
Silver v.1

Designers: Daniel Penazzi and Miguel Montes
Submitters: Daniel Penazzi and Miguel Montes

danielpenazzi@gmail.com

March 15, 2014

Abstract

We present here Silver , an authenticated encryption with associated data.
Silver uses only AES and modular arithmetic operations (with 264 as mod-
ule) as primitives, is parallelizable, online, fast and has proofs of security for
both privacy and authenticity. It requires the use of a nonce, but if a nonce
is repeated and a forgery is created, this does not affect the ability to forge
under other nonces. The nonce does not need to be random, just not repeat-
ing. Additional overhead over ECB is small and the length of the ciphertext
(excluding the authentication tag) is the same as the length of the plaintext.

Contents

1 Specification 3
1.1 Parameters . 3
1.2 Recommended Parameters Sets 3
1.3 Authenticated Encryption . 3
1.4 Notation . 4
1.5 Treatment of the Public Message Number 4
1.6 MAES (modified AES) . 4

1.6.1 Specification of pks . 5
1.7 Encryption of the plaintext . 5
1.8 Authenticity . 6

1.8.1 Treatment of the Plaintext/Ciphertext 6
1.8.2 Treatment of the Associated Data 6
1.8.3 Computation of the tag 7

2 Security Goals 8

3 Security Analysis 10
3.1 General Considerations . 10
3.2 Indistinguishability from random 11
3.3 Unforgeability . 14
3.4 Repetition of nonce . 19

3.4.1 Resistance of authenticity against nonce repetition . . . 20
3.4.2 Resistance against privacy under nonce repetition . . . 22

3.5 Resistance against key collision attack 23
3.6 Resistance against related keys 24
3.7 Resistance against forgery under loss of privacy 24

4 Features 26

1

5 Design Rationale 29

6 Intellectual Property 32

7 Consent 33

2

Chapter 1

Specification

1.1 Parameters

Silver has three parameters: key length, nonce length, and tag length. Pa-
rameter space: Each parameter is an integer number of bytes. The key length
and nonce length are each 16 bytes (128 bits). The tag length is 16 bytes,
but shorter tag lengths can be used by truncating to the desired number of
bytes. We discourage any tag length below 8 bytes, although we understand
that for certain applications 4 bytes may be enough.

1.2 Recommended Parameters Sets

Primary recommended parameter sets: 16 byte (128 bits) key, 16 byte (128
bit) nonce, 16 byte (128 bit) tag.

1.3 Authenticated Encryption

The inputs to authenticated encryption are a plaintext P , associated data A,
a public message number N , and a key K. The number of bytes in P must
be at most 264 − 1, and the number of bytes of A must be at most 264 − 1
too but for security purposes we recommend a limit of 250 − 1 each.

As stated previously in 1.1, the number of bytes of the nonce and key
is fixed to be 16. There is no secret message number. The output of au-
thenticated encryption is a ciphertext (C;T) obtained by concatenating an

3

unauthenticated ciphertext C and a tag T (of length at most 16 bytes, as
specified above in 1.1). The length of C is the same as the number of bytes
of P .

As stated in the requirements to the CAESAR competition, it is assumed
that the length of P,A in bits are multiples of 8, i.e., P and A consist of a
string of bytes.

We now provide the details.

1.4 Notation

⊕ denotes the bitwise xor.
All data is assumed to be little endian.
+ will denote the sum of the group (Z/264Z)× (Z/264Z).
i ∗M denotes M +M + . . .+M , where there are i terms.
truncb is truncate a 16 byte array to the leftmost b bytes.
i.e. truncb(B1, B2, ..., B16) = (B1, B2, ..., Bb).
|| denotes concatenation.

1.5 Treatment of the Public Message Num-

ber

The public message number N will be used together with the key K to create
a secondary key κ = κN,K , which is simply the encryption of the nonce N
under the key K using AES (of 128 bits). N is no longer used as such after
the creation of κ. Note that κ itself is a nonce, i.e., if N does not repeat
within the lifetime of a key, neither does κ. The only difference is that some
adversary could have control over N , but not over κ.

1.6 MAES (modified AES)

A key part in Silver is a modification of AES which we call MAES. MAES is
exactly the same as AES except for the key schedule. Given a key schedule
ks that on input a 128 bit key K produces the 11 round keys needed for
AES, we will denote by MAES(B, ks(K)) the encryption of a 128 bit block
B under the 11 round keys produced by ks(K).

4

We will use the following specific family of key schedules:

1.6.1 Specification of pks

Assume that the usual key schedule of AES on input K produces round keys
R0(K), R1(K), ..., R10(K). Let S be a 128 bit word. Then pksNS (K) produces
round keys RS

0 (K,N), RS
1 (K,N), ..., RS

10(K,N) given by:

RS
j (K,N) := Rj(K)⊕Rj(κ) (j 6= 0, 1, 5, 9)

RS
0 (K,N) := R0(K)⊕R1(κ)

RS
j (K,N) := Rj(K)⊕ (κ+ S) (j = 1, 9)

RS
j (K,N) := Rj(K)⊕Rj(κ)⊕ (κ+ S) (j = 5)

where κ is as in 1.5

1.7 Encryption of the plaintext

If the byte length bP of P is a multiple of 16 P is partitioned into blocks of
16 bytes: P1, P2, ..., Ps. If the byte length bP of P is not a multiple of 16, we
partition P in the same way except that Ps is made up of the final bP −b bP16 c
bytes of P . (thus, it is a partial block).

After obtaining κ as in 1.5, we create IC = (R9(κ)∨ (164||164)) where 164

is the 64 bits that make the little endian representation of the number 1, ∨
is bitwise OR and R9(κ) is as in 1.6.1 (i.e. the one round key from the key
round expansion we didn’t use). Thus IC is a pair of two odd numbers.

If bP is a multiple of 16, the ciphertexts blocks are simply:

Ci = MAES(Pi, pksNi∗IC(K)) i = 1, ..., s

and decryption is simply

Pi = MAES−1(Ci, pksNi∗IC(K)) i = 1, ..., s

If bP is not a multiple of 16, then the above is true only for i ≤ s−1, and
for the final block we switch to counter mode:

5

Let ` be the length in bytes of Ps (i.e., ` = bP − b bP16 c). Then we do:

f := bP ||bP (bP represented as a 64− bit little endian)

Cs := Ps ⊕ trunc`(MAES(f, pksNs∗IC(κ))) (∗∗)

1.8 Authenticity

1.8.1 Treatment of the Plaintext/Ciphertext

We construct a checksum XT . If there is no plaintext, XT = 0.
In the case in which bP is a multiple of 16 XT is the xor of all plaintexts

blocks together with the xor of the ciphertext blocks (masked by multiples
of IC) . That is:

XT = P1⊕ ...⊕Ps⊕ (C1 + κ+ IC)⊕ (C2 + κ+ 2 ∗ IC)...⊕ (Cs + κ+ s ∗ IC)

where IC is the one on 1.7.
When bP is not a multiple of 16, we construct XT as above only with xors

up to the s−1 blocks and then we xor to XT a special block BE, constructed
as follows:

If ` is the length in bytes of Ps, then we create a block B of 16 bytes
that consists of the ` bytes of P concatenated with the 16 − ` bytes of
MAES(f, pksNs∗IC(κ)) that were not used in the computation of Cs (see (**)
in 1.7), except that the rightmost byte is set to `(= bP − b bP16 c). B is
encrypted using MAES with modifier (s + 1) ∗ IC to obtain BE: BE =
MAES(B, pksN(s+1)∗IC(κ))

1.8.2 Treatment of the Associated Data

We compute a checksum AT of the associated data in the following way: If
there is no associated data, we define AT = 0. If the associated data A is
not empty, then A is partitioned into blocks of 16 bytes: A1, A2, ..., At. If the
byte length bA of A is not a multiple of 16, At is made up of the final bA−b bA16 c
bytes of A, padded with one byte equal to 1 and then bytes zero (to the right)
until one gets 16 bytes. Construct ICad as: ICad = IC ∧ (0xffffffff||064) =

6

(R9(κ)∧ (0xffffffff||064))∨ (164||064)) i.e., it consists of the left part of IC with
0 in the right 64 bits.

AT is computed thus:

AT := 0

For i = 1, ..., t AT := AT ⊕MAES(Ai, pksNi∗ICad(K))

except that if the last block was padded, then it is encrypted using MAES(Ai, pksN0 (K))
instead of MAES(Ai, pksNs∗ICad(K))

1.8.3 Computation of the tag

Let Ps+1 = AT ⊕XT and compute the tag as

Tbase := MAES(Ps+1, tpksNg (K))

where g = bA||bP (bA and bP in little endian) and tpksNg is a special key
expansion used only on the computation of the tag, and it is defined as:
Compute the round keys given by pksNg (K), say r0, ..., r10. Then the key

schedule of tpksNg (K) is r2, r9, r3, r4, r6, r1, r7, r8, r10, r5, r0
If less than 128 bits is desired, Tbase can be truncated to the desired

number of bytes and concatenated to the end of C. The only loss of security
is the one suffered from going from a 128 bit tag to a τ -bit tag.

7

Chapter 2

Security Goals

goal bits of security
confidentiality for the plaintext 128
integrity for the plaintext 128
integrity for the associated data 128
integrity for the public message number 128

If the tag is truncated to τ bits, the numbers 128 above in the last three
entries change to τ .

That is, we expect that any attack on the confidentiality of the plain-
text will need 2128 effort and if the length of the tag T is τ , a forgery of
the plaintext, associated data or public message number cannot be made
with probability greater than 2−τ (i.e., an expected 2τ attempts need to be
made before a forgery is accepted as valid). However, in accordance to the
CAESAR call, we do not distinguish between messages one of which is a
truncation of the other by a number of bits less than 8.

This assumes that P is at most 250 bytes long and A is at most 250 bytes
long and that the public message number is not repeated within the lifetime
of a key, i.e., it must be a nonce.

There is no secret message number.
If the public message number is repeated there is loss of privacy up to

indistinguishability from “RandomByBlocksCipher” i.e, Silver under nonce
repetition is indistinguishable from a cipher that on input a plaintext P
outputs ciphertext C (or vice versa) randomly except for the condition that
if two different plaintexts P 1, P 2 have two equal blocks in the same position
(ie. P 1

i = P 2
i) then the corresponding ciphertext blocks must be the same

8

(and vice versa under ciphertext query).
We do not promise 2−τ -integrity if the nonce is repeated, but see 3.4.1

for a discussion of the level of integrity loss under nonce repetition.
However, even if the public message number is repeated and a forgery can

be made with that public message number, this has no effect on the ability
to make forgeries (or in the privacy loss) with other public message numbers
that do not repeat.

Although the number of bytes per message encrypted under a nonce is
bounded, it can encrypt a number of messages greater than the birthday
bound 264, but we recommend not to approach 2128 messages encrypted under
a single key.

9

Chapter 3

Security Analysis

3.1 General Considerations

MAES is basically a tweaked version of AES, the tweak being applied to the
round keys.

The security of Silver is based on an assumed property of AES. It is widely
assumed that AES outputs for distinct inputs are indistinguishable from
random (if the number of inputs does not approach 264). We are assuming a
little more: that the outputs of AES with the round keys changes as specified
above are indistinguishable from random if the change is not repeated.

Specifically, we assume the following:

Property 3.1.1 Given 128 bit block B, an integer i between 0 and 250 − 1,
a bit b and a 128 bit block N define µAES(N,B, i, b) as µAES(N,B, i, b) =
MAES(B, pksNi∗ICb(K)) where IC1 = IC and IC0 = ICad where these are ob-
tained from N and the secret key K as explained previously. Let {(Nj, ij, bj)}j∈J
be a set of triplets that are different from each other. Then, for any se-
quence (Bj)j∈J of 128 bits blocks (some of which can be repeated) the sequence
µAES(Nj, Bj, ij, bj) cannot be distinguished from a random sequence.

If AES does not have this property it would be very surprising, given the
16 years of analysis it has sustained. In fact, if AES cannot be distinguished
from random, then µAES(Nj, Bj, ij, bj) will be a random sequence if all the
Nj’s are distinct, since a change in Nj involves a radical change of the rounds
keys, so this would be equivalently to say that a sequence of values encrypted
under AES with different keys is a random sequence. (this also holds true

10

for differentiating pksNg from tpksNg , which we didn’t write in 3.1.1 so as to
not clutter the writing).

So the only possibility that property 3.1.1 is not true involves distinguish-
ing from random a subsequence of the form µAES(N,Bj, ij, bj) (i.e., with N
fixed).

In this case the changes in the round keys involve only three round keys.
True, there has been same attacks against AES that uses precisely related

keys (eg. [1]) , so not all key schedule changes to AES would be secure.
However, these attacks use differentials in round keys that are “close”,

while the designers of AES proved that 4 rounds of AES provide full protec-
tion against differential or linear cryptanalysis, so the fact that are 4 rounds
between the rounds 1 and 5, and between the rounds 5 and 9 (which are the
rounds where the differences in the keys are) should provide excellent protec-
tion. The change is made on rounds 1 and 9 instead of 0 and 10 to complicate
things a little bit more for an attacker who tries to inject differences in the
plaintexts/ciphertext that would cancel the differences in the round keys.

Moreover, the change is a random change unknown to any adversary
(since it involves κ and IC). Actually, since a change with index i involves
xoring to the round keys 1,5,9 the block κ+i∗IC the adversary cannot know
what the change is, but the adversary could try to estimate the difference
between the changes using index i and index j. We limit i to be less than
250 so the adversary will have less information over these differences.

Thus, µAES can be considered as a tweaked AES, and Silver as a tweaked
authenticated encryption scheme, and in that sense, the security proof of [4]
provides a proof of the security.

However, since there are some differences with our design, for complete-
ness, we write the adapted proof for our case. Also, we want to discuss what
happens if instead of assuming 3.1.1 we just assume that AES is indistin-
guishable from random, which is a weaker hypothesis but one with which
(almost) everyone agrees.

3.2 Indistinguishability from random

Theorem 3.2.1 If Silver can be distinguished from random with probability
better than 1/2 + ε then µAES can be distinguished from a random block
oracle (see definition below) with probability better than 1/2 + ε

Proof:

11

Let Adv be a nonce-respecting adversary that wants to distinguish be-
tween the case Silver and a “randomcipher”. That is Adv will be given an
oracle cipher CphO that takes as input a nonce N and either a plaintext P
and outputs a ciphertext C, or a ciphertext C and outputs a plaintext P .
The oracle can be one of two: it will either be Silver or a “randomcipher” (ie.
and oracle that on each query (N,P) or (N,C) outputs a uniformly random
value of the appropriate length).

Adv is allowed to do q (nonce respecting) queries, after which Adv has to
guess whether the provided oracle is Silver or randomcipher.

Assume that Adv can guess correctly with probability 1/2 + ε.
Let Adv∗ be an adversary against µAES who wants to distinguish it from

random.
That is, Adv∗ will be given a family of oracles O which will contain a

family of pairs of oracles O(N,B, i) and O−1(N,B, i) which will, each one,
given a 128 bit block N , an integer i and a 128 bit block B, output another
128-bit block, with the properties:

O−1(N,O(N,B, i), i) = B and O(N,O−1(N,B, i), i) = B
In addition O contains two other families of oracles, but in this case only

the encryption ones, tO and adO. adO also receives inputs like O, and tO
receives as input three 128 bit blocks N,B, S.

Adv∗ has to decide whether these oracles correspond to µAES under
a fixed secret key K or to random. (which we will call “randomblock” to
distinguish it from “randomcipher”).

We model “randomblock” in the following way:
For each (N, i) start with Domain(N,i), Image(N,i) and Pairs(N,i) empty.

On input (N,B, i) for the “direct” oracle, the oracle checks to see whether
B is in Domain(N,i). If not, it outputs a (uniformly) random 128-bit value C
adds B to Domain(N,i), C to Image(N,i) and (B,C) to Pairs(N,i). In the other
hand if B ∈Domain(N,i) then it searches for (B,C) in Pairs(N,i) and outputs
C.

In the case the call is to the inverse the procedure is similar, starting with
checking whether B is in Image(N,i).

In the case of adO and tO the procedure is similar, but no calls to the
inverse are accepted.

Let Adv∗ do the following: given O, Adv∗ creates a cipher “cipher(O)”
which will follow the procedure given in 1.7 except that instead of doing
Ci = MAES(Pi, pksNi∗IC(K)) it does Ci = O(N,Pi, i). (and similarly, with
the inverse, for the decryption), and instead of using tpksNS (K) for the com-

12

putation of the tag, uses tO and for the computations related to the tag,
adO.

Now, Adv∗ takes the queries that Adv would do to distinguish Silver from
“randomcipher”, runs cipher(O) with them and returns them to A.

If O = µAES, then since cipher(µAES)=Silver , Adv∗ would be provid-
ing Adv with an oracle that is Silver .

On the other hand, let’s see what happens when O =randomblock. Be-
cause Adv is nonce respecting, all N ’s from all queries are distinct. Since
for each fixed N the i ’s and b’s involved are all distinct, then when running
randomblock applied to the queries of Adv, then actually all Domain(N,i),
Image(N,i) and Pairs(N,i) are going to be empty or of cardinality one, and
in this last case (N, i) will not be requested again. Hence we can change
randomblock to an oracle O∗ that on any call it simply returns a (uniformly)
random 128 bit string.

That is, as far as Adv is concerned, cipher(randomblock)=cipher(O∗).
But cipher(O∗) will simply be a string of independent and random values,
that is, “randomcipher”.

Thus Adv∗ would be providing Adv with an oracle cipher which is one
of two possibilities:Silver or randomcipher. When Adv guesses which oracle
was provided, Adv∗ guesses that O = µAES if Adv guesses Silver , and Adv∗

guesses O =randomblock if Adv guesses randomcipher.
SinceAdv guesses correctly with with probability 1/2+ε, Adv∗ also guesses

correctly with the same probability.
==================QED.

Of course, the above proof assumes 3.1.1. What if we just use the weaker
hypothesis that AES in indistinguishable from random?

Since a change of nonce implies a radical change of round keys, then
the AES encryptions or decryptions will be totally uncorrelated between
different nonces. Thus, suppose an adversary makes q queries Q1, ..., Qq to
the oracle and has a test Test(Q1, .., Qq) which outputs 1 or 0, (1 meaning
the oracle is Silver , 0 that it is random), which has a probability p∗ of being
right. Since AES is indistinguishable from random, the answer to each of
the queries Qj are uncorrelated to each other, so in fact Test(Q1, .., Qq) will
have to be of the form DoSomething(test(Q1), test(Q2), ..., test(Qq)) where
DoSomething:(Z/2Z)q 7→ Z/2Z is some function devised by the adversary.
A minimal condition for DoSomething to be coherent would have to be that
DoSomething(1, 1, ..., 1) = 1 and DoSomething(0, 0, ..., 0) = 0. In fact, it

13

seems that the only reasonable choice for DoSomething will have to be of the
form DoSomething(b1, ..., bq) = 1 if there are at least t i’s with bi = 1 and
zero otherwise, where t is some threshold.

Therefore if we denote by p the probability that test is right, then if p− 1
2

is small, p∗ − 1
2

will be small too. Thus we can assume that Adv will make
just one query.

Adv will then have to find some correlation between the encryptions (un-
der one nonce) of different blocks. The encryptions are done using different
but related keys, but the analysis done on the part of resistance against
forgery (see below) shows that the probability of finding any such correlation
is negligible.

3.3 Unforgeability

Again, the proof of the following theorem is very similar to the one on [4], but
we try to do it by reducing unforgeability as much as possible to AES being
indistinguishable from random as opposed to µAES being indistinguishable
from random. Besides, the way we construct the tag is different than the one
in [4].

Theorem 3.3.1 The probability of a successful forgery of a tag of τ bits of
Silver by a nonce respecting adversary is at most 2−τ .

Proof: Let Adv be a nonce respecting adversary that can request encryp-
tion/authentications queries and one decryption/verification query.

Adv wins when a quad (N,A,C, T) is produced that was never an answer
to an encryption query and is accepted as valid.

The queries that Adv does will be of the form (N j, Aj, P j) with answers
(N j, Aj, Cj, T j) and all N j are different between them.

We have several cases:

1. N 6= Nj for all j.

The tag is obtained by truncating Tbase, where Tbase is constructed as in
1.8.3. This computation involves the calculation of MAES(Ps+1, tpksNg (K))

Since N 6= Nj for all j, then the key schedule tpksNg is wildly different

from the key schedule tpksN
j

g hence the AES encryption under these

14

different keys would collide only with probability 2−128 and the prob-
ability that the tag that Adv creates is the correct one is 2−τ in this
case.

2. N = Nj for some j.

Moreover, since we saw in the last item that encryption under different
nonces are totally uncorrelated, those r for which N 6= N r are irrelevant
to the possibility of constructing a forgery, hence for practical purposes
we can assume that the attacker made just ONE query. (i.e., j = 1).

(a) The length of C is different from the length of corresponding ci-
phertext C1.

In this case there are several independent reasons why the prob-
ability of forgery will be bound by 2−τ . We will start with the
weakest one.

Since g = bA||bP . codifies the length of P (=length of C), then the
g that corresponds to the case (N,A,C, T) will be different from
the g1 that correspond to (N1, A1, C1, T 1). Thus tpksNg would
not have been used anywhere else. Under the hypothesis 3.1.1
the output will be random. But let us analyze a little bit more
closely the situation to see how exactly 3.1.1 will have to fail in
order to produce a forgery. In this part of the analysis we do not
have a hard reduction to the indistinguishability from random of
AES, since we have two key schedules that are equal on all keys
except the keys 1,5,9 on which they differ by some quantity. For
i = 1, 5, 9, one of the keys is of the form ri = fi⊕(κ+g), the other
of the form rji = fi⊕ (κ+ g1). The difference g− g1 is known, and
in fact can be manipulated, since the attacker can choose both of
them. However, the difference ri⊕r1i = (κ+g)⊕(κ+g1) cannot be
so easily manipulated.The probability that that difference involves
a particular difference ∆ will depend on the Hamming weight of κ
([3]), which is random and not under the control of the adversary.

In addition to this, the input (N,A,C, T) will produce a checksum
AT ⊕ XT and (N1, A1, C1, T 1) will produce a checksum AT 1 ⊕
XT 1. If AT ⊕ XT = AT 1 ⊕ XT 1 then there will be a non-
zero difference between the encryption of AT ⊕XT under tpksNg
and the encryption under tpksNg1 . By the time we reach round 5,

15

the probability of any particular differential trail would be 2−150

and the probability that the final encryption of AT ⊕XT exactly
matches Tbase would be 2−128 (or, the probability that a τ -bit
truncation of the encryption of AT ⊕ XT exactly matches T is
2−τ).

So it must be AT ⊕ XT 6= AT 1 ⊕ XT 1 and the difference must
be such that the difference between the encryption of AT ⊕ XT
under tpksNg after the xor with the round 1 key and the encryption

of AT j ⊕XT j under tpksNgj after the xor with the round 1 key is
zero. We saw above a bound on calculating a concrete difference
at the level of the round key, below we will discuss what is the
probability that a useful difference on AT⊕XT found. But at any
rate, then, after the round 5, a new difference will appear, and the
probability of any particular differential trail up to the 9th round
would be 2−150, and the probability that a τ -bit truncation of the
encryption of AT ⊕XT exactly matches T is 2−τ .

All of that would be even if the attacker could somehow construct
with high probability a “good” AT ⊕XT . However, the probabil-
ity of getting the “right” XT is also 2−128 because of the following
analysis:

If the number of blocks of C and C1 are different, then in one of
the cases there is at least one more AES encryption or decryption
(depending whether the extra block was in the encrypt query or
on the decrypt query) that is completely missing in the other com-
putation, so the difference between XT and XT 1 will be random
since AES behaves like a random cipher and XT is affected by
both the plaintext block and the ciphertext block.

If the number of blocks is the same and the final block of both is
a partial block, then they differ in the number of bytes. But since
EB contributes to XT and EB is the encryption of something
that codifies the number of bytes in the last partial blocks, (and
the adversary never sees nor has control over this particular en-
cryption) then again by appealing to AES being indistinguishable
from random, XT would be random.

Note that these cases reduces to AES being indistinguishable from
random.

The case that remains is that they have the same number of blocks,

16

say s, but one of them has a length that is not a multiple of 16
bytes and the other has a length that is a multiple of 16 bytes.
Then the one with a length multiple of 16 will contribute to XT
with an encryption of a block using modifier s∗IC while the other
will encrypt some block with the modifier (s+ 1) ∗ IC (because if
the last block is a partial block, the encryption with s∗IC is used
to form the ciphertext, but the encryption with (s+ 1) ∗ IC is the
one that contributes to XT), and further more, this encryption is
never revealed.

Thus as before, the probability of obtaining the correct tag would
be 2−τ .

(b) The lengths of C and C1 are equal, but C 6= C1.

Let i be the first index such that Ci 6= C1
i . First assume that

either i is not the last index (s) or that the last block of plaintext
is of 16 bytes. When verifying the tag, the verifier must decrypt C
in order to obtain the plaintext blocks. Ci will be decrypted using
key schedule modifier given by (N, i), which is used only with
the pair plaintext-ciphertext given by (P 1

i , C
1
i). In particular Ci

will be decrypted using the same key schedule than C1
i and since

they are different the decryption Pi will be randomly different
from P 1

i , under the assumption that AES is indistinguishable from
random. The only way that Pi can be distinguished from random
is if there is a correlation to some other(s) Pk or P 1

k . Similarly
to the sub analysis we did when we were comparing encryption
under g and g1, we will have here that the different plaintexts will
be uncorrelated. There is a couple of differences in the analysis
however: In this case the differences in the round keys are of the
form (κ + i ∗ IC) ⊕ (κ + j ∗ IC) and IC and κ are random and
unknown. (they are related somehow by the Rijndael key schedule,
κ being the seed and IC being the 9th round key masked. Since
they are separated by nine iterations of the expansion, we expect
no useful relations can be found).

In favor of the attacker however, there are many blocks to work
with now, instead of difference with exactly one as before. How-
ever if a specific difference in the round keys is needed, then this
limits the choice to one block to work with. (the one that pro-
duces that difference). Moreover, since the attacker is limited to

17

this one query, any attack must be pre-planned so to speak. That
is, since there is only a single query, there cannot be any adaptive
attack.

Therefore, Pi will be (almost) indistinguishable from random (the
only restriction is the condition Pi 6= P 1

i). Moreover, the contri-
bution of this block to XT is Pi ⊕ (Ci + κ + i ∗ IC), and since
Ci 6= C1

i , that xor difference can be anything.

Thus AT⊕XT will be equal to AT 1⊕XT 1 with probability 2−128,
independently of what happens with the other blocks.

There remains to analyze the case in which i = s and the last
block is incomplete. Then any change in Cs will produce the
same changes in Ps. However, in this case the contribution to XT
comes not from Ps, Cs but from BE, which is the encryption of
B, where B =the concatenation of Ps with some other bytes that
come from the encryption of the length. The modifiers used in this
are never used elsewhere. Thus Cs 6= Cj

s ⇒ Ps 6= P j
s ⇒ B 6= Bj

which implies that the output of the two encryptions (the first one
and the one done during the forgery) will be different but random
apart from that.

Thus XT ⊕XT 1 will be random.

If AT ⊕ XT = AT 1 ⊕ XT 1 and Adv provides T = T 1, then the
forgery will succeed. If not, the input to AES under the modifier
used to calculate the tag is different from the only one used with
that same modifier, so, again, the output Tbase will be uniformly
random (except that it MUST be different from T 1

base), and the
truncation will equal the tag T with probability almost 2−τ .

Thus if trunc denotes the truncation to τ bits, and we denote Tbase
as Tb, the probability p of successful forgery in this case is:

p = P (Tb = T jb).P
(
trunc(Tb) = trunc(T jb)|Tb = T jb

)
+

+P (Tb 6= T jb).P
(
trunc(Tb) = trunc(T jb)|Tb 6= T jb

)
= 2−128.1 + (1− 2−128).

2128−τ − 1

2128 − 1

= 2−128 + 2−128.(2128−τ − 1)

= 2−τ

18

(c) C = C1. We must have thenA 6= A1. (because the case (N,A,C) =
(N1, A1, C1) with T 6= T 1 is impossible due to the deterministic
nature of the computation of the tag). We have two sub cases:

i. length(A) 6= length(Aj) Since g. codifies the length of A,
then the considerations in the first part of the analysis of the
case of different ciphertexts length apply.
In addition, the second part of that analysis also apply here:
if the number of blocks are different, then one block is missing
in one of the computations. If one is a partial block and the
other is not, there will be a computation that involves modifier
0 in one of them and not in the other, so again AT ⊕ AT 1

will be random. Thus they have the same number of blocks
and the last block is partial. That block is padded with a pad
that codifies the number of bytes of the block, so there will be
an AES encryption with the same key of two different blocks,
hence the difference on the outputs is random (except that it
must be non zero).

ii. The lengths are equal but there is an i with Ai 6= A1
i . The

analysis is the same as the case in which the ciphertexts differ
in at least one block, except that here the attacker does not
even see the encryptions. The other distinct thing in the
analysis is that if there is only one block of difference then
AT = AT 1 with probability 0. If there are two or more blocks
of difference then the probability of forgery will be 2−τ .
If i is the only block in which there is a difference, then AT 6=
AT j, hence Tbase 6= T jbase and the probability of forgery is 0 if
τ = 128.
If τ < 128, then the probability of forgery is
P (truncτ (Tbase ⊕ T jbase) = 0) = |{w 6=0:truncτ (w)=0}|

|{w 6=0}| = 2128−τ−1
2128−1 <

2−τ .

==================QED.

3.4 Repetition of nonce

If the nonce is repeated, the previous proofs are invalid, since we used the
fact that we do not repeat the nonce in several places.

19

For example, suppose that XT had been specified as only the xor of the
plaintexts. Then an appropriate proof of theorem 3.3.1 would still be valid,
but that scheme would totally fail authenticity if the nonce is repeated three
times: simply fix the nonce N and the associated data A, take three non null
blocks P1, P2, P3 and request encryption of P 1 = P1||P2, P

2 = (P1 ⊕ P3)||P2

and P 3 = P1||(P2 ⊕ P3). If the ciphertexts are Cj
1 ||C

j
2 and the tags are T j,

then (N,A,C, T 1) is a forgery, where C = C2
1 ||C3

2 .
However, this attack does not work against Silver due to the more involved

creation of the tag.
In fact, there is no obvious loss of authenticity, due to several counter-

measures taken.
We will show that for an adversary that can repeat nonces, obtaining a

forgery with probability better than 2−τ is impossible in many cases, and in
the case left, the probability of forgery is small, though we cannot provide a
specific bound, thus this section is a discussion rather than a theorem.

3.4.1 Resistance of authenticity against nonce repeti-
tion

Suppose an adversary as before, but now not nonce-respecting.
Then as in the the proof of Theorem 3.3.1, if the final nonce N was never

used before, the probability of a successful forgery is 2−τ , so suppose that
N equals some of the Nj’s. Since the nonces that are different than N are
irrelevant, we may suppose that all nonces are equal.

Those j’s for which (bA, bP) 6= (bAj , bP j) will have the modifier gj different
from the modifier g and as in the proof of Theorem 3.3.1 there will be some
extra computations in the calculation of AT,XT or both, so they will irrel-
evant in bounding the probability of the output of the encryption of Tbase.
Thus, we can discard them from further analysis, i.e., we keep j’s for which
(bA, bP) = (bAj , bP j).

Now assume that the Aj’s are not all equal.
If there is an index i such that Ai is different from all other Aji , then

the analysis of Theorem 3.3.1 applies. So, we can assume that for every i
there exists at least one ji with Ai = Ajii (though, of course, the ji’s may be
different between them).

Now, the attacker knows all the associated data but doesn’t know the
encryptions of them, nor the tags AT .

20

If we form a matrix such that in each row there are the encryptions and
the AT ’s corresponding to each query, the attacker is reduced to the following
problem: given a matrix of random strings of 128 bits, which the attacker
cannot see, but such that the attacker can know which entries are equal
between them, choose an element from each column in such a way that the
row formed in that way is not one of the rows of the matrix and the xor
of the elements of this row equals zero. Clearly, this can be done only with
probability 2−128.

So we may assume that all Aj’s are equal and A is equal to them.
Hence we must have all ciphertexts different.
If T 6= T j for all j, then either XT = XT j for some j (and then the

verification will fail) or XT 6= XT j for all j, and then the tag will be (almost)
random (Tbase will have to be different from all others T jbase). If τ = 128 the
verification will fail, and if τ < 128 the probability that the tag computed is
T has probability near 2−τ .

So the attacker will have to pick a k and choose T = T k.
Again, if there is an index i such that Ci is different from all Cj

i , then
XT will be random, so we can assume that for every i there exists at least
one ji with Ci = Cji

i .
The difference between the case of the associated data and this, is that

here the attacker knows all Cj
i and P j

i (and hence, by the previous hypothesis,
Ci and Pi). However, XT is influenced by Pi ⊕ (Ci + κ+ i ∗ IC).

Disregard the sum with κ+ i ∗ IC for the moment.
In that case the attacker knows all differences in the q matrices that have

q−1 rows and b = bP columns and such that the ith matrix has entries (j, k)
equal to P i

k ⊕ Ci
k ⊕ P

j
k ⊕ C

j
k.

The attacker needs to find a nonempty subset of columns and for each
column in the set, an element of the matrix in that column, (one element
per column) such that the xor of all these elements is zero. If such set exists,
then the blocks of Ck that corresponds to those columns can be replaced
with the corresponding blocks of the Cj’s that were chosen.

There are
∑b

m=1

(
b
m

)
(q−1)m = qb−1 such sums, and q matrices, so there

are a total of q(qb − 1) sums, one of which must be zero. The probability of
this event is 1− (1− 2−128)q(q

b−1) ' 1− e−q(qb−1)2−128
.

For example, if q = 2 (nonce repeated once) and b = 127, then the
probability will be approximately 1 − e−1 which is quite high. However
finding such sum by brute force requires computing q(qb − 1) ' 2128 xor
sums.

21

In fact, the problem is a special case of the subset problem (special,
because of the requirement that there must be at most one element in each
column), and that problem is NP complete, so there is no known algorithm
that could solve it in general in a reasonable time. Of course, as with all NP
problems, this is not much help in cryptography, since we require a problem
that is hard to solve in all cases, not just the most difficult ones. Still, in our
case all entries are random, so one should expect a difficult to solve problem.

Moreover, things are more complicated in the real Silver , because of the
addition of κ+ i ∗ IC

The attacker will not know the actual differences that affect the tag, thus
the attacker will have to do some differential analysis on the sum with an
unknown mask. The attacker knows the plains and the ciphertext, hence the
differences between them and the corresponding ones with query j, but in
each query the ciphertext has been randomly produced, so the attacker can-
not control the differences in the ciphertext, though the ones in the plaintexts
are controllable (but before getting the ciphertexts).

These differential probabilities will depend on the hamming weight of
κ+ i ∗ IC, which since it is random, we should expect to be quite high.

However, this is not a formal proof in the theoretical sense, thus is why
we have set it as a discussion and not a theorem, but it illustrates that Silver
has high forgery resistance even under nonce repetition. It is safe to assume
that a forgery cannot be made with probability greater than, say, 2−50 for
tags of length 128, which contrasts highly with the case of GCM in which
repetition of a nonce allows trivial forgeries.

Also, the above discussion and the proof of theorem 3.3.1 show that even
if repetition of a nonce allows a forgery for that nonce, other nonces past or
present are unaffected (this is not true, for example, with AES-GCM).

3.4.2 Resistance against privacy under nonce repeti-
tion

Suppose the adversary repeats the nonce. We can assume that a single nonce
is used several times.

Still, the different block positions will receive different modifiers. Hence
randomblock will behave by outputting random blocks in different positions,
and simply checking whether, when calls are made on the same position, the
call was made previously or not.

22

Thus we can model this as a series of different block ciphers, one for each
position. Within each position, this would be equivalent to ECB mode, so
clearly repetition of a nonce involves a loss of indistinguishability.

But since the positions are independent, any attack against Silver should
be readily converted into an attack on AES-ECB. Thus, although there is loss
of indistinguishability, the loss of confidentiality is not catastrophic, and it
simply reduces to the loss one would be prepared to accept when using ECB.
(actually, something like blockECB). Of course, ECB is not a safe mode, so
one may not want to accept such loss.

The proof of Theorem 3.2.1, suitable changed to contemplate this case,
proves that if Silver with nonce repetition and “RandomByBlocksCipher” can
be distinguished with probability 1/2 + ε, then µAES and randomoracle can
be distinguished with the same probability. Here “RandomByBlocksCipher”
is a cipher that on input P outputs C (or vice versa) randomly except for
the condition that if two different plaintexts P 1, P 2 have two equal blocks in
the same position (ie. P 1

i = P 2
i) then the corresponding ciphertext blocks

must be the same.
This contrasts with the total loss of confidentiality that happens when

repeating the nonce in counter mode.
Of course, the above is under the hypothesis that µAES is indistinguish-

able from random. Under the weaker (but more accepted) hypothesis that
AES is indistinguishable from random, then the proof does not apply. An
attacker could try to mount some sort of adaptive attack looking at the an-
swers to the queries in order to search for differences that could be used to
mount, say, a boomerang attack. However, the structure of the changes of
the round keys and the Rijmen-Daemen theorem conspire against that.

3.5 Resistance against key collision attack

Since the key used from message to message changes, there could be a key
collision attack. For example, suppose that we had used in the designs just
Rj(κ) as round keys, and the changes in rounds 1,5,9 had been simply xor
with i. Then a possible attack would involve capturing 264 different messages
(hence, with different nonces) such that the first block of all these messages
is fixed, say B, and the attacker knows B (but not the other blocks). Let Cj

1

be the first blocks of these ciphertexts.
Then the attacker chooses 264 different keys k, and computes bk = Ẽk(B)

23

where Ẽ is AES, but with round keys 1,5,9 xored with 1. Then the attacker
searches for a collision between some bk and some Cj

1 .
If there is one, then with high probability k = κj, and the attacker could

decrypt the rest of the corresponding ciphertext.
However, this attack does not work against Silver for several reasons,

including the fact that κ is created from K with a high nonlinearity (the
AES encryption) and then both sets of round keys are used (i.e., the round
keys of K are not discarded) and that rounds 1,5,9 are modified using a secret
counter.

Of course the attacker may try to create different bk’s, say using as index
a full set of round keys, but that would involve guessing a “key” of 1408 bits,
so this approach would not work.

3.6 Resistance against related keys

Recent attacks like the one in [1] use keys that are related to improve the
differential probabilities of an attack, taking advantage of some weakness in
the key expansion of AES. (but for the 192 and 256 versions, which we do not
use). However, the key expansion of Silver does not have those weakness,
since AESK(N), which is highly nonlinear, is expanded and some of the
round keys xored to the original round keys. the round keys, so related keys
K and K ′ will produce highly different round keys for each nonce.

3.7 Resistance against forgery under loss of

privacy

Let Adv be an adversary that has access to a triplet (N,A, P), but not
to the tag produced. For example, a system administrator encrypts some
(N,A, P)’s to send them somewhere, but then keeps the tags in a secure loca-
tion thinking, mistakenly, that the tags will provide authenticity of (N,A, P).
(the correct method is keep (N,A,C) and erase (N,A, P) if there is possi-
bility of an intrusion). The intruder may gain access to the stored texts,
and wishes to alter them, but without access to the tags. In some AEADs
(for example, OCB) it is easy to change the plaintext in this scenario with-
out changing the tag. Not so in Silver , since the tag depends on both the
ciphertext and the plaintext. Concretely:

24

Theorem 3.7.1 Let Adv be an adversary who has write access to a message
(N,A, P) and read-access to its ciphertext/tag pair (C, T) but does not have
write access to T , and does not have access to the AEAD system, but wishes
to produce a forgery (N∗, A∗, P ∗) that when is feed into the AEAD, produces
the same tag T .

If AEAD is instantiated with Silver , the probability of forgery is 2−τ .

Proof: As in the proof of 3.3.1 if the nonce, associated data or length of P
are changed, the probability of forgery is 2−τ .

Thus, Adv has to change some block(s) of P . When fed into Silver this
will produce ciphertext(s) block(s) that will be randomly generated (except
for having to be distinct from the previous ones). Thus, as in the proof of
3.3.1, but with the roles of P and C reversed, the probability of forgery is
2−τ .

==================QED.

25

Chapter 4

Features

The cipher has many advantages. It is basically AES in ECB mode, with a
tweak that covers the deficiencies of ECB, so it is conceptually very simple.
It builds on the work of [4] but has a novel feature in that the key is changed
from session to session and the tweak is applied to the round keys.

The extra cost against, say ECB, is one extra AES encryption plus AES
key expansion per message, plus 3 xors, and an update of a counter per
block encrypted. In addition, for authenticity 2 64-bit sums and 2 xors are
needed per block to update the checksum, plus a final AES encryption, and
an extra AES encryption in the case of an incomplete block. So it is very
fast on software and should also be fast on hardware (though we have not
implemented it on hardware).

Since the encryption itself is AES with other round keys, it benefits from
all the known speed ups of AES, including the Intel instructions and the
hardware implementations.

It is NOT a mode of operation of AES, so it cannot use a black box
implementation of AES. However, it can take advantage of any implemen-
tation of AES that is divided into two black boxes: one that computes the
round keys, and the other that uses the round keys to implement a black box
implementation of AES.

Since it is basically AES-ECB, it is highly parallelizable and it is also
online for both encryption and decryption, meaning that it can produce ci-
phertext blocks before subsequent plaintexts blocks are known (except for
the last block, which if incomplete need the length of the message), and a
similar statement for decrypting. (however, it is to be noted than since this
is an AEAD, in the case of decrypting the plaintext blocks should not be

26

released until the authenticator has been verified).
Moreover, not only it is online, but the order in which the plaintext can be

processed is completely arbitrary (as long as the position of the block in the
message is known), i.e., the cipher has a random access property. (although
in order to use this property modular multiplication is needed).

The cipher is also incremental: if one block of plaintext or associated data
is modified, then only two AES extra calls plus a few xors and arithmetic
operations are needed to update the ciphertext and tag. (incrementally does
not extend to changing the nonce: in that case all the computations must be
redone).

The cipher can process P or parts of P without seeing A, A or parts of
A without seeing P , or any combination.

This cipher is faster than AES-GCM. In Haswell it can encrypt at about
0,73 cycles per byte for long messages (' 200KB) and at about 1 cpb for
shorter messages (1500 bytes). Decryption is a little bit slower, because of
the need to multiply the keys by the inverse Rijndael matrix, but still it runs
at about 0,89 cpb for long messages.

One big advantage over AES-GCM is that only AES and arithmetic op-
erations are used: no Galois field operations are needed, taking advantage
of the adaptability of AES to different environments (from latest generation
chips to embedded 32 bit systems and byte oriented environments).

Another advantage over AES-GCM is that it can process longer messages.
Another advantage over AES-GCM is that a tag of length τ provides τ

bits of security, unlike AES-GCM. (for example a 32-bit tag of AES-GCM
only provides 16 bits of security).

Another advantage over AES-GCM is the following: in the latest Intel
chips, there is a special instruction that speeds up the Galois field multipli-
cation, but on environments that lack this instruction, AES-GCM needs to
be implemented in general with the use of some large tables to be able to
encrypt efficiently. Whenever a key is changed, these tables must be recom-
puted. On the other hand, re-keying in Silver is simply another AES key
expansion.

Another advantage over AES-GCM is the resistance against public mes-
sage number reuse. In AES-GCM repetition of the nonce is lethal for integrity
and confidentiality since the encryption part of AES-GCM is counter mode
and as for authenticity, if the nonce is repeated, the secret key H used in the
GHASH function can be obtained, allowing subsequent forgeries.

We have seen in 3.4 that forgery even under nonce repetition appears to

27

be intractable, (though we cannot give a hard proof) and even if a forgery
can somehow be made, still repetition of the nonce does not reveal any in-
formation that would allow subsequent forgeries for other nonces, unlike the
case in AES-GCM.

We have also seen that under nonce repetition there is indistinguishability
with “RandomByBlocksCipher”, which may not be a good enough thing, but
it is better than repetition of nonce in counter mode, which produces total
loss of privacy.

28

Chapter 5

Design Rationale

The designers have not hidden any weakness in this cipher.
There were several goals in the design of Silver . One was to have a high

throughput cipher, faster than AES-GCM, and capable of competing even
with OCB ([5]).

The other was to use as much components as possible of AES, since it
is probably the most thoroughly analyzed cipher in existence, and no great
weakness have been found on it.

For this, we could try to build a block-cipher based construction, or a
stream-cipher based construction. However, we felt that the stream-cipher
based construction, although potentially faster, would leave more room for
attacks than a block-cipher based one, so we decided to go with this con-
struction. Besides, our tests on some of the versions we created were not fast
enough.

In order to allow high throughput, the cipher would need to allow for
parallelization. This leads to only two classical modes: counter mode or
ECB.

However counter mode is the one AES-GCM uses, hence in that case the
only thing to do would be to find a better authentication. Also, ECB has the
advantage that a change on one bit in the plaintext will change an average
of 64 bits on the ciphertext, instead of the one bit change of counter mode,
thus if we include in the computation of the tag the xor of the plaintext and
ciphertext, one or the other will be uncontrollable by the attacker.

But ECB has many weakness, including distinguishability from random.
Hence it would have to be a variation of ECB. OCB([5] and IAPM ([2]) do
a variation of it, by masking the input and output of the black box AES

29

encryption of one block. However, it requires a careful analysis of exactly
what changes to make. (for example using simply the block number as mask
is not good). Moreover, since they are patented, using a similar approach
with different masks may bring in legal troubles. (though OCB has a very
nice patent permission scheme).

We decided to use the nonce to obtain a radical change of keys from one
message to another, allowing better protection. The problem remained what
changes to make from block to block in a single encryption. For reasons of
efficiency it had to be something simpler than the radical change made from
message to message.

Since AES is a very strong cipher, we had the idea to change the round
keys by xoring a secret to some or all of them. The diffusion properties of
AES ensure that even small changes will propagate to all bits of the block
after 2 to 4 rounds.

One possibility was to change all round keys. But this, in addition to a
loss of efficiency, may allow an adversary to try to nullify a change on one
round with a change on the next round. By separating the changes by 4
full AES rounds, we allow the Rijmen-Daemen theorem to hold, obtaining a
bound of 2−150 on the probability on any differential trail. Thus, we chose
the round keys of rounds 1,5,9, given the 4 round property of AES and that
we didn’t want to let the adversary to be able to easily eliminate one of the
changes by changing the plaintexts (if we chose the initial whitening key) or
the ciphertext (if we had chosen the last round key).

We toyed with the idea of doing different changes on different round keys,
but we then opted for simplicity. One possibility was to change some keys
and also the order of the internal keys. Another was to for example, generate
further round keys, at least after some encryptions, or apply some AES round
to one or more round keys. But these approach would make it hard to be
able to process a particular block without doing the changes to the keys that
precede that block, so a change that depended on simply counting the block
number was considered better.

The reason the nonce affects the round keys as defined (by xoring the
round keys of the expansion of K and κ) instead of using directly κ as a
session key has to do with two things: one is the resistance against a possible
key collision attack, as explained above, and also because of the possibility
that someone may choose to generate the nonces by computing the next
nonce as EK(N). Although this is terrible practice (the secret key should
not be used to generate nonces) if someone did it it would be catastrophic

30

under the other scheme, since the nonce of the next session would reveal the
encryption key of the previous one. Also the way the round keys are defined
make it impossible to find pairs (K,N) and (K∗, N∗) that would generate
the same round keys.

We could have chosen a different order to mix the round keys of K and
κ, but we chose that one to allow on-the -fly implementation.

We decided to use both Pi and Ci to generate the tag as a protection
against a trivial attack under nonce repetition and protection against an
intruder attack (see 3.7) and we decided to mask Ci as a protection against
more elaborate forms of attack with nonce reuse. Both these measures imply
a loss of some speed, about 0,1 cpb taken together, but we thought that this
measures make Silver more robust.

We limit the message length to 250 bytes=246 blocks so that even in the
extreme case there would still be 17+17=34 bits of i ∗ IC unknown. (17
because the low bit in each half is known to be 1). Although even one bit
of change should provide protection, this offers some extra protection at no
real cost for the moment, since a thousand terabytes is more than enough
for all practical purposes.

(for the associated data there would only be 17 bits unknown, but since
the outputs of the encryptions are never revealed, we consider it safe).

In short, the things that distinguish Silver from other similar designs are:
radical change of key from message to message, gentler change from block
to block that can be made on any block independently of the others, use of
both Pi and Ci (masked) in the production of the tag, and dependence only
on AES for security. (well, plus some extra protection due to the additions).

31

Chapter 6

Intellectual Property

There are no known patents, patent applications, planned patent applica-
tions, or other intellectual-property constraints relevant to the use of the
cipher.

If any of this information changes, the submitter will promptly (and
within at most one month) announce these changes on the crypto-competitions
mailing list.

32

Chapter 7

Consent

The submitters hereby consents to all decisions of the CAESAR selection
committee regarding the selection or non-selection of this submission as a
second-round candidate, a third-round candidate, a finalist, a member of the
final portfolio, or any other designation provided by the committee. The sub-
mitters understands that the committee will not comment on the algorithms,
except that for each selected algorithm the committee will simply cite the
previously published analyses that led to the selection of the algorithm. The
submitters understands that the selection of some algorithms is not a neg-
ative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision. The submitters acknowledges that the
committee decisions reflect the collective expert judgments of the committee
members and are not subject to appeal. The submitters understands that if
they disagrees with published analyses then they are expected to promptly
and publicly respond to those analyses, not to wait for subsequent commit-
tee decisions. The submitters understands that this statement is required
as a condition of consideration of this submission by the CAESAR selection
committee.

33

Bibliography

[1] Alex Biryukov and Dmitry Khovratovich, “Related-key Cryptanal-
ysis of the Full AES-192 and AES-256”, Advances in Cryptology-
ASIACRYPT 2009 Lecture Notes in Computer Science Volume
5912, 2009, pp 1-18.

[2] C. Jutla, “Encryption modes with almost free message integrity,
Advanced in Cryptology, EUROCRYPT 01, Springer-Verlag, 2001

[3] Lipmaa, H. and Moriai, S. “Efficient algorithms for computing dif-
ferential properties of addition”. In Fast Software Encryption 2001,
number 2355 in Lecture Notes in Computer Science, pages 336-350,
Berlin, 2002.

[4] Moses Liskov and Ronald L. Rivest and David Wagner, “Tweak-
able Block Ciphers”, Advance in Cryptology, CRYPTO’02, Lecture
Notes in Computer Science Volume vol 2442, 2002, pp 31-46

[5] P. Rogaway, M. Bellare, J. Black, and T. Krovitz, “OCB: a block-
cipher mode of operation for efficient authenticated encryption”,
ACM CCS, 2001

34

