
POLAWIS

Arkadiusz Wysokinski, Ireneusz Sikora

15-03-2014

Cipher name: POLAWIS

Version number: v1

Designers: Arkadiusz Wysokinski, Ireneusz Sikora

Submitters: Arkadiusz Wysokinski, Ireneusz Sikora

Contact email address for submitters: polawis@sedkomp.com.pl

Date of the document: March 15, 2014

1

Speci�cation:

� the basis for the calculation is conducted chosen prime p greater than
2256, that is, for example, p = 2256 + q, where q = 297.

� portion of the input data (one block): 6 number of size 256 bits each,
giving a 1536 bit

� portion of the output (one block of ciphertext):

6 number of size 256 bits each, giving a 1536 bits, or

6 number of size 8 * 256 bits each, giving a 12288 bits, in case
you did not know how to perform calculations over the �eld Zp,
and we need to conduct calculations on rational numbers Q (R);
this happens with a probability of about 10 ∗ q/p (theoretically)
within the ciphertext, and always at the end of the ciphertext.

� key (exchanged between the communicating parties): 16 number of size
256 bits each, giving a 4096 bits

� additional data (associated data): 6 set of integers (each of size 256
bits, giving a 1536 bits); algorithm as default assumes all zeros, the
parties may agree on a di�erent string used when communicating (once
or repeatedly), this sequence may not be con�dential

� other conditions speci�ed in the competition strings take size zero.

In details:

Introduction. We will present a method based on the properties of
algebraic operations in noncommutative quaternion numerical �eld, allowing
the replacement of the set six of real numbers, a set of six other real numbers
designated with the two any real numbers.

Minimum number sequence that can be encoded is a string consisting
of 6 numbers (if the string is shorter, it must be supplemented by selected
constants). The next six numbers are treated as a1, a2, a3, a4, b2, b3 and b4 we
adopt as 0. We also adopt values for c1 and c4. If a4 6= 0 for such a set of
numbers we determine the values of c2 and c3, and then x1, x2, x3, x4.

The encryption equations (for one round) are as follows:

2

c1 ∈ R \ {0}
c4 ∈ R

c2 =
c1(a3 − b3) + c4(a2 + b2)

a4 + b4

c3 =
c4(a3 + b3) − c1(a2 − b2)

a4 + b4

x1 =
2a1c1 + c2(a2 + b2) + c3(a3 + b3) + c4(a4 + b4)

2(c2
1 + c2

2 + c2
3 + c2

4)

x2 =
a2 + b2

2c1

− c2

c1

· x1

x3 =
a3 + b3

2c1

− c3

c1

· x1

x4 =
a4 + b4

2c1

− c4

c1

· x1

The values c2, c3, x1, x2, x3, x4 were treated as encoded, and c1 and c4 were
treated as encryption key.

The decryption equations (for one round) we be expressed as follows:

a1 = x1c1 − x2c2 − x3c3 − x4c4

a2 = x2c1 + x1c2 − x4c3 + x3c4

a3 = x3c1 + x4c2 + x1c3 − x2c4

a4 = 2x4c1 + 2x1c4 − b4

b2 = x2c1 + x1c2 + x4c3 − x3c4

b3 = x3c1 − x4c2 + x1c3 + x2c4

It should be noted that the basic operation of encoding 6 real numbers
(or integer multiples thereof) additionally needs only two real numbers. So in
order to encode n = 6m real numbers, we need n + 2k real numbers (where
min(k) = 1 , and max(k) = m). without knowledge of c1 and c4 it is
virtually impossible to guess the values of a1, a2, a3, a4, b2, b3 .

Unfortunately, it is possible to perform here a type of attack - with a
known-plaintext and ciphertext, as we have up to 6 equations and only two
elements of the key. However, this drawback can be eliminated by using
multi round version of the algorithm.

It turns out, that the values of a4 and b4 separately do not matter, what
matters is the sum of a4 + b4.

If we assume that b4 6= 0 then the algorithm is somewhat strengthened.
So the basic operation of encoding (without zero) of 6 reals (or an integral

multiple thereof) needs further only (2 + 1) = 3 real numbers. So to encode
n = 6m real numbers we need n + 2k + l of real numbers (where min(k) =
1 , and max(k) = m , and min(l) = 1 , and max(l) = m). without

3

the knowledge of the values c1 and c4 (and additionally b4) it is virtually
impossible to guess the values of a1, a2, a3, a4, b2, b3. The constant b4 may be
included in the coding chip, but it has less impact on the ciphertext, so I will
treat it as an additional element (perhaps explicit) of the algorithm. If we
want to decrease the possibility of unauthorized decoding of the ciphertext
we can recursively apply the basic equations presented earlier, that means
repeat (n times) the basic encryption procedure without zero. Key variables
in particular rounds can be constant (basic version � simpler) but it is better
when for every round the key is di�erent. Because of that we will need a key
of 2n length, where n � number of rounds.

In every next round equations become more complicated. If for the mea-
sure of their complexity we assume the number of needed symbols to save
them, then it appears that in the round n + 1 we need around 6 times more
symbols than in round n. It means, that after k rounds the number of needed
symbols will be 6k−1 times larger compared to the �rst round. After eight
rounds this coe�cient will have the value of about 279, 936 (it is a lower
estimate).

The important role here begins to play the approximation of intermediate
result, so we may not get the exact results but the estimated ones. To get
accurate results one can apply following conditions:

� as input data in the �rst round we put only integers and we choose
constant b4 so that x4 6= 0

� we round the results obtained in the last round.

In the practical application it is not an essential problem and it allows the
application of multi round procedure operation with machine precision.

Proposed algorithm requires a larger number of calculations than in the
one round version but the use of rewriting an earlier round output to the
input of the following round causes the demand for CPU time to grow linearly
with the increasing number of rounds and the direction number of this linear
dependence is lesser than 1.

Proposed algorithm operates on real numbers. Program implementing
this algorithm is based on the representations of real numbers available in C
� �oat and double types. Because of too big rounding during computation I
was made to accept the integer type (char) corresponding to writing number
on the 8 bit (1 byte) as input data. Because of that a sequence coded in that
implementation is 4 times longer than input sequence (�oat type = 4 bytes)
for number of rounds up to 4 and 8 times longer than input sequence (double
type = 8 bytes) for number of rounds from 5 up to 8. For longer number

4

of rounds double type is not enough and it is necessary to use a ciphertext
which can save one real number on larger number of bytes than 8.

In the next rounds we got a lot of intermediate results which can be used
to modify the value of coding key. For the �rst six data we get 6 new results
after each round which are taken as input data for the following round. If
we save those results �momentarily� then we can use some of them (exactly
one number from each round) as new values for selected parts of the key.

So as for 8 rounds procedure we got 7 new values of key which we will
use to the next six input data. Situation looks like follows:

� for the �rst six inputs elements we have 16 elements of the key (16 real
numbers) but only 6 equations.

� for second set of six data numbers we have 7 new elements of key, which
replaced 7 old elements (9 elements of key do not change) and of course
there are 6 new equations

� for every next six input data situation repeats as for second set of six
data numbers.

Those additional elements of key (7 for every new 6 input data) are
nowhere saved nor sent, but escalated on the previous elements and input
data, both on encoding and decoding side. So if length of input data (ex-
pressed by number of real numbers) is equal to k = 6 ∗ m then number
of di�erent values of key participating in coding and decoding is equal to
l = 7 ∗ (m − 1) + 16, where m ∈ N .

m k l
1 6 16
2 12 23
3 18 30
...

...
...

lim
m→∞

l

k
=

7

6
> 1

Which means that for any m we have more elements of the key than
equations. Additionally, only 16 beginning values of the key (only one-time
sending of the key between communication sides or its transmission in other
possible way required) are sent between the sender and the addressee.

Important feature of this algorithm is that lack of information about six
previous elements does not let anyone to encode the further part of cipher-
text so the condition for full decoding of ciphertext is its �integrity� (no

5

unauthorized modi�cation of ciphertext, correct order of information in the
ciphertext, no omissions � breaks - in the ciphertext).

Unfortunately there is an incidental consequence which makes it more
di�cult to do parallel computing which was quite easy in simpler versions
- there every six numbers could be encoded and decoded separately. For
even bigger complexity and randomness of the ciphertext it is suggested to
use in applications realizing proposed algorithm a pseudo random number
generator. The proposal of suitable working implementation will be presented
in the end of this paper.

It is possible to use a modi�ed algorithm in which where the operations
are possible we calculate in a �nite �eld and otherwise we calculate in rational
numbers Q (R). It signi�cantly reduces the size of ciphertext as compared
to the case when we calculate only in rational numbers Q (R), unfortunately
at the expense of increasing the computation time � looking for an inverse
of a �modulo p� is much more complicated than �normal� division of real
numbers.

Encryption procedure using calculations of �nite �elds. At the
time of obtaining good results with the use of encryption calculations in
qaternions �eld whose coordinates are real numbers (or rational), which is
the number of �elds belonging to the in�nite (of uncountable or countable
number of elements), it becomes natural to ask whether the encryption is
analogous procedure used in place of one �oat �eld known �nite �elds.

The �rst �nite, which decided to explore the possibility of using the �eld
Zp , that is, the �eld of integers with de�ned actions �modulo p�, where p is
a prime number.

Used equations (for one round) are the same as in previous algorithms,
and so the encryption equations looks as follows:

6

c1 ∈ Zp \ {0}
c4 ∈ Zp

c2 =
c1(a3 − b3) + c4(a2 + b2)

a4 + b4

mod p

c3 =
c4(a3 + b3) − c1(a2 − b2)

a4 + b4

mod p

x1 =
2a1c1 + c2(a2 + b2) + c3(a3 + b3) + c4(a4 + b4)

2(c2
1 + c2

2 + c2
3 + c2

4)
mod p

x2 = (
a2 + b2

2c1

− c2

c1

· x1) mod p

x3 = (
a3 + b3

2c1

− c3

c1

· x1) mod p

x4 = (
a4 + b4

2c1

− c4

c1

· x1) mod p

and decrypting equations (for one round) can be written as follows:

a1 = (x1c1 − x2c2 − x3c3 − x4c4) mod p
a2 = (x2c1 + x1c2 − x4c3 + x3c4) mod p
a3 = (x3c1 + x4c2 + x1c3 − x2c4) mod p
a4 = (2x4c1 + 2x1c4 − b4) mod p
b2 = (x2c1 + x1c2 + x4c3 − x3c4) mod p
b3 = (x3c1 − x4c2 + x1c3 + x2c4) mod p

Unfortunately, it is not possible simply replacing of the calculation in real
numbers by calculations in the �eld Zp. This is due to the fact that some
of the calculations that are naturally feasible in the �eld of real numbers are
not properly enforceable in the �eld of integers modulo p.

The problem relates only to the equations corresponding to the coding, as
occurs in operation of these equations division. As we know, in this �eld the
numerical division by �zero� is not feasible. For calculations in real enough
so appropriate selection b4 constant, so that a4 − b4 6= 0, which was possible
to implement globally for all possible sets of input data, and to provide
the appropriate selection key (the key to the reduction of non-zero values
corresponding to variables c1n).

For the calculation of the �eld Zp the above two conditions (a condition
wherein the �rst solid b4 can not be selected globally) must be added another:

� 2 ∗ c1 6= 0 - there is not enough only to c1 6= 0, you also exclude the
value of c1 = p/2, since 2 ∗ p/2 = p = 0 mod p. Unfortunately, it
is di�cult to make o� with the method another key value, especially

7

when we use a variable in subsequent rounds, and for the next batch
key data as what values should be excluded depends on the input.

� 2 ∗ (c2
1 + c2

2 + c2
3 + c2

4) 6= 0 - also there is not enough only to c1 6= 0,
but the value of zero can occur for a number of sets of non-zero-values
of variables c1, ..., c4. He talks about the hypothesis Waring (proven
by Hilbert) in the part called the Lagrange theorem, which states that
every non-negative integer can be expressed as the sum of four squares
of integers and such presentation is ambiguous. For us it is important
that it be considered an expression can have values that are integral
multiples of p, that the calculations �modulo p� is zero.

� where p > 2k (k-number of bits in a processed word) there was a
problem with the transmission message on the transmission channel
value between

〈
2k, p

)
, theoretically possible to increase the length of

time transmitted word, but it is a �low cost�

� where p < 2k (k-number of bits in a processed word) there is a problem
with processing input data in the range

(
p, 2k

〉
, and this problem is

indelible.

� for each �le there is a problem with the message EOF (end-of-�le), for
Linux (Unix) is −1 (the number is not representing any valid ASCII
character, appearing in the �le once at the end), but −1 = p − 1, and
the number of p− 1 is a valid input variables, it is a problem indelible.

Thus, the direct application of the �nite calculation is not possible be-
cause of some simple arithmetic will not be able to perform in a correct way
for any input, and a su�ciently large space limit values for the key.

However, you can apply the modi�ed algorithm in which where actions
are feasible we calculate the �nite �eld (Zp), and otherwise we are counting
in the �eld Q (R).

This way you can adjust the calculation of the �nite each of the previously
mentioned algorithms for real numbers.

Here I will try to accurately describe the algorithm and the results o�ered
by the use of the procedure eight-round bouts, the replacement of seven key
elements in each round.

So you should start by deciding which transmit channel width (size in
bits) we will use. The choices here are partly limited by the parameters of
digital machines available and accessible programming languages. In the case
of PC, Linux and C language will be selected as the optimal width of the
base 4 ∗ 8 = 32 bits. Another possible width of the transmission channel is
odd multiple of 32 bits, or 64, 96, 128, ... , 2048,

8

Next, determine the value of p possible nearest number 2 to the power
of the �transmission channel width�, which channel 32-bit looking number p
close to 232, and generally for the channel k-bit looking for the number p
close to 2k. Of course, they found a prime number is closer to an appropriate
power of two, the better.

Then, for the assumed value of p respectively generate �key� (keeping in
mind that the key length also depends on the number of rounds of encryption
and key contains two numbers for each round). When generating a key so
we select the items to the value corresponding to c1 and 2 ∗ c1 were di�erent
from zero (and this is dependent on the choice of p).

Then we can, but this is optional, generate �zero head ciphertext� as
follows: using the selected key encrypt input string consisting of all zeros (six
numbers representing a value of zero in the selected �bit range�). As a result
of this operation, we get the ciphertext, in which the positions corresponding
to x1 and x4 get a value di�erent from zero (depends on all the elements
of the key), and other things will be zero. Decrypted the� zero� the head
can immediately tell if the receiving party uses the key message wrong -
any of the decrypted number is non-zero, or potentially valid. This may be
required, for instance when the communicating parties have agreed to the
use of multiple keys previously agreed, to quickly access the key. In general,
it is better that part of the encryption process omitted, since it facilitates
the process of �strength� break the cipher.

To ensure that the ciphertexts di�er in case of multiple encryption of
the same message M with the same key K before encrypting messages to
the right to generate a unit serving (six numbers) random information and
subject it to the process of encryption. These random six numbers will help
us with a �xed key, to get the indirect calculation after each round of which
will be used in the encryption process the next chunk of data (the next six
numbers taken at the entrance). Exactly the same intermediate values is
obtained in the process of decoding the random six (keeping in mind that
they will appear in reverse order). In the proposed implementation of the
algorithm for the adopted eight rounds of coding, I use seven intermediate
values retrieved from the variable x1. Yes received 7 new values so 7 replaces
the old key elements (such as the values they can take the value zero, the
substitution are key elements corresponding to the variable c4).

Due to the a priori to guarantee the feasibility of calculations on real
numbers above do with the version of the algorithm that operates on real
numbers (rational).

Since at least once (to send EOF) will have to apply the algorithm in
version �over the in�nite �eld�, the key will be treated in two ways: �rst,
it will be loaded as a sequence of real numbers (�oating point type - �oat),

9

for the second time as a sequence of integers. Therefore, two times encrypt
and send a portion of random information for the �rst time to replace part
of the key value read as real numbers that will be used for encryption and
decryption �algorithm real�, the second time to replace the key value read as
integers, which will be used for encryption and decryption �algorithm integer�.
Random encryption information for the adjustment of the key completely
can and should make a � integer algorithm�, keeping in mind that when you
generate the random pieces of information to ensure that it is properly given
to encrypt (the ful�llment of all the conditions for the calculation of the �nite
�eld of integers modulo p) and thus decrypt.

With this preparation we can proceed with the proper encryption M. If the
appropriate conditions are met - encrypt �integer algorithm�. An important
feature of this method of encryption is that the length of the ciphertext is
identical to the length of the input data for a single serving (six integers)
input.

In case of a read six numbers on the entry in the �eld of �nite action are
not feasible, we need for that, and only that portion of the information from
the input �switch� to calculate the real numbers. In addition, we have the
fact �switch" to notify the receiving party ciphertext. To this end, before
submitting the ciphertext algorithm processed �real� we must send a string
set that is �signal switch". The tests for this purpose used a constant string
consisting of the characters with the number 254 in ASCII (FE - hexadeci-
mal), the length of a single chunk of data in the �integer� algorithm. It seems
that one can use any string constant, any di�erent from the� zero�, that is,
do not use ASCII characters -� 0�. This part of the ciphertext will have a
size nine times the size of the input data (one time �string indicating� + 8
times �real� ciphertext).

Active repeat until you run out of data input.
The decryption process is much simpler - �rst �zero head decrypts�, if

present, then the algorithm reconstruct real random information in order
to obtain the correct key, the real, then the �integer algorithm� random
reproducing of information to obtain a complete correct key. Then, if we
read ��xed string information�, the decryption process for a single chunk of
data encrypted algorithm we �real�, and in the opposite case, we use the
algorithm �integer�.

Active repeat till the end of the encrypted data in the input, or decrypt
EOF.

A trial implementation done as a program in C language with an attached
library gmp (The GNU Multiple Precision Arithmetic Library) available un-
der the GPL. The whole thing was compiled compiler gcc and runs on Linux.
The demand of the software on working memory is low, on the order of sev-

10

eral hundred sizes used the number p. However, the demand for CPU time
is very signi�cant. The decryption process is about three times faster than
the encryption process.

From the utility point of view, it is best if the largest part of the calcula-
tion will be carried out on integers. Border situation (optimal) is the switch
to calculate the real number will be only once - to mark the end of the �le
transfer. This can be achieved by choosing su�ciently large p. It should also
be noted that too high a value of p can cause a signi�cant slowdown in the
calculations - the need to process very large numbers.

To conduct the calculations for �normal� processors (ie 32 or 64 bits)
seems to be the optimal use of the p from close 264 to near 2512.

It seems reasonable to apply specialized processors with bits increased
in order to accelerate the calculations. Today, such processors are used in
graphics cards and the appropriate software, they may be useful in the im-
plementation of the� hardware� version of the encryption / decryption using
quaternions.

The resulting ciphertext has the following properties:

� Humming normalized distance between the input string and the string
of bits encrypted calculated for the values very close to 0.5 - which
means that almost exactly half of the bits to be replaced (based algo-
rithm for �integer�),

� Humming normalized distance (calculated for the �integer algorithm�)
between the input string and the encrypted string to byte counts (1
byte = 8 bits) takes values close to 1 - which means that almost all the
characters are exchanged (but not exactly all) ,

� distribution of characters (ASCII) in ciphertext is close to the standing,
i.e. the frequency of each character in ciphertext is similar, and the
longer the ciphertext, the coe�cient of (�incidence of the most common
character� - �incidence mark rarest�) / �incidence the most common
character� sign is decreasing (for a �le about 1.5 GB - less than 1%),

� ciphertext undergoes virtually no compression (checked publicly avail-
able programs - gzip - compression of the �nite size of the dictionary,
and bzip - compression with variable size of the dictionary),

� if we compare two ciphertexts generated for the same input data and
at the same key, but in two di�erent encryption processes is more than
95% characters (ASCII) is changed,

� factor not get worse if we change one character (ASCII) in the key,

11

� �any error� in ciphertext misrepresentation or mistake when calculating
the correct decryption whereas a message from a place where there was
a calculation error or misrepresentation transmission.

The test program did not use replacement patterns, depending on the
value of the additional key element - it gave only 256 (for 8 rounds) additional
options, which is the number of very small compared to the possible number
of di�erent key values - for example, 32 bit * 16 = 512 bits , that is, 2512

- and this is the minimum value. Next possible to choose is 1024 bits, and
actually there is 8192 bit - for p close to 2512.

Security goals: That the cipher is designed to provide the maximum pos-
sible robustness, full integrity and con�dentiality Each performed the encryp-
tion process outputs the other (di�erent) ciphertext (even in case of multiple
encryption of the same plaintext using the same key) - a di�erence of more
than 95 % of ASCII characters.
parameter number of bits of security

con�dentiality for the plaintext > 256
integrity for the plaintext > 256
integrity for the associated data > 256

Security analysis: for initial processed block :
16 elements of initial key - 6 equations = 10 elements of key is a free param-
eters
In bits: 8 X 255 + 2 X 256 = 2552 bits (8 elements of key is nonzero)
for each next processed block :
9 elements of key + 7 elements of key changing in each block- 6 equations =
10 elements of key is a free parameters
In bits: 8 X 255 + 2 X 256 = 2552 bits (8 elements of key is nonzero)

Features:

� ciphertext size is slightly larger than the size of the plaintext

� each performed the encryption process outputs the other (di�erent)
ciphertext (even in case of multiple encryption of the same plaintext
using the same key) - a di�erence of more than 95 % of ASCII characters

� ensured high integrity ciphertext - change ciphertext fragment, adding
anything to the ciphertext, or remove any part of it causes the inability
to properly decrypt the rest of the message - that the lack of integrity

12

further con�rmed using the "additional data" encrypted and transmit-
ted at the end of the ciphertext

� exchanged between the parties 16 numeric key is the only key that
initiates the encryption used in unchanged form only for the �rst 6
numeric block of input data, for each subsequent block of data that is
changed 7 numbers in the primary key, so that the e�ective length of
the used key is equal to 16 + 7/6∗ k, where k is the number of blocks
for which the plaintext is divided, therefore, the e�ective length of the
key is greater than the length of the plaintext

� the resulting ciphertext is obtained in the statistical tests recommended
by NIST results comparable to those obtained using the ciphertexts:
DES, 3DES, and AES; ciphertext exhibits the characteristics of white
noise

� a test application has been successfully compiled on selected 32-bit
systems (Debian 4) and 64-bit (Centos 6) in single-threaded mode, the
use of multi-threading is possible, but requires a signi�cant change in
the algorithm

� application in non-optimized version requires a lot of CPU capacity,
the other parameters of the equipment required is minimal and met
with a supply of the currently available computers (also tested on the
hardware over 10 years old)

� note! before it is desirable to encrypt the input data subjected to a
process to reduce the redundancy (e.g., by compressing them widely
available programs)

the following relations are satis�ed:

lim inf
n→∞

‖K‖
‖M‖

=
7

6
> 1

lim inf
n→∞

‖C‖
‖M‖

= 1

∀n<∞
‖C‖
‖M‖

> 1

‖C‖ = n‖B‖
where n - numbers of blocks, ‖B‖ -length of block, ‖C‖ -length of cipher,
‖K‖ -length of equivalent (e�ective) key, ‖M‖ -length of message.

13

Design rationale: The project uses a new algebraic methods to obtain
high-quality ciphertext with potentially high resistance to unauthorized ac-
cess to encrypted information.
The designer/designers have not hidden any weaknesses in this cipher.

Intellectual property: The main part of the presented algorithm is the
original (author's, not previously published) idea to apply to encrypt a trans-
formation based on the algebra of quaternions.
Other tools and libraries needed to write test applications are available under
the GNU licence.
If any of this information changes, the submitter/submitters will promptly
(and within at most one month) announce these changes on the crypto-
competitions mailing list.

Consent: The submitter/submitters hereby consent to all decisions of the
CAESAR selection committee regarding the selection or non-selection of this
submission as a second-round candidate, a third-round candidate, a �nal-
ist, a member of the �nal portfolio, or any other designation provided by
the committee. The submitter/submitters understand that the committee will
not comment on the algorithms, except that for each selected algorithm the
committee will simply cite the previously published analyses that led to the
selection of the algorithm. The submitter/submitters understand that the
selection of some algorithms is not a negative comment regarding other al-
gorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter/submitters acknowledge that the committee decisions
re�ect the collective expert judgments of the committee members and are not
subject to appeal. The submitter/submitters understand that if they disagree
with published analyses then they are expected to promptly and publicly re-
spond to those analyses, not to wait for subsequent committee decisions. The
submitter/submitters understand that this statement is required as a condition
of consideration of this submission by the CAESAR selection committee.

14

