
π–Cipher v21

Designers: Danilo Gligoroski2 and Hristina Mihajloska3 and Simona

Samardjiska23 and H̊akon Jacobsen2 and Mohamed El-Hadedy2 and

Rune Erlend Jensen4

Submitter: Hristina Mihajloska

hristina.mihajloska@finki.ukim.mk

28.11.2014

1Since, the name of the cipher contains the Greek letter π, in the software implementations we will
use the name PiCipher. More precisely in this document we propose the following six variants of the
cipher: Pi16Cipher096v2, Pi16Cipher128v2, Pi32Cipher128v2, Pi32Cipher256v2, Pi64Cipher128v2,
Pi64Cipher256v2

2ITEM, Norwegian University of Science and Technology, Trondheim, Norway
3FCSE, ”Ss Cyril and Methodius” University, Skopje, Republic of Macedonia
4IDI, Norwegian University of Science and Technology, Trondheim, Norway

Chapter 1

Specification

1.1 Parameters, variables and constants

The following parameters and variables are used in the specification of π-Cipher:

πω-Ciphern AEAD cipher defined with ω-bit words and n-bit security.

ω � 16, 32, 64 Size of binary words in bits that are used in π-Cipher.

π function Main permutation function of the cipher.

M Message or plaintext.

mlen Length of a message less than 264 � 1 bytes.

m Number of message blocks.

K Secret key.

klen
Length of a key K in bytes. It can be 12 bytes (96 bits), 16 bytes

(128 bits) or 32 bytes (256 bits).

AD Associated data. This data can not be encrypted or decrypted.

adlen Length of an associated data less than 264 � 1 bytes.

a
Number of associated data blocks.

Thus, AD � AD1||AD2|| . . . ||ADa.

2

1.1 Parameters, variables and constants 3

IS

Internal state, bijectively transformed by the π function.

Throughout this document when IS is used as a common in-

ternal state for many parallel computations, we will use the ab-

breviation CIS (Common Internal State).

Ii
Chunk from the internal state IS. It is a 4-tuple of ω–bit words.

Ii � pISi1, ISi2, ISi3, ISi4q.

N
The internal state IS is divided into N chunks of length 4 � ω.

N is even number and N ¥ 4. Thus, IS � pI1, I2, . . . , INq.

b
Size of IS in bits. It is constrained by the following relation:

b � N � 4� ω.

bitrate
Rate of the IS from the sponge construction paradigm point of

view. ISbitrate � I1 || I3 || . . . || IN�1.

capacity
Capacity of the IS from the sponge construction paradigm point

of view. IScapaity � I2 || I4 || . . . || IN .

||||

Operator of interleaved concatenation in order to correctly de-

note a concatenation of ISbitrate and IScapaity that restores IS

i.e., IS � ISbitrate |||| IScapaity.

PMN
Public message number. The size |PMN | in bits is constrained

by the following relation: 8� klen � |PMN | � 8 ¤ b.

SMN
Secret message number. The size |SMN | in bits is constrained

by the following relations: |SMN | � 0 or |SMN | � bitrate.

NONCE NONCE � pPMN, SMNq.

C Ciphertext.

clen
Length of the ciphertext in bytes, where clen � mlen�|SMN |�

tlen (here |SMN | is in bytes).

1.2 General design properties 4

T
Authentication tag for the message, NONCE and associated

data.

tlen
Length of the authentication tag in bytes. It is constrained by

the following relation: tlen � bitrate
8

.

R
Tweakable parameter that represents the number of rounds in π

function.

ctr
64-bit counter used in the cipher. It is initialized from the first

64 bits of the IScapacity.

�

d

Operation of componentwise addition of two d-dimensional vec-

tors of ω-bit words in pZ2ωq
d.

π-Cipher is designed for different word sizes and different security levels. The recom-

mended variants are presented in Table 1.1.

Table 1.1: Basic characteristics of all variants of the π-Cipher

Word
size ω

(in bits)

klen

(in
bits)

PMN

(in
bits)

SMN

(in bits)

b

(in
bits)

N

bitrate

(in
bits)

Tag t

(in
bits)

R

π16-Cipher096 16 96 32 0 or 128 256 4 128 128 4
π16-Cipher128 16 128 32 0 or 128 256 4 128 128 4
π32-Cipher128 32 128 128 0 or 256 512 4 256 256 4
π32-Cipher256 32 256 128 0 or 256 512 4 256 256 4
π64-Cipher128 64 128 128 0 or 512 1024 4 512 512 4
π64-Cipher256 64 256 128 0 or 512 1024 4 512 512 4

1.2 General design properties

π-Cipher is parallel, incremental, nonce based authenticated encryption cipher with as-

sociated data that offers some level of tag second-preimage resistance. It involves several

solid cryptographic concepts such as:

1.2 General design properties 5

1. The design belongs to the category of Encrypt-then-MAC authenticated ciphers.

2. Its parallel and incremental design is similar to the design of the counter based

XOR MAC scheme of [1], but in order to achieve the second-preimage resistance

for the MAC tags, instead of XOR operations for the intermediate tag components

we use componentwise additions in pZ2ωq
d.

3. In [3, Sec. 3.3] the authors mention that it is possible to construct an authenticated

encryption using two pass sponge construction [2] that is proven to be secure as

long as the underlying sponge permutation has no structural distinguishers. In

the same paper [3] the duplex sponge construction is introduced. Although these

constructions have the property to be tag second-preimage resistant, neither of

them is incremental. An incremental and parallel two pass scheme is proposed in

[7]. However, the design goal for that scheme was not to be tag second-preimage

resistant. Combining all these ideas, in our design we use a two pass counter based

sponge component that we call triplex component. The used π permutation is based

on ARX (Addition, Rotation and XOR) operations.

1.2.1 Authenticated encryption

The encryption/authentication procedure of π-Cipher accepts key K with fixed-length

of klen bytes, message M with mlen bytes and associated data AD with adlen bytes.

The cipher uses a fixed-length public message number PMN and secret message number

SMN . The output of the encryption/authentication procedure is a ciphertext C with

clen bytes and a tag T with fixed-length of tlen bytes. The length clen of the ciphertext

C is a sum of the byte length of the message, the authentication tag and the encrypted

secret message number. The decryption/verification procedure accepts key K, associated

data AD, ciphertext C, public message number PMN , secret message number SMN and

tag T , and returns the decrypted message M if the tag has been verified or K otherwise.

The main building element in the operations of encryption/authentication and de-

cryption/verification is our new construction related to the duplex sponge, called triplex

component. It uses the permutation function π twice, it injects a counter into the in-

ternal state and digests an input string. The triplex component always outputs a tag.

Optionally after the first call of the permutation function it can output a string (that can

be a ciphertext block or a message block). The general scheme of the triplex component

1.2 General design properties 6

Triplex

component

internal state

counter

input string

output string

authentication tag

(optional)

Figure 1.1: A general scheme of the triplex component

ciphertext
plaintextcounter

tag

π
fu
n
ct
io
n

π
fu
n
ct
io
n

(a) e-triplex

plaintext
ciphertextcounter

tag

π
fu
n
ct
io
n

π
fu
n
ct
io
n

(b) d-triplex

Figure 1.2: Triplex component

is presented in Figure 1.1.

Because of the differences in the encryption/authentication and decryption/verification

procedures, there are two different variants of the triplex component. We call them e-

triplex (for the phase of encryption) and d-triplex (for the phase of decryption). The only

difference in these two components is how the input string is treated after the first call

of the permutation function. In the first one, the input string (plaintext) is XORed with

the current internal state and the result proceeds to the second invocation of the permu-

tation function π. In the d-triplex component, the input string (ciphertext) is directly

injected as a part of the internal state before the second invocation of the permutation

function π. The graphical representation of the e-triplex and d-triplex components is

given in Figure 1.2.

The encryption/authentication operation of π-Cipher can be described in four phases:

1. Initialization. In this phase we append a single ”1” (i.e., 0x01 in hexadecimal

1.2 General design properties 7

byte representation) and the smallest number of 0’s (i.e., 0x00 in hexadecimal

byte representation) to the concatenated value of the key and the public message

number. The length of the result should be less than or equal to the length of the

internal state of the permutation function π. In other words the internal state is

initialized with K||PMN ||10�. Then the internal state is updated by applying the

permutation function π. Because, π-Cipher works in parallel mode, it has an initial

value for the state for all of the parallel parts. We call it Common Internal State

(CIS). The CIS is initialized as:

CIS � πpK||PMN ||10�q.

The next part of this phase is initializing the counter ctr.

Since CIS � CISbitrate||||CIScapacity we initialize the ctr as the first 64 bits (little

endian representation) of the CIScapacity.

The graphical representation of the Initialization phase is given in Figure 1.3.

2. Processing the associated data.

The associated data AD � AD1|| . . . ||ADi|| . . . ||ADa is processed block by block

in parallel using e–triplex components. The padding rule for the associated data

AD is the following:

AD � AD1||AD2|| . . . ||ADa||10
�

where 1 represents the byte 0x01, and 0 represents the byte 0x00. Note that if the

associated data AD has length that is a multiple of the bitrate, then the number

of processed blocks of AD is increased by one, and thus a� a� 1.

To every block ADi we associate a unique counter calculated as a sum of the initial

counter ctr and the ordinal number of the processed block i. The input to every

e–triplex component is CIS, ctr � i and ADi, and the output is a block tag t1i.

The tag T 1 for the associated data is computed as a component-wise addition `d

of a vectors t1i P pZ2ωq
d of dimension d, where d is the number of ω-bit words in the

bitrate. In other words,

T 1

�

a
ð

d
i�1

t1i � t11 `d t
1

2 `d . . .`d t
1

a

1.2 General design properties 8

K||PMN ||10�

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

I
S

�

00
..
.0

ctr

IScapacity

ISbitrate

Figure 1.3: Initialization step

where t1i � pt1i1, t
1

i2, . . . , t
1

idq is a d-dimensional vector of ω-bit words.

The final part of this phase is to update the value of the Common Internal State

CIS. Updating the CIS is done by xoring it with the tag T 1 and applying the π

permutation function i.e. by the following expression:

CIS � πpCISbitrate

à

T 1

|||| CIScapacityq

This step is described graphically in Figure 1.4.

3. Processing the secret message number. This phase is omitted if the length of

the secret message number SMN is 0 (it is the empty string). If SMN is not the

empty string, then the first step in this phase is a call to the e-triplex component.

The input is the following triplet: pCIS, ctr � a� 1, SMNq, and the output is the

following pair: pC0, t0q. The second step of this phase is updating the CIS (for

free) which becomes the value of the current internal state after the processing of

SMN . Formally, the updating can be described by the following two expressions:

IS � πpCISbitrate

à

pctr � a� 1q |||| CIScapacityq,

CIS � πpISbitrate

à

SMN |||| IScapacityq

The tag produced from this phase is

T 2

� T 1

`d t0.

1.2 General design properties 9

AD1ctr � 1

t11

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

ADactr � a

t1a

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T 1

tagT 1

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Figure 1.4: Processing the associated data AD with a blocks in parallel

1.2 General design properties 10

SMNpctr � aq � 1

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T 2

C0

t0

tag T 1

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Figure 1.5: Processing the secret message number SMN

This phase is described graphically in Figure 1.5.

4. Processing the message. The message M �M1|| . . . ||Mj|| . . . ||Mm is processed

block by block in parallel by e–triplex components. The padding rule for the

message M is the following:

M �M1||M2|| . . . ||Mm||10
�

where 1 represents the byte 0x01, and 0 represents the byte 0x00. Note that if

the message M has length that is a multiple of the bitrate, then the number of

processed blocks of M is increased by one, and thus m� m� 1.

To every block Mj we associate a unique block counter. It can be calculated as:

ctr �

$

&

%

ctr � a� j if |SMN | � 0,

ctr � a� 1� j if |SMN | � bitrate,

where j is the ordinal number of the processed block in the message, and 0 j ¤ m.

The input to every e–triplex component is the CIS, the block ctr and Mj , and the

output is a pair pCj, tjq. By definition we put that the length of the final ciphertext

block Cm is the same as the length of the un-padded last plaintext block Mm i.e.,

|Cm| � |Mm|.

1.3 The π-function 11

The final tag T is obtained as a `d sum of all block tags tj and the previously

obtained tag T 2.

T � T 2

`d t1 `d . . .`d tj `d . . .`d tm.

where tj � ptj1, tj2, . . . , tjdq is a d-dimensional vector of ω-bit words.

This phase is described graphically in Figure 1.6.

The output of the encryption/authentication procedure is the ciphertext

C � C0||C1|| . . . ||Cm||T.

1.2.2 Decryption and verification

The decryption/verification procedure is defined correspondingly. There are four phases

and the only difference is in the last two (so the Initialization phase and Processing

the associated data phase are completely the same as in the encryption/authentication

procedure).

The decryption of the SMN is performed in the phase of Processing the secret message

number. Thus, instead of using an e-triplex component, we use a d-triplex component.

The input parameters are: CIS, incremented counter ctr�a�1 and the ciphertext block

C0. The output is a pair pSMN, t0q. The tag is processed in the same way as in the

encryption/authentication procedure.

For the decryption of the rest of the ciphertext we continue to use a d-triplex com-

ponent (instead of e-triplex). The output is now a decrypted message block and a tag

value.

At the end, the supplied tag value T is compared to the one computed by the algo-

rithm. Only if the tag is correct, the decrypted message is returned.

1.3 The π-function

The core part of every sponge construction is the permutation function, and the whole

security of the primitive relies on it. The design goal for our sponge construction was

to obtain a strong permutation, which for different values of the parameter ω (the bit

size of the words) provides different features, i.e. to be very efficient when ω � 64 and

lightweight when ω � 16.

1.3 The π-function 12

M1
pctr � a� 1q � 1

tm

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

tag T

C1

Mm
pctr � a� 1q �m

π
fu
n
ct
io
n

π
fu
n
ct
io
n

C
om

m
on

In
te
rn
al

S
ta
te

C
I
S

Cm

t1

tag T 2

Figure 1.6: Processing the message M with m blocks in parallel

1.3 The π-function 13

X0 X1 X2 X3

X

Y0 Y1 Y2 Y3

Y

const1,µ

r1,1 r1,2 r1,3 r1,4 r2,1 r2,2 r2,3 r2,4

Z0 Z1 Z2 Z3

Z

const2,µ const3,µ const4,µ const1,ν const2,ν const3,ν const4,ν

Figure 1.7: Graphical representation of the ARX operation �.

π-Cipher has ARX based permutation function which we denote as π function. It uses

similar operations as the operations used in the hash function Edon-R [5] but instead

of using 8–tuples here we use 4–tuples. The permutation operates on a b bits state and

updates the internal state through a sequence of R successive transformations - rounds.

The state IS can be represented as a list of N 4-tuples, each of length ω-bits, where

b � N � 4� ω, i.e.,

IS � ppIS11, IS12, IS13, IS14q
looooooooooooomooooooooooooon

I1

, pIS21, IS22, IS23, IS24q
looooooooooooomooooooooooooon

I2

, . . . , pISN1, ISN2, ISN3, ISN4q
looooooooooooooomooooooooooooooon

IN

q.

(1.1)

The general permutation function π consists of three main transformations µ, ν, σ :

Z
4
2ω Ñ Z

4
2ω , where Z2ω is the set of all integers between 0 and 2ω � 1. These transforma-

tions do the work of diffusion and nonlinear mixing of the input.

The following operations are applied:

1.3 The π-function 14

Table 1.2: The rotation vectors used in µ and ν.

ω r1,ω r2,ω
16 p 1, 4, 9, 11q p 2, 5, 7, 13q

32 p 5, 11, 17, 23q p 3, 10, 19, 29q

64 p 7, 19, 31, 53q p 11, 23, 37, 59q

• Addition + modulo 2ω;

• Rotate left (circular left shift) operation, ROTLr
pXq, where X is a ω-bit word and

r is an integer with 0 ¤ r ω;

• Bitwise XOR operation ` on ω–bit words.

Let X � pX0, X1, X2, X3q, Y � pY0, Y1, Y2, Y3q and Z � pZ0, Z1, Z2, Z3q be three

4-tuples of ω–bit words.

Further, let us denote by � the following operation:

Z � X �Y � σpµpXq`4 νpYqq (1.2)

where `4 is the component-wise addition of two 4-dimensional vectors in
�

Z2ω
�4
.

An algorithmic definition of the � operation over two 4–dimensional vectors X and Y

for different word sizes is given in Table 1.9, Table 1.10 and Table 1.11.

Also a graphical representation of the � operation is given in Figure 1.7.

The following is a formalization of the � operation (adopted from [5]).

The left rotation of a ω–bit word X by r positions denoted by ROTLr
pXq, can be ex-

pressed as a linear matrix–vector multiplication over the ring pZ2,�, �q i.e. ROTLr
pXq �

Er
�X where Er

P Z
ω
2 �Z

ω
2 is a matrix obtained from the identity matrix by rotating its

columns by r positions in the direction top to bottom. Further on, if we have a vector

X P

�

Z2ω
�4

represented as X � pX0, X1, X2, X3q and we want to rotate all Xi by ri

(0 ¤ i 4) positions to the left, then we denote the operation by ROTLr
pXq, where

r � pr0, . . . , r3q P t0, 1, . . . , ω � 1u4 is a rotation vector. The operation ROTLr
pXq can

also be represented as a linear matrix–vector multiplication over the ring pZ2,�, �q i.e.

1.3 The π-function 15

Table 1.3: The matrices pA1, A2, pA3 and A4.

pA1 A2
pA3 A4

�

�

�

�

const1,µω
const2,µω
const3,µω
const4,µω

�

Æ

Æ

,

�

�

�

�

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

�

Æ

Æ

�

�

�

�

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

�

Æ

Æ

�

�

�

�

const1,νω
const2,νω
const3,νω
const4,νω

�

Æ

Æ

,

�

�

�

�

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

�

Æ

Æ

�

�

�

�

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

�

Æ

Æ

ROTLr
pXq � Dr

�X where Dr
P Z

4ω
2 � Z

4ω
2 ,

Dr
�

�

�

�

�

�

�

Er0 0 0 0

0 Er1 0 0

0 0 Er2 0

0 0 0 Er3

�

Æ

Æ

Æ

Æ

,

and the submatrices Eri
P Z

ω
2 � Z

ω
2 , 0 ¤ i 4 are obtained from the identity matrix by

rotating its columns by ri positions in the direction top to bottom, and the submatrices

0 P Z
ω
2 � Z

ω
2 are the zero matrices.

Furthermore, we use the following notations:

• pA1, pA3 : Z
4
2ω Ñ Z

4
2ω are two bijective transformations in Z

4
2ω over the ring pZ2ω ,�, �q

where ω � 8, 16, 32, 64. The mappings pAi, i � 1, 3 can be described as:

pAipXq � Ci � Ai �X,

where Ci P Z
4
2ω , i � 1, 2 are two constant vectors and A1 and A3 are two 4 � 4 in-

vertible matrices over the ring pZ2ω ,�, �q. Also these matrices are MDS (maximum

distance separable) matrices which redound to have maximal diffusion of the bits.

All elements in these two matrices are either 0 or 1, since we want to avoid the

operations of multiplication (as more costly microprocessor operations) in the ring

pZ2ω ,�, �q, and stay only with operations of addition.

• A2,A4 : Z4
2ω Ñ Z

4
2ω are two linear bijective transformations that are described by

two invertible matrices (we use the same notation: A2,A4) of order q � q over the

ring pZ2,�, �q (q � 4ω). Since we want to apply XOR operations on ω–bit registers,

1.3 The π-function 16

the matrices A2 and A4 will be of the form

�

�

�

�

�

�

B1,1 B1,2 B1,3 B1,4

B2,1 B2,2 B2,3 B2,4

B3,1 B3,2 B3,3 B3,4

B4,1 B4,2 B4,3 B4,4

�

Æ

Æ

Æ

Æ

,

where Bi,j P Z
ω
2 �Z

ω
2 , 1 ¤ i, j ¤ 4 are either the identity matrix or the zero matrix

i.e. Bi,j P t0, 1u.

Now we give the formal definitions for the permutations: σ, µ and ν.

Definition 1. The transformation σ : Z4
2ω Ñ Z

4
2ω is defined as:

σpX0, X1, X2, X3q � pX3, X0, X1, X2q

Lemma 1. The transformation σ is a permutation.

Definition 2. The transformations µ : Z4
2ω Ñ Z

4
2ω and ν : Z4

2ω Ñ Z
4
2ω are defined as:

µ � pA1 �ROTLr1,ω
� A2

ν � pA3 �ROTLr2,ω
�A4

where the rotation vectors ri,ω, i � 1, 2, ω � 16, 32, 64 are given in Table 1.2, and the

matrices pA1, A2, pA3 and A4 are given in Table 1.3. In Table 1.3, the symbols 1, 0 P

Z
ω
2 � Z

ω
2 denote the identity matrix and the zero matrix, and the constants consti,ω, i �

1, 2, ω � 16, 32, 64 are given (in hexadecimal notation) in Table 1.4 and Table 1.5. The

rationale for choosing these constants is given in Section 5.2.

Table 1.4: List of constants used in µ transformation.

consti,µω µ16 µ32 µ64
1 0xF0E8 0x8D8B8778 0xF0E8E4E2E1D8D4D2

2 0xE4E2 0x7472716C 0xD1CCCAC9C6C5C3B8

3 0xE1D8 0x6A696665 0xB4B2B1ACAAA9A6A5

4 0xD4D2 0x635C5A59 0xA39C9A999695938E

1.3 The π-function 17

Table 1.5: List of constants used in ν transformation.

consti,νω ν16 ν32 ν64
1 0xD1CC 0x5655534E 0x8D8B87787472716C

2 0xCAC9 0x4D4B473C 0x6A696665635C5A59

3 0xC6C5 0x3A393635 0x5655534E4D4B473C

4 0xC3B8 0x332E2D2B 0x3A393635332E2D2B

Lemma 2. The transformations µ and ν are permutations of Z2ω , ω � 16, 32, 64.

Proof. The proof follows immediately from the fact that all transformations Ai, i �

1, 2, 3, 4 and ROTLri,ω , i � 1, 2, ω � 16, 32, 64 are expressed by invertible matrices over

the rings pZ2ω ,�, . . . q, ω � 16, 32, 64 or over the ring pZ2,�, . . . q.

Theorem 1. The operation � : pZ4
2ωq

2
Ñ Z

4
2ω defined as:

X �Y � σpµpXq `4 νpYqq

is a permutation.

Let us recall equation (1.1) where the internal state is presented as IS � pI1, I2, . . . , INq.

One round of the π function consists of two consecutive transformations E1 and E2 de-

fined as follows.

Definition 3. The function E1 : pZ4
2ωq

N�1
Ñ pZ

4
2ωq

N used in the π function is defined

as:

E1pC, I1, . . . , INq � pJ1, . . . , JNq, where (1.3)

J1 � C � I1,

Ji � Ji�1 � Ii, i � 2, . . . , N

where C is a 4-tuple of ω-bit constant values.

Definition 4. The function E2 : pZ
4
2ωq

N�1
Ñ pZ

4
2ωq

N used in π function is defined as:

E2pC, I1, . . . , INq � pJ1, . . . , JNq, where (1.4)

JN � IN � C,

JN�i � IN�i � JN�i�1, i � 1, . . . , N � 1

1.3 The π-function 18

where C is a 4-tuple of ω-bit constant values.

Finally, one round of the π function is defined as:

πpI1, . . . , INq � E2pC2, E1pC1, I1, . . . , INqq (1.5)

One round of the cipher is graphically described in Figure 1.8. In the figure, the

diagonal arrows can be interpreted as � operations between the source and destination,

and the vertical or horizontal arrows as equality signs ” � ”.

C1

C2

ININ�1I2I1

JNJN�1J2J1

J1 J2 JN�1 JN

E1

E2

Figure 1.8: One round of π-Cipher

The number of rounds R is a tweakable parameter. We recommend R � 4. The

complete formula for the π function with R � 4 is the following:

πpI1, . . . , INq � E2pC8, E1pC7, E2pC6, E1pC5, E2pC4, E1pC3, E2pC2, E1pC1, I1, . . . , INqqqqqqqq

The constants C1, C2, . . . , C8 are generated in the same way as the constants of the

� operation and their values (in hexadecimal notation) for different word sizes are given

in Table 1.6, Table 1.7 and Table 1.8.

1.3 The π-function 19

Table 1.6: Round constants for π16-Cipher

C1 � t0xB4B2, 0xB1AC, 0xAAA9, 0xA6A5u

C2 � t0xA39C, 0x9A99, 0x9695, 0x938Eu

C3 � t0x8D8B, 0x8778, 0x7472, 0x716Cu

C4 � t0x6A69, 0x6665, 0x635C, 0x5A59u

C5 � t0x5655, 0x534E, 0x4D4B, 0x473Cu

C6 � t0x3A39, 0x3635, 0x332E, 0x2D2Bu

C7 � t0x271E, 0x1D1B, 0x170F, 0xF0E8u

C8 � t0xE4E2, 0xE1D8, 0xD4D2, 0xD1CCu

Table 1.7: Round constants for π32-Cipher

C1 � t0x8D8B8778, 0x7472716C, 0x6A696665, 0x635C5A59u

C2 � t0x5655534E, 0x4D4B473C, 0x3A393635, 0x332E2D2Bu

C3 � t0x271E1D1B, 0x170FF0E8, 0xE4E2E1D8, 0xD4D2D1CCu

C4 � t0xCAC9C6C5, 0xC3B8B4B2, 0xB1ACAAA9, 0xA6A5A39Cu

C5 � t0x9A999695, 0x938E8D8B, 0x87787472, 0x716C6A69u

C6 � t0x6665635C, 0x5A595655, 0x534E4D4B, 0x473C3A39u

C7 � t0x3635332E, 0x2D2B271E, 0x1D1B170F, 0xF0E8E4E2u

C8 � t0xE1D8D4D2, 0xD1CCCAC9, 0xC6C5C3B8, 0xB4B2B1ACu

Table 1.8: Round constants for π64-Cipher

C1 � t0x271E1D1B170FF0E8, 0xE4E2E1D8D4D2D1CC,

0xCAC9C6C5C3B8B4B2, 0xB1ACAAA9A6A5A39Cu

C2 � t0x9A999695938E8D8B, 0x87787472716C6A69,

0x6665635C5A595655, 0x534E4D4B473C3A39u

C3 � t0x3635332E2D2B271E, 0x1D1B170FF0E8E4E2,

0xE1D8D4D2D1CCCAC9, 0xC6C5C3B8B4B2B1ACu

C4 � t0xAAA9A6A5A39C9A99, 0x9695938E8D8B8778,

0x7472716C6A696665, 0x635C5A595655534Eu

C5 � t0x4D4B473C3A393635, 0x332E2D2B271E1D1B,

0x170FF0E8E4E2E1D8, 0xD4D2D1CCCAC9C6C5u

C6 � t0xC3B8B4B2B1ACAAA9, 0xA6A5A39C9A999695,

0x938E8D8B87787472, 0x716C6A696665635Cu

C7 � t0x5A595655534E4D4B, 0x473C3A393635332E,

0x2D2B271E1D1B170F, 0xF0E8E4E2E1D8D4D2u

C8 � t0xD1CCCAC9C6C5C3B8, 0xB4B2B1ACAAA9A6A5,

0xA39C9A999695938E, 0x8D8B87787472716Cu

1.3 The π-function 20

Table 1.9: An algorithmic description of the ARX operation � for 16–bit words.

� operation for 16–bit words

Input: X � pX0, X1, X2, X3q and Y � pY0, Y1, Y2, Y3q

where Xi and Yi are 16–bit variables.
Output: Z � pZ0, Z1, Z2, Z3q where Zi are 16–bit variables.
Temporary 16–bit variables: T0, . . . , T11.

µ–transformation for X :

1.

T0 � ROTL1
p0xF0E8 � X0 � X1 � X2q;

T1 � ROTL4
p0xE4E2 � X0 � X1 � X3q;

T2 � ROTL9
p0xE1D8 � X0 � X2 � X3q;

T3 � ROTL11
p0xD4D2 � X1 � X2 � X3q;

2.

T4 � T0 ` T1 ` T3;
T5 � T0 ` T1 ` T2;
T6 � T1 ` T2 ` T3;
T7 � T0 ` T2 ` T3;

ν–transformation for Y :

1.

T0 � ROTL2
p0xD1CC � Y0 � Y2 � Y3q;

T1 � ROTL5
p0xCAC9 � Y1 � Y2 � Y3q;

T2 � ROTL7
p0xC6C5 � Y0 � Y1 � Y2q;

T3 � ROTL13
p0xC3B8 � Y0 � Y1 � Y3q;

2.

T8 � T1 ` T2 ` T3;
T9 � T0 ` T2 ` T3;
T10 � T0 ` T1 ` T3;
T11 � T0 ` T1 ` T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 � T4 � T8;
Z0 � T5 � T9;
Z1 � T6 � T10;
Z2 � T7 � T11;

1.3 The π-function 21

Table 1.10: An algorithmic description of the ARX operation � for 32–bit words.

� operation for 32–bit words

Input: X � pX0, X1, X2, X3q and Y � pY0, Y1, Y2, Y3q

where Xi and Yi are 32–bit variables.
Output: Z � pZ0, Z1, Z2, Z3q where Zi are 32–bit variables.
Temporary 32–bit variables: T0, . . . , T11.

µ–transformation for X :

1.

T0 � ROTL5
p0x8D8B8778 � X0 � X1 � X2q;

T1 � ROTL11
p0x7472716C � X0 � X1 � X3q;

T2 � ROTL17
p0x6A696665 � X0 � X2 � X3q;

T3 � ROTL23
p0x635C5A59 � X1 � X2 � X3q;

2.

T4 � T0 ` T1 ` T3;
T5 � T0 ` T1 ` T2;
T6 � T1 ` T2 ` T3;
T7 � T0 ` T2 ` T3;

ν–transformation for Y :

1.

T0 � ROTL3
p0x5655534E � Y0 � Y2 � Y3q;

T1 � ROTL10
p0x4D4B473C � Y1 � Y2 � Y3q;

T2 � ROTL19
p0x3A393635 � Y0 � Y1 � Y2q;

T3 � ROTL29
p0x332E2D2B � Y0 � Y1 � Y3q;

2.

T8 � T1 ` T2 ` T3;
T9 � T0 ` T2 ` T3;
T10 � T0 ` T1 ` T3;
T11 � T0 ` T1 ` T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 � T4 � T8;
Z0 � T5 � T9;
Z1 � T6 � T10;
Z2 � T7 � T11;

1.3 The π-function 22

Table 1.11: An algorithmic description of the ARX operation � for 64–bit words.

� operation for 64–bit words

Input: X � pX0, X1, X2, X3q and Y � pY0, Y1, Y2, Y3q where Xi and Yi are
64–bit variables.
Output: Z � pZ0, Z1, Z2, Z3q where Zi are 64–bit variables.
Temporary 64–bit variables: T0, . . . , T11.

µ–transformation for X :

1.

T0 � ROTL7
p0xF0E8E4E2E1D8D4D2 � X0 � X1 � X2q;

T1 � ROTL19
p0xD1CCCAC9C6C5C3B8 � X0 � X1 � X3q;

T2 � ROTL31
p0xB4B2B1ACAAA9A6A5 � X0 � X2 � X3q;

T3 � ROTL53
p0xA39C9A999695938E � X1 � X2 � X3q;

2.

T4 � T0 ` T1 ` T3;
T5 � T0 ` T1 ` T2;
T6 � T1 ` T2 ` T3;
T7 � T0 ` T2 ` T3;

ν–transformation for Y :

1.

T0 � ROTL11
p0x8D8B87787472716C � Y0 � Y2 � Y3q;

T1 � ROTL23
p0x6A696665635C5A59 � Y1 � Y2 � Y3q;

T2 � ROTL37
p0x5655534E4D4B473C � Y0 � Y1 � Y2q;

T3 � ROTL59
p0x3A393635332E2D2B � Y0 � Y1 � Y3q;

2.

T8 � T1 ` T2 ` T3;
T9 � T0 ` T2 ` T3;
T10 � T0 ` T1 ` T3;
T11 � T0 ` T1 ` T2;

σ–transformation for both µpXq and νpY q:

1.

Z3 � T4 � T8;
Z0 � T5 � T9;
Z1 � T6 � T10;
Z2 � T7 � T11;

Chapter 2

Security goals

Table 2.1: A list of security goals for the π-Cipher.

Pi16Cipher096v1 Pi16Cipher128v1 Pi32Cipher128v1 Pi32Cipher256v1 Pi64Cipher128v1 Pi64Cipher256v1

Goal
Bits of
security

Bits of
security

Bits of
security

Bits of
security

Bits of
security

Bits of
security

Confidentiality for the
plaintext 96 128 128 256 128 256

Confidentiality for the
secret message number

SMN

96 128 128 256 128 256

Integrity for the
plaintext 96 128 128 256 128 256

Integrity for the
associated data

96 128 128 256 128 256

Integrity for the public
message number PMN

96 128 128 256 128 256

Integrity for the secret
message number SMN

96 128 128 256 128 256

Confidentiality for the
plaintext M , when

pK,AD, pPMN,SMN1qq

and
pK,AD, pPMN,SMN2qq

96 128 128 256 128 256

Integrity for the
plaintext M , when

pK,AD, pPMN,SMN1qq

and
pK,AD, pPMN,SMN2qq

96 128 128 256 128 256

We want to emphasize our position that the security level of 80 bits should be con-

sidered as insecure and should be abandoned in future cryptographic designs. This is

23

24

due to the recent reported practical speed of many different computing systems (GPUs,

supercomputers, FPGAs). That is why our lowest level for security is 96 bits of security.

Users have two options for nonces in π-Cipher. A nonce can be NONCE � PMN

or NONCE � pPMN, SMNq.

If the legitimate key holder uses the same NONCE to encrypt two different pairs of

(plaintext, associated data) pM1, ADq and pM2, ADq with the same secret key K then the

confidentiality and the integrity of the plaintexts are not preserved in π–Cipher. Thus,

the first six goals in Table 2 are achieved under the assumption that PMN

is always different for any two different pairs of (plaintext, associated data)

pM1, ADq and pM2, ADq with the same secret key K.

Additionally, π-Cipher offers an intermediate level of robustness when a legitimate

key holder uses the same secret key K, the same associated data AD, the same public

message number PMN but different secret message numbers SMN1 and SMN2 for

encrypting two different plaintexts M1 and M2. In that case confidentiality and integrity

of the plaintexts are preserved. However, in that case the confidentiality of SMN1

and SMN2 is not preserved.

Chapter 3

Security analysis

3.1 Bit diffusion analysis

We give a bit diffusion analysis for the � operation and for one round of the π function

of π16-Cipher, π32-Cipher and π64-Cipher.

In our analysis, we have used two experimental settings:

1. Examining the propagation of a one bit difference in a 10000 randomly generated

X and Y (inputs) of the � operation;

2. Examining the propagation of a one bit difference in a 1000 randomly generated

Internal states IS for one round of the π function.

We performed several experiments for different word sizes (ω � 16, 32, 64).

In the experimental setting under (1) we generated 10000 random values for X andY.

First, we measured what is the Hamming distance between outputs Z and Z1 (Z � X �Y

and Z1

� X1

�Y), where 1 bit is changed in the input X pHammingDistpX,X1

q � 1q. Af-

ter that we measured the Hamming distance between outputs Z and Z1 of the � operation

(Z � X �Y and Z1

� X �Y1) where 1 bit is changed in Y pHammingDistpY,Y1

q � 1q.

The results for ω � 16, 32, 64 are shown in Figure 3.1, Figure 3.2 and Figure 3.3.

In the experimental setting under (2) we generated 1000 random values for the Internal

State IS and used just one round of the π function. Here we measure the Hamming

distance between the outputs (πpISq and πpIS 1

q), where one bit is changed in the IS

(HammingDistancepIS, IS 1

q � 1). The results for ω � 16, 32, 64 are shown in Figure

3.4, Figure 3.5 and Figure 3.6.

25

3.1 Bit diffusion analysis 26

0 10 20 30 40 50 60

20

30

40

50

60

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

0 10 20 30 40 50 60

20

30

40

50

60

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

Figure 3.1: Avalanche effect of the � operation for ω � 16

0 20 40 60 80 100 120

20

40

60

80

100

120

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

0 20 40 60 80 100 120

20

40

60

80

100

120

Position of the changed bits in Y

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

Figure 3.2: Avalanche effect of the � operation for ω � 32

0 50 100 150 200 250
0

50

100

150

200

250

Position of the changed bits in X

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

0 50 100 150 200 250
0

50

100

150

200

250

Position of the changed bits in Y

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

Figure 3.3: Avalanche effect of the � operation for ω � 64

3.2 Distinguisher for one round π16-Cipher096 and π16-Cipher128 27

0 50 100 150 200 250

150

200

250

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

o
f
π

Figure 3.4: Avalanche effect of one round of the π function where ω � 16 (Min �

120.732,Avg = 127.255,Max � 128.731)

0 100 200 300 400 500
200

300

400

500

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

o
f
π

Figure 3.5: Avalanche effect of one round of the π function where ω � 32 (Min �

226.063,Avg = 256.765,Max � 251.472)

3.2 Distinguisher for one round π16-Cipher096 and

π16-Cipher128

We describe a distinguisher attack for one round π16-Cipher096 and π16-Cipher128.

3.2 Distinguisher for one round π16-Cipher096 and π16-Cipher128 28

0 200 400 600 800 1,000

400

600

800

1,000

Position of the changed bits in the IS

H
a
m
m
in
g
d
is
ta
n
ce

b
et
w
ee
n
th
e
o
u
tp
u
ts

o
f
π

Figure 3.6: Avalanche effect of one round of the π function where ω � 64 (Min �

400.88,Avg = 485.646,Max � 515.76)

For ω � 16 the size of the part J2 in Figure 3.7 is 64 bits. Thus, by trying all 264 values

for J2 (the graphical representation is in Figure 3.8) we can obtain in a unique way a list

L1 � tpI1i, I2iq | 0 ¤ i 264u of 264 different values for the pairs pI1i, I2iq (the graphical

representation is in Figure 3.9). We build a similar list L2 � tpI 11i, I
1

2iq | 0 ¤ i 264u for

the next encrypted block. Knowing that the encryption for the next block is by injecting

a counter that was incremented by 1 from the previous counter value, and that it was

injected in the position of I1, while the value of I2 was the same, we build a matching

list L3 � tpI1i, I
1

1i, I2i, I
1

2iq | 0 ¤ i 264u where I 11i � I1i � 1. With probability 1 there

will be a pair of values where I2i � I 12i, while if the values of J1 and J3 were from an

ideal random source, the probability that there will be a pair where I2i � I 12i is very low

(much less than 2�32). In total, the complexity of the attack is 265 computations of the

operation �, and the space is 265 � 16 � 269 bytes.

For more than one round, or for bigger values of ω, this distinguishing attack is more

complex than the claimed security of the cipher.

3.2 Distinguisher for one round π16-Cipher096 and π16-Cipher128 29

C1

C2

I3I2I1

I 11

J1 J2 J3 J4

I4

I 12 I 13 I 14

Figure 3.7: One round of π16-Cipher

C1

C2

I3I2I1

I 11

J1 J2 J3 J4

I4

I 12 I 13 I 14

Figure 3.8: For J2 we try all possible 264 values.

C1

C2

I3I2I1

I 11

J1 J2 J3 J4

I4

I 12 I 13 I 14

Figure 3.9: The blue squares are either guessed ones (that is J2) or obtained in a unique
way from the definition of the operation �.

Chapter 4

Features

In this chapter we discuss the features of π-Cipher loosely following the structure of the

features section http://competitions.cr.yp.to/features.html on the CAESAR web site.

Cipher-structure (Encrypt than MAC). First we want to point out that it is rela-

tively straightforward to show that the π-Cipher is an Encrypt-then-MAC authenticated

cipher. Let us recall the definition for the Encrypt-then-MAC authenticated cipher: We

say that the authenticated cipher is Encrypt-then-MAC if a message M is encrypted

under a secret key K1 and then the tag T is calculated with another secret key K2 as

MACpK2, Cq. The pair pC, T q is the output of the authenticated encryption procedure.

If we describe the e-triplex component used in π-Cipher in a mathematical form we

have the following. First the message M is encrypted producing the ciphertext C as

IS � πpCISbitrate

à

counter |||| CIScapacityq,

C �M
à

ISbitrate.

Then, the tag T is calculated as

t� πpC |||| IScapacityqbitrate.

Here, the value of CISbitrate

À

counter |||| CIScapacity has the role of K1 in the definition

of Encrypt-then-MAC, and the value of C |||| IScapacity has the role of the pair pK2, Cq

in the MACpK2, Cq part of the definition of Encrypt-then-MAC.

30

http://competitions.cr.yp.to/features.html

31

Associated Data and NONCE reuse. If we encrypt two different plaintexts M1

and M2 with the same secret key K, associated data AD and nonce NONCE �

pPMN, SMNq, then neither the confidentiality nor the integrity of the plaintexts are pre-

served in the π–Cipher. However, as one measure to reduce the risks of a complete reuse of

the NONCE we have adopted the strategy of a composite NONCE � pPMN, SMNq.

If either PMN or SMN are different, then both the confidentiality and integrity of

plaintexts are preserved.

Plaintext corruption, associated-data corruption, message-number corrup-

tion, ciphertext corruption. We posit that the π-Cipher can straightforwardly be

proven INT-CTXT secure under the assumption that the permutation π is an ideal ran-

dom permutation without any structural distinguishers, by adapting the proof of the

XOR-MAC scheme [1]. This is due to the close resemblance of the tag-generation part

of the π-Cipher with the XOR-MAC.

Ciphertext prediction. The best distinguishing attack that we know for the π-Cipher

is for the versions π16-Cipher096 and π16-Cipher128 with just one round and is described

in Section 3.2. The complexity of the attack is 265 computations of the operation �, and

the space is 265 � 16 � 269 bytes.

Replay and reordering. For the π-Cipher, the standard defense against both replay

and reordering is for the sender to use strictly increasing public message numbers PMNs,

and for the receiver to refuse any message whose message number is no larger than the

largest number of any verified message. This requires both the sender and receiver to

keep state.

Sabotage. The π-Cipher puts the encryption of the SMN value as the first block of

the ciphertext C. Thus, in protocols that use the π-Cipher, the receiver can make an

early reject of invalid messages by decrypting the first block (containing the SMN) and

comparing it to its expected value. Only if this check passes the receiver continues with

the rest of the decryption and tag computation. Note however, that this requires the

protocol to not return error messages to the sender, in order to avoid timing attacks.

AES-GCM does not have this property.

32

Plaintext espionage. Since the attacker’s goal here is to figure out the user’s secret

message, the only feasible attack can happen when the size of the secret message is small

by building a table of encrypted secret messages. To defend against this attack the π-

Cipher requires the nonce pair NONCE � pPMN, SMNq to have a unique value for

every encryption.

Message-number espionage. In the π-Cipher there is a dedicated phase for encrypt-

ing the secret message number SMN , and figuring out the value of SMN is equivalent to

breaking the whole cipher which is infeasible under the assumptions that the permutation

πpq is random.

General input scheduling. The π-Cipher can offer two ways for reducing the latency:

(1) If the key K and the public message number PMN are known in advance and used

repeatedly, then it is possible to precompute phase 1. and store the resulting Common

Internal State (CIS) for subsequent applications of the cipher. (2) If the key K, the

public message number PMN and the associated data AD are known in advance and

used repeatedly, then it is possible to precompute both phase 1. and phase 2. for

subsequent uses. In both cases, in order to preserve the confidentiality and the integrity

of the plaintext, for every encryption the secret message numbers SMN ’s must be unique.

Incrementality. The π-Cipher is an incremental authenticated cipher. Unlike AES-

GCM which also has the incrementality property, the π-Cipher computes the incremented

tag with a constant number of operations regardless of the relative position of the changed

plaintext block in the whole encrypted plaintext.

Tag second preimage resistance - resistance against finding second preimage

for an authentication tag when the key is known (insider attack). π-Cipher

offers some level of tag second-preimage resistance. We say some level, since the com-

putational efforts for finding a second-preimage for a given pair (message, tag) are not

the same as for finding second-preimages for hash functions. And if the π-Cipher is used

for authenticated encryption of messages with arbitrary length (in the framework of the

maximally allowed size of the messages which is up to 264 bytes), as it was shown by

Leurent in [6] the tag second-preimages can be computed with complexities from 222

using messages that are long 211 blocks up to complexity 245 using messages that are

33

long 222 blocks. Laurent’s analysis on π-Cipher v1 was based on Wagner’s generalized

birthday attack [8] which complexity can be described as follows. The complexity of

finding a preimage message M �M1||M2|| . . . ||MK of K blocks, where K is smaller than

some predefined big number, is:

min
K

OpK � 2
k

1�lgtKu

q (4.1)

If the length of the messages is not restricted, then the minimum in equation (4.1) is

achieved for messages of K � 2
?

k�1 blocks.

However, there are situations when we need to encrypt relatively short messages. For

example, if we use the π-Cipher in IPSec or TLS with the most common Internet packet

size of 1500 bytes, then for π64-Cipher128 or π64-Cipher256 the encrypted messages will

have “just” 24 packets. In that case the Wagner’s generalized birthday attack in order

to find a second-preimage for a given tag will need 2108 e-triplex invocations and a space

of 2113 bytes. We note that by choosing different values for the tweakable parameter N ,

we can achieve different levels of tag second-preimage resistance.

Software performance. For efficient software implementations, we propose to use the

π64-Cipher. On modern Intel CPUs (Sandy Bridge and Haswell) the initial and slightly

optimized implementation (but non-SIMD) achieves the speeds from 6.5 cpb up to 12

cpb.

Lightweight hardware performance. For a lightweight hardware implementation

we propose to use the π16-Cipher. Our initial and slightly optimized implementation of

the basic operation � on FPGA Xilinx Virtex6-XC6VLX240T needs 41 slices and two

RAM blocks.

Chapter 5

Design rationale

Disclaimer: ”The designer/designers have not hidden any weaknesses in this cipher.”

5.1 Why parallelism, incrementality and tag second-

preimage resistance?

While AES-GCM can be parallelized and can be used to perform incremental updates of

the ciphertext and the tag, it is not a tag second-preimage resistant. In our presentation

at DIAC 2013 [4] we located several reasons why MACs should retain some hash prop-

erties when the key is known. We argued that since the Robustness is one of the main

goals of the future AEAD standard, tag second-preimage resistance should be one of the

features that an AEAD cipher should posses. We also gave two realistic scenarios (”Se-

cure audit logs” and Multi-cast authentication) when the lack of tag second-preimage

resistance in authenticated encryption can be exploited.

While the proposed sponge constructions of authenticated encryption offer tag second-

preimage resistance, they lack some of the properties that are also useful and desired (such

as parallelizability and incrementality). As a result of this line of reasoning, we designed

a cipher for authenticated encryption that is parallel, incremental and offers a certain

level of tag second-preimage resistance.

34

5.2 Why constants in π–Cipher and how to choose them 35

5.2 Why constants in π–Cipher and how to choose

them

In order to avoid the existence of some trivial fixed points in the permutation function

π, we decided to use constants in the affine bijective transformations xA1 and xA3 from

the µ and ν permutations. The reason why we choose these constants is that they are

represented as a sequence of equal distribution of 0s and 1s. Having these constants in
xA1 and xA3 we are not aware of any point X such that

πpXq � X.

The size and value of the constants depend on the length of the words in the π–Cipher.

First we generate the set Constants of all possible 8-bit (1 byte) candidates with equal

distribution of 0s and 1s in their binary representation. The total number of elements in

this set is 70, and is given by:

Constants � t0xF0, 0xE8, 0xE4, 0xE2, 0xE1, 0xD8, 0xD4, 0xD2, 0xD1, 0xCC,

0xCA, 0xC9, 0xC6, 0xC5, 0xC3, 0xB8, 0xB4, 0xB2, 0xB1, 0xAC,

0xAA, 0xA9, 0xA6, 0xA5, 0xA3, 0x9C, 0x9A, 0x99, 0x96, 0x95,

0x93, 0x8E, 0x8D, 0x8B, 0x87, 0x78, 0x74, 0x72, 0x71, 0x6C,

0x6A, 0x69, 0x66, 0x65, 0x63, 0x5C, 0x5A, 0x59, 0x56, 0x55,

0x53, 0x4E, 0x4D, 0x4B, 0x47, 0x3C, 0x3A, 0x39, 0x36, 0x35,

0x33, 0x2E, 0x2D, 0x2B, 0x27, 0x1E, 0x1D, 0x1B, 0x17, 0x0Fu

The constants used in the πω–Ciphers with different word sizes consist of a concate-

nation of a consecutive 8-bit elements from the set Constants.

π16–Cipher uses eight 16-bit constants for the � operation and eight 4-tuples of 16-bit

constants for the rounds. We start from the first element of the set 0xF0 and take 16

successive byte values up to the value 0xB8 and form the constants for the � operation.

After that, we take every eight successive byte values to form one round constant. We

repeat this procedure 8 times and generate the constants C1, C2, . . . , C8 for the rounds.

Since π32–Cipher uses eight 32-bit constants for the � operation and eight 4-tuples

of 32-bit constants for the rounds, we take 32 successive byte values starting from the

5.2 Why constants in π–Cipher and how to choose them 36

first one 0xF0 and form the constants for the � operation. The next 128 consecutive byte

values are used for generating constants for the rounds. Because we need 128 bytes for

the round constants of π32–Cipher and have 70 elements in the set, for the 71st byte we

take the value of the first element in the set Constants again.

π64–Cipher uses eight 64-bit constants for the � operation. They are taken as 64

successive byte values from the set, starting from the first one 0xF0. Since π64–Cipher

uses 4–tuples of 8 bytes round constants, we take them successively starting from the

value 0x27 in the set Constants.

The values of both constants (for the � operation and for rounds) for different π–

Ciphers are given in Section 1.3.

Chapter 6

Intellectual property

We, the designers of the π-Cipher hereby declare that, to the best of our knowledge, the

design of the algorithm that we have submitted for the CAESAR competition, is not

covered by any patents. We also hereby declare that we intend never to cover the design

of the π-Cipher by any patent.

If any of this information changes, the submitter/submitters will promptly (and within

at most one month) announce these changes on the crypto-competitions mailing list.

37

Chapter 7

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection com-

mittee regarding the selection or non-selection of this submission as a second-round can-

didate, a third-round candidate, a finalist, a member of the final portfolio, or any other

designation provided by the committee. The submitter/submitters understand that the

committee will not comment on the algorithms, except that for each selected algorithm

the committee will simply cite the previously published analyses that led to the selec-

tion of the algorithm. The submitter/submitters understand that the selection of some

algorithms is not a negative comment regarding other algorithms, and that an excellent

algorithm might fail to be selected simply because not enough analysis was available

at the time of the committee decision. The submitter/submitters acknowledge that the

committee decisions reflect the collective expert judgments of the committee members

and are not subject to appeal. The submitter/submitters understand that if they disagree

with published analyses then they are expected to promptly and publicly respond to those

analyses, not to wait for subsequent committee decisions. The submitter/submitters un-

derstand that this statement is required as a condition of consideration of this submission

by the CAESAR selection committee.

38

References

[1] Mihir Bellare, Roch Guérin, and Phillip Rogaway. Xor macs: New methods for
message authentication using finite pseudorandom functions. In Don Coppersmith,
editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 15–28.
Springer, 1995.

[2] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indif-
ferentiability of the sponge construction. In Nigel P. Smart, editor, EUROCRYPT,
volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the
sponge: Single-pass authenticated encryption and other applications. In Proceedings
of the 18th International Conference on Selected Areas in Cryptography, SAC’11,
pages 320–337, 2012.

[4] Danilo Gligoroski, Hristina Mihajloska, and H̊akon Jacobsen. Should MAC’s retain
hash properties when the key is known in the next AEAD? Presentation at DIAC
2013, 2013. http://2013.diac.cr.yp.to/slides/gligoroski.pdf.

[5] Danilo Gligoroski, Rune Steinsmo Ødeg̊ard, Marija Mihova, Svein Johan Knapskog,
Ljupco Kocarev, Aleš Drápal, and Vlastimil Klima. Cryptographic hash function
EDON-R1. In 1st International Workshop on Security and Communication Networks,
pages 85–95, Trondheim, Norway, May 2009. IEEE.

[6] Gaëtan Leurent. Tag Second-preimage Attack against π-cipher. March 2014.

[7] Pawel Morawiecki and Josef Pieprzyk. Parallel authenticated encryption with
the duplex construction. Cryptology ePrint Archive, Report 2013/658, 2013.
http://eprint.iacr.org/.

[8] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

39

http://2013.diac.cr.yp.to/slides/gligoroski.pdf
http://eprint.iacr.org/

	Specification
	Parameters, variables and constants
	General design properties
	Authenticated encryption
	Decryption and verification

	The -function

	Security goals
	Security analysis
	Bit diffusion analysis
	Distinguisher for one round 16-Cipher096 and 16-Cipher128

	Features
	Design rationale
	Why parallelism, incrementality and tag second-preimage resistance?
	Why constants in –Cipher and how to choose them

	Intellectual property
	Consent
	References

