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1 Summary

The Prøst permutation is a strong, fast, amazing permutation WITH strong bounds that is
suitable for many platforms and many modes. Thus, we take the mode as a parameter.

2 Specification

Prøst is a permutation-based AEAD-scheme. Hence, we structure the specification into two parts;
first we specify the permutation, then we specify the mode of use.

2.1 Prøst Permutation

We consider an n-bit state x as a three-dimensional block. We denote the axes by x, y and z c.f.
Figure 1. We let 4×4×d = n be the dimensions of the state along those axes; as such, the state is
4 bits wide, 4 bits high and d bits deep along the z axis. We re-use the nomenclature of Keccak [5]
when referring to the terms row, column, lane (which we also call register), slice, plane and sheet
as indicated in Figure 1. To embed the state into the xy-plane, the registers are arranged into an
h× w matrix

x =


r0,0 r0,1 r0,2 r0,3
r1,0 r1,1 r1,2 r1,3
r2,0 r2,1 r2,2 r2,3
r3,0 r3,1 r3,2 r3,3

 ,

where each rx,y is a d-bit register (or lane). We use rx,y,z to refer to the zth bit of register rx,y,
with z = 0 being the most significant bit. The embedding into a single dimension is given by
Fn2 3 x = (r0,0, · · · , r3,3).

(a) Row (b) Column (c) Lane (d) Slice (e) Plane (f) Sheet

x

y
z

(g) Axes

Figure 1: Nomenclature for state parts

The Prøst permutation consists of compositions of permutations, which we refer to as rounds,
borrowing from the design of iterated block cipher constructions. We denote the total number of
rounds by T . We use Ri : Fn2 → Fn2 to refer to round i, 1 ≤ i ≤ T , which is defined as

Ri(x) = (AddConstant ◦ ShiftPlanes ◦ MixSlices ◦ SubRows) (x),

where x is an n-bit three-dimensional block of bits. We give the definition of each of these operations
below.

2.1.1 SubRows

The SubRows operation substitutes each 4-bit row of the state according to a 4-bit S-box. The
cipher uses one 4-bit S-box S : Fn2 → Fn2 . More precisely, a state S = (s)x,y,z will be mapped to a
state S′ = (s′)x,y,z where(

s′0,y,z, s
′
1,y,z, s

′
2,y,z, s

′
3,y,z

)
= S (s0,y,z, s1,y,z, s2,y,z, s3,y,z) ∀y, z

The action of the S-box is given in Table 1.
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Table 1: Action of the Prøst S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 4 8 f 1 5 e 9 2 7 a c b d 6 3

2.1.2 MixSlices

The MixSlices operation considers, for each j, 0 ≤ j < d, the jth slice as a vector in F16
2

determined as x = (r0,0,j , r0,1,j , . . . , r3,3,j). Thus, MixSlices applied to a state R = (r)x,y,z will
result in a state R′ = (r′)x,y,z where

r′0,0,z
r′0,1,z
r′0,2,z
r′0,3,z
r′1,0,z

...
r′3,2,z
r′3,3,z


= M



r0,0,z
r0,1,z
r0,2,z
r0,3,z
r1,0,z

...
r3,2,z
r3,3,z


∀z ∈ {0, . . . , d− 1}.

The matrix M used for MixSlices is given by (1). It is an MDS, involutive, i.e. self-inverse
matrix with 88 ones. It is furthermore the matrix among all the matrices with those criteria which
minimizes that number of low weight differences.

M =



1000100100101011

0100100000011001

0010010011001000

0001001001100100

1001100010110010

1000010010010001

0100001010001100

0010000101000110

0010101110001001

0001100101001000

1100100000100100

0110010000010010

1011001010011000

1001000110000100

1000110001000010

0100011000100001



. (1)

2.1.3 ShiftPlanes

The ShiftPlanes operation cyclically shifts each of the 4 lanes in a plane in the positive z direction.
In contrast to many schemes, we have two different shift operations, one for even, and one for odd
rounds. The shift amount for plane j, 0 ≤ j ≤ 3 is given by the jth entry of a shift vector lying in
Z4
d. For round Ri, 1 ≤ i ≤ T , the shift vector is denoted π1 when i is odd, and π2 when i is even.

Both vectors are given in Table 2. Thus, ShiftPlanes applied to a state T = (t)x,y,z in round i
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will result in a state T ′ = (t′)x,y,z where

t′x,y,z =

{
tx,y,(z−π1(x) mod d) , i odd

tx,y,(z−π2(x) mod d) , i even
∀x, y ∈ {0, . . . , 3}.

Table 2: Shift vectors π1 and π2 for the ShiftPlanes operation for d = 16 and d = 32

d π1 π2

16 (0, 2, 4, 6) (0, 1, 8, 9)
32 (0, 4, 12, 26) (1, 24, 26, 31)

2.1.4 AddConstant

The AddConstant transformation in round i (starting from zero) updates the state A = A + Ci
with Ci being the round constants. Let c1 = 0x75817b9d and c2 = 0xb2c5fef0. With j being
the number of the lane, then the round constants are Ci = c1 <<< i <<< j) for even j and
Ci = c2 <<< i <<< j) for odd j

2.1.5 Prøst-128 and Prøst-256 permutations

We specify two permutations to be used, one of size 256 bits with a security level of 128 bits, and
one of size 512 bits with a security level of 256 bits, i.e. Prøst-n is a 2n-bit permutation with n
bits of security.

For Prøst-256, we have d = 32, and the number of rounds is T = 18. For Prøst-128, we have
d = 16, and the number of rounds is T = 16, and constants c1 and c2 are truncated to their first
16 most significant bits.

2.2 Absence of trap-doors

We faithfully declare that we have not inserted any hidden weaknesses in the Prøst permutation.

2.3 Prøst-AE: Authenticated Encryption with Prøst

Authenticated encryption (AE) with associated data (AD) is a symmetric-key cryptographic prim-
itive which combines encryption and authentication in a single algorithm, with focus on both
aspects from the design phase. This is contrary to the earlier paradigm of obtaining secrecy and
authentication by applying some combination of encryption scheme with a MAC.

AE schemes are most commonly based on block ciphers as the underlying primitive. Examples
of such include OCB[1-3] [15, 14, 11], GCM [12], CCM [19], AEGIS [20], COPA [3], COBRA [4],
FIDES [7], OTR [13], the McOE family [9] and POET [1].

With the advent of permutation-based designs, notably in the Sponge constructions, the use
of permutations as the underlying primitive in AE schemes is becoming increasingly frequent. So
far, permutation-based AE schemes include SpongeWrap [6], APE [2] and PPAE [10].

In this section we describe our proposals for the CAESAR competition, which are all specific
instantiations of AEAD schemes using our Prøst permutation as the underlying primitive. Each
of the instantiations are based on existing AE schemes. The proposals are summarized in Table 3.
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For the description of our proposals in the following sections, we use Prøst-n to refer to the
Prøst permutation with n-bit security level and internal state of 2n bits. Table 3 lists the specific
instantiations, while the specifications in the following sections use general n for their descriptions.

Table 3: Our proposals, underlying Prøst permutation and their rankings. Other columns indicate
onlineness (in encryption and decryption), parallelizability (P), nonce misuse-resistance (NMR),
easy constant-time implementation (CT) and cheap power analysis countermeasures (CM).

Online

Rank Proposal Permutation Enc Dec P NMR CT CM

1 Prøst-COPA-128 Prøst-128 X X X X X X
2 Prøst-COPA-256 Prøst-256 X X X X X X
3 Prøst-OTR-128 Prøst-128 X X X X X
4 Prøst-OTR-256 Prøst-256 X X X X X
5 Prøst-APE-256[128, 128] Prøst-256 X X X X
6 Prøst-APE-128[64, 64] Prøst-128 X X X X

Notation
Throughout our description of the proposals, we use Pn as a shorthand for the Prøst-n permu-
tation, i.e. Prøst with n-bit security level and internal state size of 2n bits.

An asterisk in superscript denotes the Kleene star, for e.g. F∗2 denotes binary strings of any
length, including the empty set. A plus in superscript denotes “at least one”, so e.g. (F2n

2 )+ are
the binary strings which have length at least 2n. We use msb`(x) to denote the ` most significant
bits of x. By X10∗ we denote a binary string X which is padded with a 1 followed by a number
of zeroes, such that the length becomes a multiple of 2n.

When we write multiplications, we refer to the operation in a finite field GF (22n) defined
modulo an irreducible polynomial f(x) over GF (2) of degree 2n. Constants occurring are also in
this field, so e.g. 7 is the polynomial x2 + x+ 1.

We use the ⊥ symbol to denote the output of the decryption algorithm when tag verification
fails.

Block cipher-based AE to Permutation-based AE
It is a well-known result that any block cipher based AE scheme can be turned into a permutation-
based scheme by plugging a singke-key Even-Mansour construction into the place of the block
cipher [8].

For the purpose of using Prøst-n in block cipher-based AE schemes, we define the single-key
Even-Mansour block cipher, which takes a single 2n-bit key K, as P̃n,K : F2n

2 ×F2n
2 → F2n

2 , defined

as P̃n,K(x)
def
= K ⊕ Pn(x⊕K).

With Prøst, we have designed a permutation which has a simple design, is efficient, has strong
security bounds and is inherently timing-attack protected. With this, we next define specific
instantiations of authenticated encryption schemes based on Prøst, both when the underlying
scheme is block cipher or permutation based, either by using it directly or through P̃n,K .

2.3.1 Prøst-COPA-n

COPA is a design by Andreeva et al. from Asiacrypt 2013 [3]. In this part, we give our specification
of Prøst-COPA-n; the instantiation of the COPA AE scheme using P̃n,K as the underlying block
cipher.
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The resulting proposal Prøst-COPA-n enjoys the security proofs of COPA, and in particular,
COPA is resistant to nonce-misuse, leaking only the length of the common message prefix (which
is optimal for single-pass schemes) [3].

Figure 2: Encryption of m message blocks with Prøst-COPA-n

M[1]

203L

P̃n,K

V

L
P̃n,K

21L

C[1]

M[2]

213L

P̃n,K

P̃n,K

22L

C[2]

· · ·

M[m]

2m−13L

P̃n,K

P̃n,K

2mL

C[m]

Prøst-COPA-n is a fully parallelizable, online AE scheme, and uses the cheaper doubling as
opposed to general multiplication in GF (22n) for the tweak values. The schemes uses two calls to
Prøst-n and two doublings in GF (22n) per 2n-bit block of message.

The encryption of m message blocks of 2n bits each is depicted in Figure 2. The complete
description of encryption with authentication, decryption with verification and processing of asso-
ciated data for Prøst-COPA-n is given by Algorithms 1 through 3. The tag length for Prøst-
COPA-n equals the message block length of 2n.

Algorithm 1: Prøst-COPA-n-E(A,M)

Data: A ∈ F∗2,M ∈ (F2n
2 )+

1 L← P̃n,K(0)
2 V [0]← Prøst-COPA-n-ProcessAD(A,L)
3 ∆0 ← 3L
4 ∆1 ← 2L
5 Σ← 0
6 for i = 1, . . . ,m do

7 V [i]← P̃n,K(M [i]⊕∆0)⊕ V [i− 1]

8 C[i]← P̃n,K(V [i])⊕∆1

9 ∆0 ← 2∆0

10 ∆1 ← 2∆1

11 Σ← Σ⊕M [i]

12 end

13 T ← P̃n,K(P̃n,K(Σ⊕ 2m−132L)⊕ V [m])⊕ 2m−17L
14 return (C, T )
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Algorithm 2: Prøst-COPA-n-D(A,C, T )

Data: A ∈ F∗2, C ∈ (F2n
2 )+, T ∈ F2n

2

1 L← P̃n,K(0)
2 V [0]← Prøst-COPA-n-ProcessAD(A,L)
3 ∆0 ← 3L
4 ∆1 ← 2L
5 Σ← 0
6 for i = 1, . . . ,m do

7 V [i]← P̃−1n,K(C[i]⊕∆1)

8 M [i]← P̃−1n,K(V [i]⊕ V [i− 1])⊕∆0

9 ∆0 ← 2∆0

10 ∆1 ← 2∆1

11 Σ← Σ⊕M [i]

12 end

13 T̂ ← P̃n,K(Σ⊕ 2m−132L)

14 if T̂ = P̃−1n,K(T ⊕ 2m−17L) then

15 return M
16 end
17 else
18 return ⊥
19 end

Algorithm 3: Prøst-COPA-n-ProcessAD(A,L)

Data: A ∈ F∗2, L ∈ F2n
2

1 ∆← 33L
2 V ← 0
3 for i = 1, . . . , a− 1 do

4 V ← V ⊕ P̃n,K(A[i]⊕∆)
5 ∆← 2∆

6 end
7 if |A| ≡ 0 mod 2n then

8 V ← P̃n,K(V ⊕A[a]⊕ 3∆)
9 end

10 else

11 V ← P̃n,K(V ⊕A[a]10∗ ⊕ 32∆)
12 end
13 return V
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2.3.2 Prøst-OTR-n

OTR is an AE scheme designed by Minematsu [13]. Here, we specify Prøst-OTR-n, which is the
instantiation of OTR using P̃n,K as the underlying block cipher.

OTR uses 2-round Feistel ciphers to encrypt two consecutive message blocks. It uses one call
to Prøst-n and half a doubling in GF (22n) per 2n-bit block of message.

Figure 3: Encryption of m message blocks with Prøst-OTR-n, when m is even

M[1] M[2]

P̃n,K

P̃n,K

C[1] C[2]

20L′

20L′

L

M[3] M[4]

P̃n,K

P̃n,K

C[3] C[4]

21L′

21L′

L

M[m − 1] M[m]

P̃n,K

P̃n,K

C[m − 1] C[m]

2`−1L′

2`−1L′

L

· · ·

Prøst-OTR-n inherits the features of OTR. In particular, it is nonce-based, but not nonce-
misuse resistant. This means that security is lost if nonces are re-used. Comparing to schemes
which offer nonce-misuse resistance, the gain is performance. The proposal is online and completely
parallelizable. It does not require the inverse of the underlying primitive, due to the employment
of the Feistel cipher structure.

The encryption of m message blocks, for even m, with Prøst-OTR-n is depicted in Figure 3.
In the figure, ` = m/2. The complete description of encryption with authentication, decryption
with verification and processing of associated data for Prøst-OTR-n is given by Algorithms 4
through 5. The tag length for Prøst-OTR-n is denoted τ .

Algorithm 4: Prøst-OTR-n-E(N,A,M)

Data: N ∈ F2n
2 , A ∈ F∗2,M ∈ (F2n

2 )+

1 (C, T )← Prøst-OTR-n-Enc(N,M)
2 if |A| = 0 then
3 TA← 0
4 end
5 else
6 TA← Prøst-OTR-n-ProcessAD(A)
7 end
8 T ← msbτ (T ⊕ TA)
9 return (C, T )
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Algorithm 5: Prøst-OTR-n-ProcessAD(A)

Data: A ∈ F∗2
1 Λ← 0

2 Q← P̃n,K(0)
3 Q′ ← 4Q
4 A[1]A[2] · · ·A[a]← A
5 for i = 1, . . . , a− 1 do

6 Λ← Λ⊕ P̃n,K(Q′ ⊕A[i])
7 Q′ ← 2Q′

8 end
9 Λ← Λ⊕A[a]10∗

10 if |A[a]| 6= 2n then

11 TA← P̃n,K(Q′ ⊕Q⊕ Λ)
12 end
13 else

14 TA← P̃n,K(Q′ ⊕ 2Q⊕ Λ)
15 end
16 return TA

Algorithm 6: Prøst-OTR-n-D(N,C,A, T )

Data: N ∈ F2n
2 , C ∈ (F2n

2 )+, A ∈ F∗2, T ∈ Fτ2
1 (M,T )← Prøst-OTR-n-Dec(N,C)
2 if |A| = 0 then
3 TA← 0
4 end
5 else
6 TA← Prøst-OTR-n-ProcessAD(A)
7 end

8 T̂ ← msbτ (T ⊕ TA)

9 if T̂ = T then
10 return M
11 end
12 else
13 return ⊥
14 end
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Algorithm 7: Prøst-OTR-n-Enc(N,M)

Data: N ∈ F2n
2 ,M ∈ (F2n

2 )+

1 Σ← 0

2 L← P̃n,K(N10∗)
3 L′ ← 4L
4 M [1]M [2] · · ·M [m]←M
5 for i = 1, . . . , bm/2c − 1 do

6 C[2i− 1]← P̃n,K(L′ ⊕M [2i− 1])⊕M [2i]

7 C[2i]← P̃n,K(L′ ⊕ L⊕ C[2i− 1])⊕M [2i− 1]
8 Σ← Σ⊕M [2i]
9 L′ ← 2L′

10 end
11 if m ≡ 0 mod 2 then

12 Z ← P̃n,K(L′ ⊕M [m− 1])
13 C[m]← msb|M [m]|(Z)⊕M [m]

14 C[m− 1]← P̃n,K(L′ ⊕K ⊕ C[m]10∗)⊕M [m− 1]
15 Σ← Σ⊕ Z ⊕ C[m]10∗ Llast ← L′ ⊕ L
16 end
17 if m ≡ 1 mod 2 then

18 C[m]← msb|M [m]|(P̃n,K(L′))⊕M [m]
19 Σ← Σ⊕M [m]10∗

20 Llast ← L′

21 end
22 if |M [m]| 6= 2n then

23 T ← P̃n,K(3Llast ⊕ Σ)
24 end
25 else

26 T ← P̃n,K(3Llast ⊕ L⊕ Σ)
27 end
28 C ← C[1]C[2] · · ·C[m]
29 return (C, T )
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Algorithm 8: Prøst-OTR-n-Dec(N,C)

Data: N ∈ F2n
2 , C ∈ (F2n

2 )+

1 Σ← 0

2 L← P̃n,K(N10∗)
3 L′ ← 4L
4 C[1]C[2] · · ·C[m]← C
5 for i = 1, . . . , bm/2c − 1 do

6 M [2i− 1]← P̃n,K(L′ ⊕ L⊕ C[2i− 1])⊕ C[2i]

7 M [2i]← P̃n,K(L′ ⊕ C[2i− 1])⊕ C[2i− 1]
8 Σ← Σ⊕M [2i]
9 L′ ← 2L′

10 end
11 if m ≡ 0 mod 2 then

12 M [m− 1]← P̃n,K(L′ ⊕ L⊕ C[m]10∗)⊕ C[m− 1]

13 Z ← P̃n,K(L′ ⊕M [m− 1])
14 M [m]← msb|C[m]|(Z)⊕ C[m]
15 Σ← Σ⊕ Z ⊕ C[m]10∗ Llast ← L′

16 end
17 if m ≡ 1 mod 2 then

18 M [m]← msb|C[m]|(P̃n,K(L′))⊕ C[m]
19 Σ← Σ⊕M [m]10∗

20 Llast ← L′

21 end
22 if |C[m]| 6= 2n then

23 T ← P̃n,K(3Llast ⊕ Σ)
24 end
25 else

26 T ← P̃n,K(3Llast ⊕ L⊕ Σ)
27 end
28 M ←M [1]M [2] · · ·M [m]
29 return (M,T )
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2.3.3 Prøst-APE-n[r, c]

APE is a permutation-based AE scheme by Andreeva et al. from FSE 2014 [2]. It does not require a
block cipher, but rather a permutation as the underlying primitive. Here, we give the specification
of our instantiation of APE using Prøst-n as the underlying permutation.

IVr

IVc

r

c

Pn

M[1]

C[1]

1 Pn

M[2]

C[2]

Pn

M[w − 1]

C[w − 1]

Pn

M[m]

C[m]

· · ·

· · ·

K

T

Figure 4: Encrypting and authenticating m message blocks of r bits each using Prøst-APE-n[r, c]

Prøst-APE-n[r, c] is online in encryption, i.e. one does not need to know all message blocks,
and in particular the number of message blocks, before one can start encrypting. Indeed, the
ciphertext block C[i] depends only on message blocks M [1], . . . ,M [i]. For decryption, however,
one starts decrypting the last ciphertext block first, and hence decryption is not online. The fact
that one decrypts in reverse implies the need for the inverse the underlying permutation as well.

Prøst-APE-n[r, c] has two important parameters: the rate denoted r and the capacity denoted
c. As the underlying permutation Prøst-n has a state size of 2n bits, we have that r + c = 2n.
It uses a single c-bit key K ∈ Fc2. The scheme encrypts r-bit message blocks to r-bit ciphertext
blocks. In our specification, subscript r or c denotes the rate, respectively capacity part of the
(r + c)-bit operand. Figure 4 illustrates the encryption and tag generation for m message blocks
of r bits each. When there is no associated data, i.e. |A| = 0, the IV is set to IV = (IVr‖IVc) =
(0r‖K), and otherwise the IV is generated by the associated data processing algorithm 13. The
complete description of encryption with authentication, decryption with verification and processing
of associated data for Prøst-APE-n[r, c] is given by Algorithms 9 through 13.

APE achieves privacy and integrity up to the bound 2c/2, both in the ideal permutation model
and the standard model. In other words, the choice of rate and capacity influence performance and
security, in the sense that increasing capacity and decreasing rate will increase security and decrease
performance, and vice versa. We refer to Table 3 for the specific parameters of our proposals.

APE is the first permutation-based AE scheme to obtain nonce-misuse resistance. In particular,
when nonces are repeated, it leaks only the XOR of the common prefix of the message.

Algorithm 9: Prøst-APE-n-E(A,M)

Data: K ∈ Fc
2, A ∈ (Fr

2)
∗,M ∈ (Fr

2)
+

Result: C ∈ (Fr
2)

+, T ∈ Fc
2

1 if A = ∅ then
2 IV ← (0r‖K) ∈ Fr+c

2

3 end
4 else
5 IV ← Prøst-APE-n-ProcessAD((0r‖K), A)
6 end

7 (C, V̂c)← Prøst-n-APE-Enc(IV,M)

8 T ← V̂c ⊕K
9 return (C, T )
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Algorithm 10: Prøst-APE-n-D(A,C, T )

Data: K ∈ Fc
2, A ∈ (Fr

2)
∗, C ∈ (Fr

2)
+, T ∈ Fc

2

Result: M ∈ (Fr
2)

+ or ⊥
1 if A = ∅ then
2 IV ← (0r‖K) ∈ Fr+c

2

3 end
4 else
5 IV ← Prøst-APE-n-ProcessAD((0r‖K), A)
6 end
7 (M,Vc)← Prøst-APE-n-Dec(T ⊕K,C)
8 if IVc = Vc then
9 return M

10 end
11 else
12 return ⊥
13 end

Algorithm 11: Prøst-APE-n-Enc(IV,M)

Data: IV ∈ Fr+c
2 ,M ∈ (Fr

2)
+

Result: C ∈ (Fr
2)

+, V̂c ∈ Fc
2

1 V ← IV ⊕ (0r‖1)
2 M [1]M [2] · · ·M [m]←M
3 for i = 1, . . . ,m do

4 V̂ ← Pn((M [i]⊕ Vr)‖Vc)

5 C[i]← V̂r

6 V ← V̂

7 end

8 return (C[1]C[2] · · ·C[m], V̂c)

Algorithm 12: Prøst-APE-n-Dec(V̂c, C)

Data: IVr ∈ Fr
2, Cin(Fr

2)
+, V̂c ∈ Fc

2

Result: M ∈ (Fr
2)

+, Vc ∈ Fc
2

1 C[1]C[2] · · ·C[m]← C
2 C[0]← IVr

3 for i = m, . . . , 1 do

4 V ← P−1
n (C[i]‖V̂c)

5 M [i]← C[i− 1]⊕ Vr

6 V̂c ← Vc

7 end
8 return (M [1]M [2] · · ·M [m], Vc ⊕ 1)
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Algorithm 13: Prøst-APE-n-ProcessAD(V,A)

Data: V ∈ Fr+c
2 , A ∈ (Fr

2)
+

Result: V̂ ∈ Fr+c
2

1 A[1]A[2] · · ·A[u]← A
2 for i = 1, . . . , u do

3 V̂ ← Pn((A[i]⊕ Vr)‖Vc)

4 V ← V̂

5 end

6 return V̂
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3 Security Goals

Table 4: Ranks and security claims for our proposals for plaintext confidentiality (PTCONF),
plaintext integrity (PTINT) and associated data integrity (ADINT)

Rank Proposal PTCONF PTINT ADINT

1 Prøst-COPA-128 64 64 64
2 Prøst-COPA-256 128 128 128
3 Prøst-OTR-128 64 64 64
4 Prøst-OTR-256 128 128 128
5 Prøst-APE-256[128, 128] 128 128 128
6 Prøst-APE-128[64, 64] 64 64 64

Remarks regarding additional security

The COPA and APE proposals offer a level of resistance against nonce-misuse. For the details of
the nonce-misuse resistance of APE and COPA parameter sets, we refer to their respective mode
papers[2, 3]. Additionally, all proposals have the following additional security goals:

• Any straight-forward implementation will run in constant time.

• Due to the choice of a lightweight 4-bit Sbox as the only non-linear element, countermeasures
against power/EM side-channel attacks are much cheaper.

4 Design Rationale

The main design rational for the Prøst permutation was efficiency and strong, easily verifiable,
security arguments.

Strong arguments are possible as we follow the wide-trail strategy. Here we modified the
usual AES-like structure by interleaving two different shift-rows like operation. This results in
significantly improved bounds on the best linear and differential characteristics.

Efficieny is a result of mainly two efforts. First we optimized every single component with respect
to implementation cost and second the strong arguments mentioned above allowed us to keep the
number of rounds rather small.

Below, we describe the design rational behind the separate components within the Prøst
permutation.

4.1 SubRow

For the SubRow operation, we use a very simple (in terms of hardware/software-efficiency – the
formulation is given in Appendix B), 10-instruction, 4-bit S : F4

2 → F4
2 S-box. The concrete S-box

was the result of a hardware assisted search though a significant subset of all possible S-boxes.
Besides being very efficient in terms of cycle count, this S-box is also optimal with respect to linear
and differential attacks.

We chose S among all S-boxes fulfilling the following criteria.
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1. S is an involution, which prevents the encryption/decryption overhead.

2. The maximal probability of a differential is 1/4.

3. There are exactly 24 differentials with probability 1/4.

4. The maximal absolute bias of a linear approximation is 1/4.

5. There are exactly 36 linear approximations with absolute bias 1/4.

6. Output bits have algebraic degrees of 2,2,3, and 3, respectively.

Having only one single S-box within one plane allows to implement the S-box application using
bit-slicing. On top, keeping the S-boxes identical for all planes and all rounds reduced the code
space and avoids additional overhead. The increased danger of symmetries throughout the cipher
is countered by relatively heavy round constants.

4.2 MixSlices

We had three major requirements for the MixSlices operation.

• Linear and differential branch number 5

• Low density

• As a heuristic to minimize implementation characteristics for both encryption and decryption,
MixSlices is its own inverse

We elaborate on the first two requirements below.

High Branch Number The main design goal of the MixSlices transformation is to follow
the wide trail strategy. Hence, the MixSlices transformation is related to an F2-linear error-
correcting code over F4

2 with minimum distance 5. Note that in our setting linear and differential
branch number are identical.

In other words, a difference in k > 0 rows of a slice will result in a difference of at least 5 − k
rows after one MixSlices application. While this is a good bound for 2 rounds, only the interaction
with the ShiftPlanes operation guarantees a secure overall design.

Low density The density roughly corresponds to the number of XOR operations that have to
be preformed when implementing the matrix. It is therefore a suitable metric when optimizing
performance – both in software and harware.

We searched among all 16× 16 binary matrices with are involutions and have branch number
5 for ones with a particular small number of ones. The optimal solution, i.e. the lowest density
of such a matrix, we where able to find with our hardware assisted search had 88 ones. Note that
we cannot guarantee that our matrix is actually optimal (as the minimal number of ones in such
a matrix is unknown).
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4.3 ShiftPlanes

We had two design criteria for this transformation. Firstly, we needed shift values which result in
“optimal diffusion”.

The (π1, π2) pairs for Prøst (see Table 2) were found to be optimal in the sense that they give
the best diffusion, number of active S-boxes (see also Sections 5.1 and 5.2) and implementation
cost, for the specified register lengths d.

For register length d = 16 we obtain full diffusion after 2 rounds and for d = 32 after 3 rounds.
For lower bounds on the number of active S-boxes over various number of rounds, we refer to
Section 5.2.

With respect to implementation cost, we have optimized to have as many multiples of 8 as
possible, as these are free on 8-bit platforms and cheap on larger platforms. For the constants that
are not multiples of 8, we minimize their sum, as the implementation cost is proportional to the
constant. This sum is 22 for the d = 16 case and 88 for the d = 32 case, which roughly translates
to the implementation cost in cycles.

4.4 AddConstants

The purpose of adding round constants is to make each round different. If the rounds are all
the same, then fixed points x such that R(x) = x for the round function R extend to the entire
permutation. For example, if P = R10, then fixed points for R2 and R5 would also extend to P .
Therefore, one can expect several fixed points for P , whereas for an ideal permutation only a single
fixed point is expected. By choosing round-dependent constants for AddConstant, we expect the
number of fixed points to be close to 1.

We use two 32-bit constants c1 and c2 from which all round constants are derived through
rotations. Round i uses c1 ≫ i and c2 ≫ i. The two constants c1 = 0x75817b9d and c2 =
0xb2c5fef0 are generated from the first 64 digits after the decimal point of π as illustrated by the
following C code:

#include <stdint.h>

#include <stdio.h>

#define ROR32(X,N) ((X>>N) | (X<<(32-N)))

const uint32_t pi[64] = {1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,

3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,

2,8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,

1,0,5,8,2,0,9,7,4,9,4,4,5,9,2,3};

int main(void)

{

uint32_t c1=0;

uint32_t c2=0;

int i;

for(i=0;i<32;i++)

{

c1 |= (pi[i]&1) << i;

c2 |= (pi[i+32]&1) << i;

}

printf("c1 = 0x%08x\n", c1);

printf("c2 = 0x%08x\n", c2);

return 0;

}
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5 Security Analysis

In here, we summarize some of our findings in the security analysis. A more extensive treatment
will be available from[18].

5.1 Diffusion and Strict Avalanche Criterion

The well-known concept of diffusion was first defined by Shannon in his 1949 seminal work [17]. In
its original meaning, the goal of diffusion is to lessen the short-term statistical properties from the
plaintext in the resulting ciphertext, such than an attacker would need to obtain a lot of ciphertext
to infer knowledge of the statistical properties of the plaintext. The modern definition of diffusion
slightly different, and we take diffusion to mean the extent to which output bits depend on input
bits. We say we have full diffusion when each bit of the output depends on each bit of the input.

A condition somewhat parallel to diffusion is the Strict Avalanche Criterion (SAC). A cipher
or permutation is said to satisfy the SAC when flipping any bit of the input results in flipping
each bit of the output with probability 1/2 (for a block cipher, one averages over all keys). In this
section we present our findings on diffusion and the SAC for the Prøst permutation.

Lastly, we consider the avalanche effect, which is the property that on average, half the bits of
the output are flipped when a single input bit is flipped.

5.1.1 Diffusion

For our analysis, we assume that for the 4-bit S-box used, each of the 4 output bits depend on each
of the 4 input bits. Also, we assume that the MixSlices operation mixes the bits in a column, so
each of the h output bits depend on each of the input bits.

After applying SubRows of the first round, all bits within a row are interdependent by assump-
tion. Applying MixSlices of the first round implies that we get bit interdependency between all
bits in the same slice. The ShiftPlanes operation cyclically shifts the planes by a round-dependent
amount, essentially mixing the slices.

As SubRows and MixSlices take care of mixing bits in slices in each round, the question
becomes how many rounds are required to make the plane shifting of ShiftPlanes create bit-
interdependency between all planes.

When determining the choice of (π1, π2) vectors, we conducted an experiment trying out all
combinations of π1, π2 ⊂ {0, . . . , d − 1} with 4 elements, and investigate the required number
of rounds to obtain full diffusion. For d = 16 we found that the best pairs (π1, π2) require a
minimum of 2 rounds for full diffusion, and there are 4096 such pairs. For d = 32 a minimum of 3
rounds are required for full diffusion, and there are 729088 pairs (π1, π2) obtaining this minimum.
Unfortunately, there is no pair (π1, π2) which obtains the best diffusion for both d = 16 and d = 32,
hence the two parameter sets in Table 2.

5.1.2 SAC and Avalanche Effect

For the purpose of investigating the SAC and avalanche effect, we conduct randomized experiments
to measure the degree to which these two properties are obtained. For the 2n-bit permutation
Prøst-n, the statements of the avalanche effect and SAC are given by Equations (2) and (3),
respectively, where ei denotes 2n-bit string with a 1 on position i and zeroes elsewhere, and

17



subscript j denotes the jth bit.

∀i ∈ {1, . . . , 2n}

2−2n
∑
x∈F2n

2

wt (Prøst-n(x)⊕Prøst-n(x⊕ ei)) = n

 (2)

∀i ∈ {1, . . . , 2n}
(
∀j ∈ {1, . . . , 2n}

(
Pr[Prøst-n(x)j 6= Prøst-n(x⊕ ei)j ] =

1

2

))
(3)

To experimentally measure the extent to which Prøst meets these two criteria, we sample a
random X ⊂ F2n

2 and define the degree of avalanche effect degava and degree of SAC degSAC as
defined by Serf in his investigation of the AES finalists [16]. Our results show that we obtain SAC
and avalanche effect degrees of 1.0 (which is ideal) after 2-3 rounds for d = 16 and 3-4 rounds for
d = 32.

5.2 Bounds on Active S-boxes

Here we give lower bounds on the number of active S-boxes for various Prøst parameters. These
bounds are of paramount importance as, combined with the differential- and linear properties of
the S-box, provide upper bounds on the differential- and linear trail probabilities for the full Prøst
permutation.

To lower bound the number of active S-boxes for d = 16 and d = 32, we model the propagation
of active S-boxes over a particular number of rounds as an integer programming problem. A part
of choosing from the (π1, π2) shift vectors giving optimal diffusion, for d = 16 and d = 32, has
been to solve this program for randomly chosen subsets of (π1, π2) and choosing thos giving the
best bounds.

The findings for the number of active S-boxes for the (π1, π2) from Table 2, for various number
of rounds, are given in Table 5. The integer programming problem is modeled in Appendix A.

Table 5: Lower bounds on the number of active S-boxes for d ∈ {16, 32} for various number of
rounds. In the d = 32, T = 8 case, the number in parenthesis was the best obtained when the
solver stopped due to memory limitations.

Rounds T

d 4 5 6 7 8

16 25 41 85 96 105
32 25 41 105 169 (210)

6 Features

All the proposed parameter sets have the following features of the permutation in common.

• Designed for straight-forward bit-sliced implementations.

• Even the most straight-forward implementation of the permutation leads to constant execu-
tion times.

• Due to the choice of a lightweight 4-bit Sbox as the only non-linear element, countermeasures
against power/EM side-channel attacks are much cheaper than ARX or AES-based designs.

• Fast and compact in software on a wide range of platforms.
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• Fast, compact, energy-efficient, and allows for low-latency implementations in hardware im-
plementations.

We will back up these claim in upcoming supplementary documents on implementation aspects of
Prøst.
All the proposed modes have the following features in common:

• They are based on a large cryptographically secure permutation. This is arguable one of
the simplest, if not the simplest way to build primitives for symmetric key cryptography,
including authenticated encryption primitives. In particular, this avoids complicated and
often very inelegant considerations related to key schedules for traditional block cipher based
constructions.

• They are based on a single permutation. Having a single permutation further avoids consid-
erations related to the independence of permutations.

All of the above described features are advantages over AES and AES-GCM. In addition, we’d like
to point out the following features which is shared with AES-GCM, but other proposals are often
lacking:

• Simple and clean design.

• Strong bounds against large classes of cryptanalytic attacks, like linear and differential crypt-
analysis which are among the most powerful attack vectors known. This has two advantages.
Firstly it gives assurance that these attack vectors in their basic form do not lead to attacks
on the proposal. On top of that we chose a number of rounds that gives a large security
margin. Secondly, it safes valuable cryptanalysis time. Finding and improving upon known
statistical properties for linear and differential attacks is a very time consuming task for
cryptanalysts. Knowledge of bounds saves a lot of this time, which can instead be spent on
other attack vectors or more advanced attacks. Most of our bounds are tight, i.e. we are able
to give matching characteristics/trails[18]. This will be of independent interest for external
cryptanalysts.

Now we discuss more specific features of the parameter sets. We start with Prøst-COPA, our main
proposal, that comes with two security levels. On top of the advantages mentioned above, it offers
a level of nonce-misuse resistance. We feel this is an important property as in many environments
this seemingly simple task of keeping track of nonces and making sure they are unique, e.g. by
implementing a counter, can actually be very difficult. Resets in virtualized environments, or very
resource constrained environments, are examples of such situations.

For environments where respecting the requirements for unique nonces is easy to achieve, we
propose Prøst-OTR, again with two security levels. This comes with improved implementation
characteristics.

Both classes of parameter sets allow for parallelization, which, together with the bit-sliced
nature of our permutation, allows for very efficient implementations on modern SIMD architectures.

As a complementary set of parameters, we propose Prøst-APE. It’s advantages are the possi-
bility of a very fine-grained adjustment of the security against generic attack, by allowing different
performance/security trade-offs. To focus cryptanalyst attention, we limit ourselves to the two
mean security levels though. Also, in contrast to the Prøst-COPA and Prøst-OTR proposals,
for Prøst-APE we do not need twice the key length for the claimed security level.

For the details of the nonce-misuse resistance of APE and COPA parameter sets, we refer to
their respective mode papers[2, 3].
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7 Intellectual Property

The design team behind the Prøst submission for the CAESAR competition are not aware of
any known patents, patent applications, planned patent applications or other intellectual-property
constraints pertaining to the use of the cipher. If any of this information changes, the submit-
ter/submitters will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

8 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee
regarding the selection or non-selection of this submission as a second-round candidate, a third-
round candidate, a finalist, a member of the final portfolio, or any other designation provided by
the committee. The submitter/submitters understand that the committee will not comment on the
algorithms, except that for each selected algorithm the committee will simply cite the previously
published analyses that led to the selection of the algorithm. The submitter/submitters understand
that the selection of some algorithms is not a negative comment regarding other algorithms, and
that an excellent algorithm might fail to be selected simply because not enough analysis was
available at the time of the committee decision. The submitter/submitters acknowledge that the
committee decisions reflect the collective expert judgments of the committee members and are
not subject to appeal. The submitter/submitters understand that if they disagree with published
analyses then they are expected to promptly and publicly respond to those analyses, not to wait
for subsequent committee decisions. The submitter/submitters understand that this statement is
required as a condition of consideration of this submission by the CAESAR selection committee.
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A Bounds on Active S-boxes

To determine lower bounds on the number of active S-boxes for a given number of rounds R, we
employ the modeling of the permutation and its propagation of active S-boxes as a mixed integer
programming problem. Consider the n-bit state as viewed from the (y, z)-plane, which yields a
two-dimensional structure of h rows and d columns (we use here the more general size of h rows
in each slice). We now let xti,j be a binary variable with 0 ≤ i < h, 0 ≤ j < d and 0 ≤ t ≤ 2R.
We let xti,j = 1 if and only if row i in sheet j is active when going operation t, starting from index

0, of the chain (ShiftPlanes ◦ MixSlices)R. For example x0 is the input to the first MixSlices

operation, x1 is the input to the first ShiftPlanes which uses π1, etc.
We can now model the propagation of active S-boxes as the propagation of ones in x over time

t. First, to require at least one active S-box in the input, we use the constraint given by (4):

h−1∑
i=0

d−1∑
j=0

x1i,j > 0. (4)

For every 4th value of t, we apply ShiftPlanes with π1 starting from t = 1, and similarly for
ShiftPlanes using π2 starting with t = 3. To model the behaviour of these operations we use the
following constraints:

∀t ∈ {1, 5, . . . , 2R− 3}, i ∈ {0, . . . , h− 1}, j ∈ {0, . . . , d− 1} : xti,j = xt+1
i,(j+π1[i] mod d) (5)

∀t ∈ {3, 7, . . . , 2R− 1}, i ∈ {0, . . . , h− 1}, j ∈ {0, . . . , d− 1} : xti,j = xt+1
i,(j+π2(i) mod d) (6)

The constraint (5) models the behaviour of ShiftPlanes with π1 and constraint (6) models the
behaviour of ShiftPlanes with π2.

For every other value of t, starting with t = 0, xt is input to the MixSlices operation. Here,
we want to model that

∀t ∈ {0, 2, . . . , 2R− 2}, j ∈ {0, . . . , d− 1} :

h−1∑
i=0

xti,j +

h−1∑
i=0

xt+1
i,j ≥

{
B ,

∑h−1
i=0 x

t
i,j > 0

0 ,
∑h−1
i=0 x

t
i,j = 0

,

where B is the branch number. To model the two cases (either or), we introduce a binary variable

atj which is 1 if and only if
∑h−1
i=0 x

t
i,j > 0. Using this, we model the operation of MixSlices by

constraints (7) through (10):

∀t ∈ {0, 2, . . . , 2R− 2}, j ∈ {0, . . . , d− 1} :

h−1∑
i=0

xti,j +

h−1∑
i=0

xt+1
i,j ≤ 2h · atj (7)

∀t ∈ {0, 2, . . . , 2R− 2}, j ∈ {0, . . . , d− 1} :

h−1∑
i=0

xti,j +

h−1∑
i=0

xt+1
i,j ≥ B · a

t
j (8)

∀t ∈ {0, 2, . . . , 2R− 2}, j ∈ {0, . . . , d− 1} :
h−1∑
i=0

xti,j ≤ h · atj (9)

∀t ∈ {0, 2, . . . , 2R− 2}, j ∈ {0, . . . , d− 1} :

h−1∑
i=0

xti,j ≥ atj . (10)

Finally, we introduce the variable z which we want to minimise:

z =
∑

t∈{0,2,...,2R−2}

h−1∑
i=0

d−1∑
j=0

xti,j . (11)
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B S-box Formulation
p = a;

q = b;

a = c⊕ (p&q);

b = d⊕ (q&c);

c = p⊕ (a&b);

d = q ⊕ (b&c);
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