t = 64 for KIASU-BC.
The concatenation operation is represented by || and pad10∗ is the function that applies the 10*
padding on n bits, i.e. pad10∗(X) = X||1||0n−|X|−1 when |X| < n. In contrary, unpad10∗ is the
function that removes the 10* padding on n bits, i.e. unpad10∗(X) removes all the consecutive 0
bits in X starting from the right (possibly none, possibly all). The truncation of the word X to the
first i bits is given by trunci(X). Finally, ε will represent the empty string.

Our authenticated encryption scheme KIASU is composed of an encryption part and a verifica-
tion/decryption part. The encryption part E takes as input a variable-length plaintext M (with
m = |M |), a variable-length associated data A (with a = |A|), a fixed-length public message
number N and a k-bit key K (we deliberately used the same letter K to represent the key in the
authenticated encryption scheme and the one in the tweakable block cipher, since they always refer
to the same object). It outputs a m-bit ciphertext C and a τ -bit tag tag (with τ ∈ [0, . . . , n]),
i.e. (C, tag) = EK(N,A,M). The verification/decryption part D takes as input a variable-length
ciphertext C (with m = |C|), a τ -bit tag tag (with τ ∈ [0, . . . , n]), a variable-length associated data
A (with a = |A|), a fixed-length public message number N and a k-bit key K. It outputs either
an error string ⊥ to signify that the verification failed, or a m-bit string M = DK(N,A,C, tag)
when the tag is valid. The maximum message length (in n-bit blocks) is denoted maxl and the
maximum number of messages that can be handled with the same key is denoted maxm. We have
that maxl = 2dt/2e−3 = 229 and maxm = 2bt/2c = 232. This will ensure that as long as different
fixed-length public message numbers (i.e. nonces) are used, the tweak inputs of all the tweakable
block cipher calls are all unique. Note that there is a tradeoff possible here between maxl and maxm,
as long as maxl ·maxm = 2t−3.

2.1 Parameters
The only parameter to the authenticated encryption KIASU is the choice between a nonce-respecting
mode (denoted with a 6= sign) or a nonce-misuse resistant mode (denoted with a = sign). No
parameter affects the internal tweakable block cipher KIASU-BC, which always uses a 128-bit key
and a 64-bit tweak to select a permutation on 128 bits, mapping the plaintext space to the the
ciphertext space. As we mention explicitly in the next chapter, selecting a different mode results in
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quite different security notions.

2.2 Recommended Parameter Sets
We propose two designs that have the same key, tag and public message number lengths, but differ
in the security goals:

• KIASU6=: 128-bit key K, 128-bit tag tag, 32-bit public message number N . This design is
made for nonce-respecting users (i.e. it is assumed that the public message number is always
different for a same key). The encryption/authentication algorithm is denoted as E 6=, while
the decryption/verification as D 6=.

• KIASU=: 128-bit key K, 128-bit tag tag, 32-bit public message number N . This design is made
for nonce-misuse users (i.e. it is preferable, but not required that the public message number
is always different for a same key). The encryption/authentication algorithm is denoted as E=,
while the decryption/verification as D=.

The first parameter set is our preferred one, where the public message number N is a nonce.

2.3 Authenticated Encryption
In this section, we provide the high-level description of our proposal. KIASU uses a tweakable block
cipher KIASU-BC as internal primitive (specified in Section 2.4), and we describe here the simple
authenticated encryption modes built on top of it. KIASU has two main variants:

• E 6= and D 6= (see Section 2.3.1): the first variant is for where adversaries are assumed to be
nonce-respecting, meaning that the user must ensure that the value N will never be used
for encryption twice with the same key. This mode is largely inspired from ΘCB3 [24], the
tweakable block cipher generalization of OCB3. We will denote E 6= the encryption part of this
first variant (and D 6= the verification/decryption part).

• E= and D= (see Section 2.3.2): the second variant, quite close to the first one and inspired by
COPA mode [2], relaxes this constraint and allows the user to reuse the same N with the same key.
We will denote E= the encryption part of this first variant (and D= the verification/decryption
part).

2.3.1 Nonce-Respecting Mode: E 6= and D 6=

The encryption algorithm E 6= is depicted in Figures 2.1, 2.2 and 2.3, and an algorithmic description
is given in Algorithm 1. The verification/decryption algorithmic description of D 6= is given in
Algorithm 2. We note that our scheme follows the framework from ΘCB3 [24] and therefore directly
benefits from the security proof regarding authentication and privacy.
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Figure 2.1: Handling of the associated data for the nonce-respecting mode.
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Figure 2.2: Message processing: in the case where the message-length is a multiple of the block
size: no padding needed.

Algorithm 1: The encryption algorithm E 6=K(N,A,M).
The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n
for i = 1 to la do

Auth← Auth⊕ EK(010||N ||i, Ai)
end
if A∗ 6= ε then

Auth← Auth⊕ EK(110||N ||la, pad10∗(A∗))
end

/* Message */
M1|| . . . ||Ml||M∗ ←M where each |Mi| = n and |M∗| < n
Checksum← 0n
for i = 1 to l do

Checksum← Checksum⊕Mi

Ci ← EK(000||N ||i,Mi)
end
if M∗ = ε then

Final← EK(001||N ||l,Checksum)
C∗ ← ε

else
Checksum← Checksum⊕ pad10∗(M∗)
Pad← EK(100||N ||l, 0n)
C∗ ←M∗ ⊕ trunc|M∗|(Pad)
Final← EK(101||N ||l,Checksum)

end

/* Tag generation */
tag← truncτ (Final⊕Auth)

return (C1|| . . . ||Cl||C∗, tag)
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Figure 2.3: Message processing: in the case where the message-length is a not multiple of the block
size. Note that the checksum Σ is computed with a 10∗ padding for block M∗.

Algorithm 2: The verification/decryption algorithm D 6=K(N,A,C, tag).
The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n
for i = 1 to la do

Auth← Auth⊕ EK(010||N ||i, Ai)
end
if A∗ 6= ε then

Auth← Auth⊕ EK(110||N ||la, pad10∗(A∗))
end

/* Ciphertext */
C1|| . . . ||Cl||C∗ ← C where each |Ci| = n and |C∗| < n
Checksum← 0n
for i = 1 to l do

Mi ← DK(000||N ||i, Ci)
Checksum← Checksum⊕Mi

end
if C∗ = ε then

Final← EK(001||N ||l,Checksum)
M∗ ← ε

else
Pad← EK(100||N ||l, 0n)
M∗ ← C∗ ⊕ trunc|C∗|(Pad)
Checksum← Checksum⊕ pad10∗(M∗)
Final← EK(101||N ||l,Checksum)

end

/* Tag verification */
tag′ ← truncτ (Final⊕Auth)
if tag′ = tag then

return (M1|| . . . ||Ml||M∗)
else

return ⊥
end
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2.3.2 Nonce-Misuse Resistant Mode: E= and D=

The encryption algorithm E= is depicted in Figures 2.4, 2.5 and 2.6 and an algorithmic description
is given in Algorithm 3. The verification/decryption algorithmic description of D= is given in
Algorithm 4. We note that our scheme is a direct adaptation from the COPA [2] construction. If the
message is not a multiple of n bits, it goes through a 10∗ padding and the ciphertext size might be
bigger than the message size. We kept this variant in order to ease the description of our scheme.
However, a solution which overcomes this issue is provided in the COPA article [2], where tag splitting
is used for messages with |M | < n and XLS [32] for messages with |M | > n.
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Figure 2.4: Handling of the associated data for the nonce-respecting mode with a PMAC-like
processing.
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Figure 2.5: Message processing: in the case where the message-length is a multiple of the block
size: no padding needed.
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Figure 2.6: Message processing: in the case where the message-length is a not multiple of the block
size. Note that the checksum Σ is computed with a 10∗ padding for block M∗.
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Algorithm 3: The encryption algorithm E=
K(N,A,M).

The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n
for i = 1 to la − 1 do

Auth← Auth⊕ EK(010||N ||i, Ai)
end
if A∗ 6= ε then

Auth← Auth⊕ EK(010||N ||la, Ala)
Auth← Auth⊕ pad10∗(A∗)

else
Auth← Auth⊕Ala

end
Auth← EK(110||N ||la,Auth)

/* Message */
M1|| . . . ||Ml||M∗ ←M where each |Mi| = n and |M∗| < n
Checksum← 0n
for i = 1 to l − 1 do

Checksum← Checksum⊕Mi

Auth← Auth⊕ EK(000||N ||i,Mi)
Ci ← EK(100||N ||i,Auth)

end
if M∗ 6= ε then

Checksum← Checksum⊕Ml

Auth← Auth⊕ EK(000||N ||l,Ml)
Cl ← EK(100||N ||l,Auth)
M∗ ← pad10∗(M∗)
Checksum← Checksum⊕M∗
Auth← Auth⊕ EK(001||N ||l,M∗)
C∗ ← EK(101||N ||l,Auth)

else
Checksum← Checksum⊕Ml

Auth← Auth⊕ EK(001||N ||l,Ml)
Cl ← EK(101||N ||l,Auth)
C∗ ← ε

end

/* Tag generation */
Auth← Auth⊕ EK(011||N ||l,Checksum)
Final← EK(111||N ||l,Auth)
tag← truncτ (Final)

return (C1|| . . . ||Cl||C∗, tag)
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Algorithm 4: The verification/decryption algorithm D=
K(N,A,C, tag).

The value N is encoded on log2(maxm) bits, while the integer values i, l and la are encoded
on log2(maxl) bits.

/* Associated data */
A1|| . . . ||Ala ||A∗ ← A where each |Ai| = n and |A∗| < n
Auth← 0n
for i = 1 to la − 1 do

Auth← Auth⊕ EK(010||N ||i, Ai)
end
if A∗ 6= ε then

Auth← Auth⊕ EK(010||N ||la, Ala)
Auth← Auth⊕ pad10∗(A∗)

else
Auth← Auth⊕Ala

end
Auth← EK(110||N ||la,Auth)

/* Ciphertext */
C1|| . . . ||Cl ← C where each |Ci| = n
Checksum← 0n
for i = 1 to l − 1 do

Xi ← DK(100||N ||i, Ci)
Mi ← DK(000||N ||i,Auth⊕Xi)
Checksum← Checksum⊕Mi

Auth← Xi

end
Xl ← DK(101||N ||l, Cl)
Ml ← DK(001||N ||l,Auth⊕Xl)
Checksum← Checksum⊕Ml

Auth← Xl

Ml ← unpad10∗(Ml)

/* Tag verification */
Auth← Auth⊕ EK(011||N ||l,Checksum)
Final← EK(111||N ||l,Auth)
tag′ ← truncτ (Final)
if tag′ = tag then

return (M1|| . . . ||Ml)
else

return ⊥
end
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2.4 KIASU-BC: a Tweakable Block Cipher
For encryption, the block cipher KIASU-BC denoted E takes three inputs: a 64-bit tweak T , a 128-bit
key K and a 128-bit plaintext P . It outputs a 128-bit ciphertext C = EK(T, P ) as the encryption of
P under the key K for the tweak value T . Similarly, for decryption, the ciphertext C is mapped
back to the plaintext by E−1

K (T,C) = P .
In short, KIASU-BC is exactly the AES cipher, but with a fixed 64-bit tweak value XORed to the

internal state (on the two first rows) after each round key addition. There is no tweak schedule. Our
cipher can actually be seen as one of the simplest instance of the more general TWEAKEY framework [21]
(see Figure 2.7). As it is based on AES, the 128-bit internal state of KIASU-BC can be viewed as
a 4 × 4 matrix of bytes in the field noted K defined as GF (256) by the irreducible polynomial
x8 + x4 + x3 + x+ 1. A note about 16 bytes to 4× 4 matrix conversation. To load the bytes to the
state of the cipher, in accordance to the load/store instructions on the Intel processors, the bytes
are loaded from the first column to the last, and from the top row to the bottom row. That is, the
first byte is stored at position (1, 1) of the matrix, the second at (2, 1), the fifth at (1, 2), . . . , the
last at (4, 4). Similarly are loaded the 8 bytes of the tweak but only at the two two rows, i.e. the
first at (1, 1), then (2, 1), (1, 2), (2, 2), . . . , (2, 4).

TWEAKEY Schedule Algorithm (p = 2)

P = s0 f
s1

. . . f
sr

sr+1 = C

K AES KS

T

AES KS

T

. . .

T T

Figure 2.7: Instantiation of the TWEAKEY framework for KIASU-BC.

2.4.1 Encryption

KIASU-BC reuses the entire AES round function f1. This round function is composed of four steps
SubBytes, ShiftRows, MixColumns, and AddRoundTweakey in this order (slightly modifying the
FIPS 197 terminology in [1]):

• SubBytes: applies a Sbox S on each of the 16 bytes of the internal state (see Appendix A.1).

• ShiftRows: rotates bytes located in row i by i positions to the left in the state byte matrix

• MixColumns: applies to each byte column a column-wise linear layer defined by the multiplica-
tion in K with the Maximum-Distance-Separable (MDS) matrix M:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ∈ K.

• AddRoundTweakey: XOR the 128-bit round key to the internal state and the 64-bit tweak T to
the two first rows (see Figure 2.8).

The internal state is initialized to P and KIASU-BC (as AES) applies 10 such f rounds in total,
with in addition an AddRoundTweakey layer before the very first round. Moreover, as in AES the last

1In terms of AES-NI instructions on the latest processors, we use aesenc and aesenclast as round functions
(without any additional modifications!).
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Figure 2.8: Tweak in KIASU-BC: the 64-bit values of the tweak T = T0||T1 . . . ||T7 are placed on
the top two rows of the AES internal state.

of the 10 rounds does not have the MixColumns layer and the output of this last round represents
the ciphertext.

As in AES, the first round key is set to K and the next one Ki+1 is generated with the following
function from the previous one Ki, 0 ≤ i. We denote Ki[j] the j-th byte of the subkey Ki, where
the byte are numbered from left to right and up to bottom, and RCON the constants of the AES key
schedule (see Appendix A.2 for the actual values). Graphically, this key derivation is also described
on Figure 2.9. 

Ki[j] = Ki[j − 4] +Ki−1[j] for j = 4, . . . , 15
Ki[0] = Ki−1[0] + S(Ki−1[13]) + RCON[i]
Ki[1] = Ki−1[1] + S(Ki−1[14])
Ki[2] = Ki−1[2] + S(Ki−1[15])
Ki[3] = Ki−1[3] + S(Ki−1[12]).

We emphasize that apart from the additional tweak XOR operations between each round, the
AES encryption process stays exactly the same, including the key scheduling algorithm. In particular,
when the tweak equals zero, we have that KIASU-BC K(0, P ) = AESK(P ) for any K and P .

«S

Figure 2.9: The original AES-128 key scheduling algorithm. One cell represents one byte, the «
performs a rotation upwards by one cell of the whole 4-byte column, and S is the AES non-linear
S-Box.

2.4.2 Decryption

The decryption round function f−1 is composed of four steps InvAddRoundTweakey, InvMixColumns,
InvShiftRows, InvSubBytes in this order. We note that the same tweak value T is used for both
encryption and decryption. Since we are transforming back the ciphertext into the plaintext, the
order of the operations described for the encryption side are performed in reverse order. Consequently,
in the first round, the operation InvMixColumns is omitted. Note also that the subkeys are used in
reverse order.
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• InvAddRoundTweakey: XOR the 128-bit round key to the internal state and the 64-bit tweak
T to the two first rows.

• InvMixColumns: applies to each byte column a column-wise linear layer defined by the
multiplication in K with the Maximum Distance Separable (MDS) matrix (which is the inverse
of the MixColumns diffusion matrix):

M−1 =


14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14

 .

• InvShiftRows: rotates bytes located in row i by i positions to the right in the state byte
matrix

• InvSubBytes: applies the inverse Sbox S−1 on each of the 16 bytes of the internal state (see
Appendix A.1).
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Chapter 3

Security Claims

We provide our security claims for KIASU in Table 3.1. One can see that we do claim full 128-bit
security for KIASU6=, in contrary to other modes like AES-GCM [28] or OCB3 [24] which only ensure
birthday-bound security. Even though we only claim birthday-bound security concerning KIASU= in
the nonce-respecting user model, we conjecture that full 128-bit security can be reached.

We recall that we limit the number of messages that can be handled with the same key to
maxm = 2bt/2c = 232, and each message can have at most 16 ·maxl = 233 bytes. This will ensure that
as long as different fixed-length public message numbers (i.e. nonces) are used, the tweak inputs of all
the tweakable block cipher calls are unique. This also naturally implies that |N | = log2(maxm) = 32.
Note that there is a tradeoff possible here between maxl and maxm, as long as maxl ·maxm = 2t−3.

Security (bits)
Goal (nonce-respecting user) KIASU 6= KIASU=
Confidentiality for the plaintext 128 64
Integrity for the plaintext 128 64
Integrity for the associated data 128 64
Integrity for the public message number 128 64

Security (bits)
Goal (nonce-misuse user) KIASU 6= KIASU=
Confidentiality for the plaintext none 64
Integrity for the plaintext none 64
Integrity for the associated data none 64
Integrity for the public message number none 64

Table 3.1: Security goals of KIASU. The upper table stands for the situation where the user will
never repeat the same value N for the same key (nonce-respecting user). The lower table stands for
the situation where such repetitions in N for the same key are allowed (non-misuse user). There is
no secret message number.

In the table we assume the public message number N is a nonce and there is no secret message
number. We also assume that the total length of the message (along with the length of the associated
data ) does not exceed 233 bytes in both of the recommended parameter sets of KIASU.

12



Chapter 4

Security Analysis

In general, our design can be seen as an instantiation of secure authenticated encryption modes
based on a new tweakable block cipher. However, the security goal of this cipher, unlike most of
the tweakable block ciphers that only provide birthday bound security when plugged in the mode,
is much higher – indeed we claim full 128-bit security against all possible attacks in the secret
key model. Our claims are based on the strength of the AES and on a very careful study that no
potentially exploitable weaknesses are introduced by the 64-bit tweak.

The AES and AES-like ciphers in the past two decades have been the object of extensive analysis.
As a result, the security of these ciphers against the most popular forms of cryptanalysis, the
differential and the linear attacks, is well understood in the single key model. Many advances in
analysis has been introduced recently, and they involve in general a careful study of the key schedule
of AES-like ciphers. In other words, the latest attacks extensively rely on how the key is processed in
the rounds of the ciphers. Two such notable examples are the related-key differential attacks [4, 5]
and the Meet-in-the-Middle (MITM) attacks [9,12,13,25] on AES family of ciphers. These two family
of attacks could pose a threat as well to other ciphers based on AES round function but with a
different key schedule. For designers, adding a tweak to a block cipher is quite similar to adding
extra key material and, as such, one should be particularly careful with how the attacker might
exploit weaknesses in the tweak schedule as he can exploit weaknesses in the key schedule.

As KIASU-BC is based on AES, we focus our effort on evaluating the security of the cipher against
the above two classes of attacks (related-key differential attacks the Meet-in-the-Middle attacks),
with the very important specificity that we fully take the tweak input into consideration.

4.1 Differential Attacks
Designing an AES-like cipher resistant against single-key differential attacks is fairly simple and can
be done by carefully choosing the diffusion layer: we ensure that the branch number is high enough
so as to ensure sufficient number of active nibbles. For resistance against related-key differential
attacks (in which the adversary is able to insert differences in the key input of the block cipher),
adding subkeys every round makes this simple reasoning fail, and it is very hard to be able to prove a
sufficient number of active Sboxes (attempts like LED block cipher [18] require an important number
of rounds to achieve this). We do have, however, search algorithms and tools [6, 7, 15, 16, 30, 33]
that given a key schedule can return the upper bound on the probability of the best related-key
differential characteristics, and in the case where such a bound is low, practically provide and prove
the resistance against simple related-key differential attacks. We use precisely these algorithms to
assess the security of KIASU-BC against related-key attacks.

These tools have been designed to look for related-key characteristics. However, here we allow
the adversary to operate in a stronger setting of related-key and/or related-tweak (in which the
adversary is able to insert differences in the tweak input of the block cipher). Nonetheless, we can
accommodate and modify the tools to search for such characteristics. Although the modification can
be done easily, the feasibility (expressed in the time complexity required for the search algorithm
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to finish) is the real problem. To cope with this, we use several different tools – each chosen to
provide the probability bounds in the shortest time. More precisely, we alternate between the search
algorithm based on Matsui’s approach [6], split approach [7], and extended split approach [15]. We
omit the details on how these search algorithms operate due to their complexity, and we will only
provide the final results (refer to Table 4.1) produced by the tools. We note that the results were
produced after several days of computing on a 64-core processor.

The best related-key related-tweak differential characteristics for 3 and 4 rounds of KIASU-BC
have 1 and 8 active Sboxes, respectively. The search time complexity is exponential in all the input
parameters, but it also depends on the number of rounds, hence finding the best characteristics
for higher number of rounds becomes very time consuming. However, the tools can still provide
lower bounds on the number of active Sboxes – we stress that these are lower bounds and the actual
numbers might be much larger. The bounds produced by the tools for KIASU-BC are 14 active Sboxes
for 5 rounds, and 22 active for 7 rounds. Hence, the probability of any characteristic on more than 6
rounds is not higher than 2−22·6 = 2−132 < 2−128. Indirectly, this means that our tweakable block
cipher, in the framework of related-key related-tweak differential attacks has only at most one round
security loss compared to AES as any characteristic in AES on more than 5 rounds has a probability
lower than 2−128.

A similar observation holds if we take characteristics for boomerangs: in the case of KIASU-BC
there are 7-round boomerangs (3 rounds + 4 rounds) with 18 active Sboxes, whereas for AES there
are 6-round boomerangs (3 rounds + 3 rounds) with 20 active Sboxes.

Thus, the full 10-round KIASU-BC still has a comfortable security margin against differential
attacks that exploit relations of keys and tweaks.

rounds active
SBoxes

upper bound on
probability

method used

1 0 20 trivial
2 0 20 trivial
3 1 2−6 Matsui’s
4 8 2−48 Matsui’s
5 ≥ 14 2−84 Matsui’s
7 ≥ 22 2−132 extended split (3R+4R)

Table 4.1: Upper bounds on probability of the best round-reduced related-key related-tweak
differential characteristics.

4.2 Meet-in-the-Middle Attacks
We now mention the recent advances in the class of meet-in-the-middle attacks on the AES. In [10],
Demirci and Selçuk introduced a distinguisher for 4 internal rounds of AES, allowing with some
tradeoffs to construct a key-recovery attack on 7-round of AES-192 and AES-256. Then, Dunkelman,
Keller and Shamir showed in [14] new techniques on top on the Demirci and Selçuk attack to decrease
the memory requirements of the precomputation phase of the meet-in-the-middle, which allows to
further extend the tradeoff and reach an attack on 7-round AES-128. Finally, Derbez, Fouque and
Jean showed in [12] that the memory requirements are again smaller than estimated in [14], and
they reach a smaller overall complexity of the meet-in-the-middle attacks on the three AES versions.

All this line of attacks strongly depends on the AES key schedule to guess key material and
partially encrypts some well-crafted plaintexts/ciphertexts to check for a match in a precomputed
table. To minimize the number of key bytes guesses, the adversary takes advantage of the linear
relations existing in the AES key schedule to deduce more byte values. In our current proposal,
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the addition of the tweak between each round can be seen as a modification of the original AES
key schedule, where each subkey after derivation would be XORed with the tweak T . This only
translates all the subkeys by a known and fixed constant T , so an adversary cannot take advantage
of it. Consequently, the same attacks existing for AES-128 applies to KIASU-BC.

4.3 Security Against Other Attacks on KIASU-BC

As we keep the original round function and key schedule of AES, we believe that the security level of
KIASU-BC against the remaining types of attacks stays the same. For instance, the constants in the
key schedule stop potential attacks based on similarity of rounds (slide attacks [8]) or on similarity of
states (rotational attacks [23], internal differential attacks [31]). The impossible differential attacks
on AES [26, 27] do not exploit the key schedule, neither do the truncated differential attacks, and
therefore the number of rounds that they can penetrate would remain the same.

A possible increment in the number of attacked rounds might happen in the framework of
open-key distinguishers (even though we have not been able to improve the known attacks [11,17,20]
using this extra tweak input). However, we emphasize that we do not claim any resistance of
KIASU-BC in this attack model.
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Chapter 5

Software Performances

As KIASU is based on the AES, it allows very efficient software implementation on the processors
that support AES-NI. In addition, the mode allows complete parallelization of the AES-NI calls. The
actual overhead compared to AES comes only from the tweak schedule. However, this translates
only into a single additional XOR of the tweak per round (in terms of AES-NI, if one AES round is
implemented as state=aesenc(state,subkey[i]), then in KIASU one round can be implemented
as state=aesenc(state,xor(subkey[i],tweak))). Thus the proposed tweak schedule in KIASU is
the simplest possible candidate of the TWEAKEY framework [21].

We used the two Intel processor families Intel Sandy Bridge and Intel Haswell with AES-NI
enabled to obtain benchmarks for KIASU. The C implementation of the designs was compiled on
Linux with gcc v4.8.1. The reported speed was taken as an average over multiple execution of
the code with the same fixed message length and with no associated data (when the length of the
associated data is non-zero, the speed of KIASU= actually increases, while for KIASU6= stays the
same).

Processor 128B 256B 512B 1024B 2048B 4096B
Intel Sandy Bridge 1.41 1.21 1.11 1.06 1.03 1.02
Intel Haswell 0.97 0.84 0.78 0.76 0.75 0.74

Table 5.1: Benchmarks for KIASU 6= expressed in cycles per byte on AES-NI enabled Intel processors.

Processor 128B 256B 512B 1024B 2048B 4096B
Intel Sandy Bridge 5.42 2.93 2.45 2.27 2.07 1.98
Intel Haswell 1.81 1.59 1.48 1.44 1.40 1.39

Table 5.2: Benchmarks for KIASU= expressed in cycles per byte on AES-NI enabled Intel processors.

The results of the benchmarks of the encryption and authentication (simultaneously) for various
messages size inputs to KIASU are given in Tables 5.1 and 5.2. The nonce-misuse resistant design
KIASU= is roughly two times slower due to the two tweakable block cipher calls per message block
(but would get similar speed than KIASU6= to handle associated data since only a single call per block
is required).

The speed of our nonce-respecting design KIASU6= on both platforms is very close to the speed
of OCB3 and outperforms AES-GCM (recall that KIASU6= provides full 128-bit security!). Another
important feature of this design is that it performs quite well on short messages – this fact is due to
the chosen mode that does not require additional preprocessing step, like it is the case for OCB3 for
example.

We note that KIASU will also perform very well on slightly older or legacy architecture since AES
is known to be quite efficient in most situations. KIASU might mark even better than OCB3 since one
does not have to implement Galois field multiplication in KIASU. The overhead of the tweak schedule
in this type of implementations will be extremely small.
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Chapter 6

Hardware Performances

Due to time constraints, we do not provide hardware implementations of KIASU. However, we briefly
explain in this chapter why we believe KIASU would be a potentially lightweight candidate and the
logic behind our ASIC implementation estimation.

Our starting point is the best ASIC lightweight implementation [29] of AES, that only requires
2400GE (from which 70% comes from the memory to store the key and the internal state). Since
KIASU-BC is exactly the AES, plus only the tweak layer, it is pretty straightforward to estimate that
the overhead will be due to storing the 64-bit tweak value and XORing it to the internal state. This
should require around 64× (4.67 + 2.67) = 470 GE, by counting 2.67 GE per XOR (which might
sometimes be optimized to 2.33 GE) and 4.67 GE for single-bit input flip-flop to store the tweak.
Therefore, we estimate that the entire KIASU-BC can be implemented with around 2900 GE.

Concerning the authenticated encryption mode for KIASU 6=, one can remark that it calls directly
KIASU-BC on the incoming message blocks and directly outputs the corresponding ciphertext blocks.
However, one needs to take in account the following three main potential overhead costs:

• a 128-bit checksum needs to be computed and stored. Therefore, one should count an additional
128× (4.67 + 2.67) = 940 GE.

• the tweak value needs to be increased every KIASU-BC call, and this operation can be quite
expensive, because the carries needs to be taken care of. Comparing with other implementations,
we estimate to 4 GE per bit for an integer addition when minimal area is the implementation
goal. In our case, the addition is done on maxl = 29 bits, hence 29×4 = 116 GE. We note that
using a different tweak update function (for example using an LFSR) would drastically reduce
this cost without changing the security aspects of KIASU6= (we only need that the counter runs
through all the possible values, the ordering does not matter).

• in case where associated data is input, one can see that a 128-bit authentication value needs
to be maintained until the end, similarly to the checksum, and this would add another
128× (4.67 + 2.67) = 940 GE. However, this can be simply avoided if the associated data is
computed after the message blocks (by directly XORing the output of the KIASU-BC calls to
the checksum register). Therefore, we do not add extra cost for this part.

As a result, we estimate that KIASU should be able to fit in about 4000 GE. We emphasize that
these are only very rough and possibly optimistic estimations and only real implementations will be
able to confirm them.

We note that one very good advantage for KIASU in hardware applications is that the speed
overhead for small messages is null. Indeed, the very first message block is ciphered directly, without
any precomputation. In RFID applications where only small data is likely to be protected (like a
96-bit Electronic Product Code), this will have a huge impact compared to sponge based or stream
cipher based lightweight proposals that usually requires a long initialization period.

Concerning KIASU=, the reasoning is exactly the same, except that the 128-bit temporary
authentication value must be maintained. Therefore, an extra 940 GE will have to be taken in
account.
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Chapter 7

Features

The main idea heavily exploited in our designs is the introduction of the the first tweakable block
cipher KIASU-BC which is based entirely on AES, but does not use any field multiplications (rather,
we only add the tweak value to the state in each round of AES) and which is resistant to all known
attacks. We end up with a tweakable primitive that has: 1) close to AES efficiency, and 2) provides
full 128-bit security. The most important features of our designs are based precisely on the above
two properties as well as on the fact that the authenticated encryption modes we chose allow full
parallelization of the cipher calls. Having a fully secure tweakable block cipher allows to obtain very
easily a full security authenticated encryption scheme, while modes using AES as a black box usually
ensure only birthday security (or are very slow). We provide below a brief overview of these features
of KIASU, while keeping as a point of reference AES-GCM [28] and OCB3 [24] – arguably the two most
popular authenticated encryption schemes.

• KIASU supports very high security level. In the framework of nonce-respecting adversaries, both
AES-GCM and OCB3 provide only 64-bit security, while KIASU6= has full 128-bit security. Such
a feature is extremely important as nowadays computing power makes 64-bit security rather
worrying. Moreover, KIASU= was designed for misuse-resistant applications (neither OCB3 nor
AES-GCM offers any), and has a provable security of 64 bits. The internally used tweakable
block cipher has a security of 128 bits, therefore we conjecture that the actual security level of
KIASU= regarding confidentiality and authenticity in nonce-respecting scenario is 128 bits (and
thus it would immediately have significant advantage over COPA [2] instantiated with AES).

• KIASU is highly competitive in speed. This comes from the fully parallelizable modes, but also
from the use of AES. On processors with AES-NI support, KIASU6= runs at almost the same speed
as OCB3, and much faster than AES-GCM. As it uses only the basic AES operations (including
the XOR of the tweak), its speed is comparable to the speed of AES on any other platform
(unlike the designs that rely on a special instructions for field multiplications). Therefore, we
expect good performances even on legacy platforms since AES is efficient on a broad spectrum
of architectures.

• The security of KIASU relies on the security of the proven modes but also on the careful
analysis of the tweakable block cipher KIASU-BC. We have shown that the construction resists
all potential attacks introduced by the XOR of the tweak and thus as long as AES is secure,
KIASU-BC is very likely to stay secure as well.

• The tweakable cipher is interesting on its own and can be used to instantiate other provably
secure constructions. It is very easy to implement it – an AES implementation requires only a
trivial alteration to result in KIASU-BC. As such, it can benefit from advances regarding side-
channels resistant AES implementations. AES-NI implementations would also be resistant to
cache-timing attacks [3]. Moreover, it is backwards compatible with AES– KIASU-BC instantiated
with a tweak value of 0, results in the original AES. The overhead to implement KIASU on top
of AES is therefore minimal.
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• KIASU is quite lightweight. This is due to the fact that AES itself can achieve good hardware
performances, but also because our tweak schedule is very hardware friendly. In addition,
the authenticated encryption modes we use are very lightweight when instantiated with a
tweakable block cipher, since only a checksum is required as extra memory for KIASU6= (two
checksums for KIASU=).

• KIASU is extremely fast not only for long messages, but also for small messages. This is due
again to the fact that we use a tweakable block cipher: it allows to avoid any precomputation
(like in OCB3 or AES-GCM). The first 128-bit message block is handled directly, and taking in
account the tag generation one needs m+ 1 KIASU-BC calls to process messages of m block of n
bits each. This is particularly important in many lightweight applications where message sent
are usually composed of a few dozens of bytes (this is common disadvantage of sponge-based
or stream cipher based lightweight designs).

• Simplicity was one of our design goal, and KIASU-BC is very straightforward to implement.
This is also true for our modes, since using a tweakable block cipher greatly simplifies the
authenticated encryption mode definition (no need for field multiplication, generation of masks,
etc.). This simplicity will also help the cryptanalysts to study our design.
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Chapter 8

Design Rationale

The starting point of our design was to provide the first ad-hoc tweakable version of the AES block
cipher (in order to benefit from trust in AES security, and from existing implementation advantages
such as AES-NI). Such a primitive is very attractive for many authenticated encryption modes that
are secure beyond the birthday bound, but loose this feature when instantiated with a construction
that uses AES as a black box (beyond birthday security authenticated encryption modes that use a
block cipher remain quite slow). Therefore, designing a secure tweakable block cipher would enable
us to reach full 128-bit security for both confidentiality and authenticity. This direction of research
was not explored yet because it was believed that tweaking AES is not an easy task and would
necessarily lead to a slow design (adding some extra freedom to the attacker seems to enable more
powerful attacks and thus implies many more rounds).

Yet, we discovered that using a new type of AES-like tweakable block cipher based on the addition
of tweaks to each round of the cipher (the TWEAKEY framework [21]), similar to how the subkeys are
added, leads to a very efficient primitive. The construction we have is arguably the simplest possible
among all such designs as there is no tweak scheduling algorithm (the same tweak being simply
XORed to the state in each round).

From the security analysis performed during the design process of KIASU, we have discovered
that this strategy actually limits the tweak size to 64 bits. Indeed, for any larger tweaks the resulting
tweakable block cipher is insecure cipher in the related-key related-tweak framework: for 96- or 128-
bit tweaks, there exists very high probability related-key related-tweak differentials characteristics,
and some are iterative. Building a secure tweakable block cipher that resists such good differential
characteristics would therefore require a huge number of rounds. On the other hand, choosing a
64-bit tweak allows a secure construction in the related-key related-tweak model, provided that the
64 bits of the tweak are XORed on the top two rows on the internal state during the AES encryption
process. We remark that not all positions to add 64-bit tweaks are secure. For instance, XORing
the tweak to the first two columns (rather than rows), results in a tweakable block cipher that is
almost trivially insecure in the related-key related-tweak model.

We believe our proposal combine the five most important features: extremely fast in software,
good in hardware, full 128-bit security, efficient for both small and long messages, and the possibility
to simply switch to a nonce-misuse mode if needed.
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Chapter 9

Intellectual Property

KIASU is not patented and is free for use in any application. If any of this information changes,
the submitter/submitters will promptly (and within at most one month) announce these changes
on the crypto-competitions mailing list. We note that since KIASU uses a mode belonging to the
generic ΘCB3 framework, it is unclear if patents relative to OCB3 (such as United States Patent No.
7,046,802; United States Patent No. 7,200,227; United States Patent No. 7,949,129; United States
Patent No.8,321,675) apply to our proposal.

If any of this information changes, the submitter will promptly (and within at most one month)
announce these changes on the crypto-competitions mailing list.
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Chapter 10

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-round
candidate, a finalist, a member of the final portfolio, or any other designation provided by the
committee. The submitter/submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter/submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms, and that
an excellent algorithm might fail to be selected simply because not enough analysis was available
at the time of the committee decision. The submitter/submitters acknowledge that the committee
decisions reflect the collective expert judgments of the committee members and are not subject to
appeal. The submitter/submitters understand that if they disagree with published analyses then
they are expected to promptly and publicly respond to those analyses, not to wait for subsequent
committee decisions. The submitter/submitters understand that this statement is required as a
condition of consideration of this submission by the CAESAR selection committee.
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Appendix A

AES S-Box and constants

A.1 AES S-Box and its inverse
We define here the AES S-Box S and its inverse S−1, as an array where the value of S(x) can be
found at the position x in the array.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF

0x 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1x CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2x B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3x 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4x 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5x 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6x D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7x 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8x CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9x 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

Ax E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

Bx E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

Cx BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

Dx 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

Ex E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

Fx 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table A.1: The AES S-Box S. The retrieve the value of S(x), convert x to its hexadecimal
representation, and use its four leftmost bits x and four rightmost bits y as coordinates in the table.
For example S(0x25) = 0x3F.
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y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 yA yB yC yD yE yF

0x 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1x 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2x 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3x 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4x 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5x 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6x 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7x D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8x 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9x 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

Ax 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

Bx FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

Cx 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

Dx 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

Ex A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

Fx 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table A.2: The AES inverse S-Box S−1. The retrieve the value of S(x), convert x to its hexadecimal
representation, and use its four leftmost bits x and four rightmost bits y as coordinates in the table.
For example S(0x3F) = 0x25.

A.2 AES RCON constants
The Table A.3 below gives the values of constants RCON used in the key scheduling algorithm of the
AES.

8d 01 02 04 08 10 20 40 80 1b 36 6c d8 ab 4d 9a
2f 5e bc 63 c6 97 35 6a d4 b3 7d fa ef c5 91 39
72 e4 d3 bd 61 c2 9f 25 4a 94 33 66 cc 83 1d 3a
74 e8 cb 8d 01 02 04 08 10 20 40 80 1b 36 6c d8
ab 4d 9a 2f 5e bc 63 c6 97 35 6a d4 b3 7d fa ef
c5 91 39 72 e4 d3 bd 61 c2 9f 25 4a 94 33 66 cc
83 1d 3a 74 e8 cb 8d 01 02 04 08 10 20 40 80 1b
36 6c d8 ab 4d 9a 2f 5e bc 63 c6 97 35 6a d4 b3
7d fa ef c5 91 39 72 e4 d3 bd 61 c2 9f 25 4a 94
33 66 cc 83 1d 3a 74 e8 cb 8d 01 02 04 08 10 20
40 80 1b 36 6c d8 ab 4d 9a 2f 5e bc 63 c6 97 35
6a d4 b3 7d fa ef c5 91 39 72 e4 d3 bd 61 c2 9f
25 4a 94 33 66 cc 83 1d 3a 74 e8 cb 8d 01 02 04
08 10 20 40 80 1b 36 6c d8 ab 4d 9a 2f 5e bc 63
c6 97 35 6a d4 b3 7d fa ef c5 91 39 72 e4 d3 bd
61 c2 9f 25 4a 94 33 66 cc 83 1d 3a 74 e8 cb 8d

Table A.3: The AES RCON constants used in the key scheduling algorithm. The constants are
written on lines from left to right, from top to bottom. For example, RCON[1] = 1, RCON(2) = 2 and
RCON(9)=0x1b.
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